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Peroxidases (PODs) from radish (Raphanus sativus L.) and turnip (Brassica napus L.) were extracted 
and precipitated with ammonium sulfate using a simple, low cost and quick method. The activities of all 
steps performed by the vegetable PODs were measured via guaiacol assay. The epoxidation of 
isosafrol, catalyzed by radish (R. sativus L.) and turnip (B. napus L.) peroxidases was conducted in 20% 
(v/v) aqueous ethanol solution using 30% (v/v) H2O2 as the terminal oxidant. High conversion (88%) and 
selectivity (>98%) were obtained after 48 h. The products of the reaction were analyzed by high 
resolution gas chromatography (GC) and mass spectrometry. 
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INTRODUCTION 
 
Peroxidases (PODs) are heme proteins involved in the 
oxidation of a wide variety of organic and inorganic 
substrates that use H2O2 or organic peroxides as terminal 
oxidants (Hamid and Rehman, 2009; Veitch, 2004). 
PODs can be found in multiple isoforms in several 
species of fruits and vegetables, and are related to 
changes in flavor, texture and color, during post-harvest 
ageing and/or the processing of vegetables and fruits 
(Lopes et al., 2015). In spite of being ubiquitous in nature, 

horseradish (Armoracia rusticana) is the only commercial 
source of these enzymes. The commercially available 
horseradish peroxidase (HRP) is normally used in 
immunoassays, diagnostic kits (Veitch, 2004) and for 
development of biofuel cells (Ramanavicius et al., 2015; 
Ramanavicius and Ramanaviciene, 2009), but it is 
expensive due to its elevated purification costs. Many 
reactions catalyzed by HRP can be found in the literature: 
in addition, demethylation, epoxidation, hydroxylation, 
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polymerization of phenolic compounds (Cheng and 
Harper Jr, 2012; Savic et al., 2013; Gilabert et al., 2004), 
electro-oxidation of phenol by heterogeneous catalysis 
(Carvalho et al., 2007) and the oxidation of bisphenol, 
which is a common industrial pollutant (Hong-Mei and 
Nicell, 2008). Hydroxylation and epoxide production are 
conducted by monooxygenases or peroxidases, which 
have biological functions that control the transfer of one 
oxygen atom from the dioxygen or H2O2 to an organic 
compound (Lin et al., 2011). Several studies reported the 
selective oxidation of alkenes using these biocatalysts 
(García-Granados et al., 2004; Hirata et al., 1998, Kim et 
al., 2007).  

Epoxides are relevant compounds in the phar-
maceutical industry, as they are important synthetic 
intermediates (Liang et al., 2004; Choudhary et al., 2004; 
Lambert et al., 2005; Piovezan et al., 2005). This fact is 
due to the versatility of the oxirane function, which can be 
converted into numerous chemicals with biological 
activity (Archellas et al., 1997). One important example is 
the oxidation of isosafrol, which products epoxides, that  
also can be converted to aldehyde (piperonal for 
example), an intermediate on the route to L-Dopa 
(Santos et al., 2004), used in the treatment of Parkinson’s 
disease, and to α-methyldopa, used as an anti-
hypertensive agent (Gu et al., 2012). 

Chemical methods to synthesize epoxides are 
generally based on heavy metal catalysis and/or the use 
of stoichiometric reagents, such as m-chloroperbenzoic 
acid (MCPBA), which generate highly polluting 
chlorinated byproducts (Costas et al., 2000). Some 
reports in the literature describe the catalytic oxidation of 
isosafrol in the presence of 30% H2O2 or other oxidants 
with vanadium catalysts at reflux. These conditions 
promote the cleavage of the double bond (C=C) to form 
the corresponding aldehydes and epoxides (Alvarez et 
al., 2006; Alvarez et al., 2007). However, this reaction 
was not yet reported using plant POD catalysis. The 
study of olefin epoxidation mediated by peroxidases 
under mild conditions is of great interest for the synthesis 
of chiral building blocks. 

In this work, peroxidases from radish (Raphanus 
sativus L.) and turnip (Brassica napus L.) were extracted 
and concentrated by precipitation with ammonium sulfate 
using a simple, low cost and quick method. These 
partially purified protein fractions were used in the 
epoxidation of isosafrol in 20% (v/v) aqueous ethanol 
solution using 30% (v/v) H2O2 as the terminal oxidant. 
 
 
MATERIALS AND METHODS 

 
Chemicals 
 
Isosafrol (a mixture of isomers) was obtained from “Geroma do 
Brasil” (PR/Brazil) and consists of isosafrol Z (15%) and isosafrol E 

(majority species, 85%). All solvents were purchased from Vetec 
(Brazil) as PA grade. All other chemicals used for the broth media 
were of analytical grade and purchased from Sigma–Aldrich (USA).  
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m-chloro-perbenzoic acid (MCPBA) was purified according to the 
methodology already established in the literature. Briefly, the 
peracid was dissolved in ether and washed with buffer solution (410 
mL 0.1 M NaOH, 250 mL 0.2 M KH2PO4 made up to 1 L, pH 7.5). 
The ether layer was dried over Na2SO4 and carefully evaporated 
under reduced pressure.  
 
 
Preparation of the raw extract  

 
Turnip and radish were obtained at a local market, and were 
washed, pilled, homogenized and stored in freezer in fractions of 25 
g up to the experiments. Extraction of the crude enzyme was 

carried out according to the procedure described in the literature 
(Fricks et al., 2006; Fricks et al., 2010). The vegetable (25 g) was 
homogenized with 50 mL of 100 mM phosphate buffer 
Na2HPO4·2H2O (pH 6.5). The extract was filtered and centrifuged at 
2300 x g (5000 rpm) for 60 min at 4°C. The supernatant solution, 
which contained the enzymes, was stored at 4°C. 
 
 
Precipitation and determination of proteins 

 
21 g of (NH4)2SO4 was slowly added to a volume of 30 mL of the 
raw extract, reaching up to 85% saturation. After the dissolution of 
the salt, the solution was placed in the freezer at -18°C for 1 h. 
Next, the solution was centrifuged at 2300 x g (5000 rpm) for 40 
min at 4°C and the supernatant was discarded. The precipitate was 
dissolved in around 5 mL of 100 mM phosphate buffer 
Na2HPO4·2H2O, pH 6.0 and was used as a source of peroxidases. 
The total concentration of proteins obtained in the solutions was 

determined by the Bradford method, using bovine serum albumin 
as standard (Bradford, 1976). 
 
 
Determination of peroxidase activity 

 
The enzymatic activity of peroxidases was determined by a 
colorimetric method based on the change of absorbance at 470 nm 

due to the formation of tetraguaicol, the product of guaiacol 
oxidation (Fricks et al., 2006; Fricks et al., 2010). Peroxidase assay 
medium was composed of 2.78 mL of 100 mM phosphate buffer 
(pH 6.0), 0.02 mL of enzyme (previously diluted 20 x), 0.1 mL of the 
100 mM guaiacol solution and 0.1 mL of 2.0 mM H2O2 solution at 
25°C. One unit of enzyme (U) was defined as the quantity of 
enzyme capable of forming 1 µmol of product in a minute at 25°C 
and pH 6.0, εtetraguaiacol= 26.6 mM

-1
cm

-1
 (Hirata et al., 1998). The 

reaction progress was followed with a UV-Vis UV-HP8452-Diode 
array spectrophotometer. Control experiments were carried out in 
the absence of peroxidases. 
 
 
Stability test of the enzyme in organic solvents  

 
Aqueous solutions of ethanol and acetonitrile were prepared with 
concentrations of 20, 40 and 60% (v/v). The enzymatic samples 
(0.1 mL) were incubated in 25 mL of the ethanolic solution and 0.9 
mL of 0.1 M guaiacol solution. At certain time intervals, aliquots (2.9 
mL) were collected and added to a 2 mM solution (0.1 mL) of H2O2 
to start the enzymatic reaction. Thus, the residual activity of the 
enzyme pre-incubated in the aqueous solutions of ethanol was 
determined. An analogous methodology has been described in the 
literature (Azevedo et al., 2003). 
 

 
Standard oxidation reaction 
 

10 mL of dry solvent, 0.06 or 0.08 mmol of dry m-chloro-perbenzoic
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Table 1. Radish and turnip peroxidases activities. 
 

Parameter 

Radish Turnip 

Raw 

extract 

Precipitation 

(NH4)2SO4 

Raw 

Extract 

Precipitation 

(NH4)2SO4 

Total protein (mg) 21.6±0.55* 11.3±0.14 44.2±0.24* 15.0±0.36 

Specific activity (U/mg) 13.3±0.35 20.1±0.56 41.1±2.51 36.7±1.84 

Total activity (U) 96.0±2.82 76.0±3.73 605±10.08 212±5.00 

Recovery of activity (%) 100.0±5.00 78.0±2.51 100±5.44 35±2.47 
 

*mg protein/ g tissue: radish (1.72±0.12) and turnip (3.54±0.21). 
 
 
 

acid (MCPBA) and 0.04 mmol of isosafrol were stirred in a 20 mL 
flask under an inert atmosphere for 48 h at room temperature. Next, 
the reaction medium was washed with a NaHCO3 solution to 
eliminate excess MCPBA. The reaction products were extracted 
with CH2Cl2 and the organic phase was treated with anhydrous 
Na2SO4 and subjected to chromatographic analysis (GC). 
 

 
Biotransformation by POD R. sativus L. and/or POD B. napus 
L. 

 
0.04 mmol of isosafrol, 20 µL of the enzymatic solution and 0.04 
mmol of 30% (v/v) H2O2 were added to 10 mL of 20% (v/v) ethanol 
solution. The reaction medium was stirred (at 120 rpm) for 48 h at 
25°C. After the medium was extracted with dichloromethane and 

dried with anhydrous Na2SO4, the reaction products were analyzed 
by GC and GC-MS. 
 
 
Methods for identification and quantification of substrate and 
product 

 
Reactions were monitored by high resolution gas chromatography. 
An HP5890 chromatograph with an HP WCOT (25 m x 0.32 mm ID) 

column was used in this study. H2 was used as a carrier gas at a 
flow rate of 3 mL/min (96 cm/seg), with a pressure of 20 psi. The 
initial temperature was 100°C and the final temperature was 250°C, 
with a ramp rate of 3°C/min. The injector was held at 150°C and the 
detector at 240°C. The injection was operated in splitless mode for 
0.2 µL of the injected solution. Retention times of authentic 
standards and their respective retention indices were obtained from 
a mixture of homologous hydrocarbons and used as identification 

parameters. Selectivity values for each product were calculated 
from GC data, using the products peak area, according to the 
following expression: 
 
Selectivity (%) = (area peak of the product / total area peak of the 
products formed) * 100 
 
Mass spectrometry was employed to confirm the identification of the 
product through the use of electronic libraries and published data. 
The analysis was performed in a HP5973 gas chromatograph 
connected to a HP5972 mass spectrometer, with ionization by 
electronic impact at 70 eV (1 scan/min, acquisition m/z: 40-400). H2 

was used as a carrier gas, with speed of 1.0 mL/min in accordance 
with the conditions already described. 

 
 
RESULTS AND DISCUSSION 
 
Activity assays of radish and turnip PODs were performed 

based on previous experience (Lopes et al., 2015), 
through the reaction of a guaiacol/H2O2 (100 mM) 
system. Guaiacol was selected as a standard substrate 
for peroxidase activity monitoring. In recent study Kumar 
and co-authors showed that a plant peroxidase 
(Euphorbia cotinifolia) has maximum activity with 
guaiacol as reducing substrate compared with pyrogallol, 
dianisidine-dihydrochloride, o-phenelene diamine, α-
aminopterin and phloroglucinol (Kumar et al., 2011). 
Table 1 presents the results of extraction and pre-
purification of PODs from radish and turnip. The main 
reason for performing the precipitation of proteins from 
the crude extract with ammonium sulfate at 85% 
saturation was allowed to concentrate the vegetable 
peroxidases in small volumes with an easy by easily and 
practical method, thus reducing the volume of peroxidase 
solution in the epoxidation medium. 30 ml of crude 
extract of each plant provided 4.5 and 6.0 ml of radish 
and turnip precipitate, respectively. For radish POD, 78% 
of the enzyme was precipitated, value indicated by the 
recovery of the activity. However, for turnip POD, a low 
recovery level was observed (35%). In terms of 
purification, It should be noted that the precipitation of the 
radish raw extract with (NH4)2SO4 was efficient, due to 
the increased in the specific activity (13.3 to 20.1 U/mg, 
purification factor 1.51) with good recovery level (78%). 
However, a decrease in the specific activity (41.1 to 36.7 
U/mg) was observed for turnip, which indicates that part 
of the POD turnip activity was lost during the process. 

Biochemical systems involving aqueous/organic media 
and mild conditions are of extreme importance due to an 
increased demand for environmentally friendly 
processes. The possibility of using peroxidases in organic 
solvents enhances their application in the oxidation of 
hydrophobic molecules. Figure 1 shows that while both 
extracts retain part of their original activity in aqueous 
ethanolic mixtures, a decrease is observed at the 
beginning of the exposure time. After 5 h of treatment, 
the activity remains constant. Higher organic solvent 
concentrations lead to a decrease in enzyme activity. The 
partially purified protein fraction of the radish extract 
indicated that around 50 and 15% of its initial activity is 
preserved after 26 h of incubation in solutions of 20 and 
40% (v/v) of ethanol/water solution, respectively. The
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Figure 1. Residual activity of radish and turnip peroxidases in ethanol (ETOH 20 to 40% and 

acetonitrile (CH3CN 20%) (v/v). In all points the deviation was less than 5%. 
 
 
 

 

 
 
 

 
 

Figure 2. Microbiological oxidation of isosafrol (1a/1b) to 3a/3b. 
 

 
 

same phenomenon was observed in the protein fraction 
from the turnip extract. After 26 h of incubation in 20% 
(v/v) ethanol/water solution, the residual activity was 
around 20% of the original, and virtually zero in 40% (v/v) 
ethanol/water (not shown in Figure 1). Radish POD 
extract incubated in 20% aqueous acetonitrile solution 
showed activities below 10% of the original activity. The 
results are in agreement with literature: PODs are active 
in organic solvents, and they have been used to catalyze 
the polymerization of phenolic compounds for example 
(Eker et al., 2009; Ryu and Dordick, 1992). In polyphenol 
synthesis, HRP was shown to be most stable in ethanol 
solutions around 20 to 40%, as higher ethanol con-
centrations induced a loss of activity (Ayyagari et al., 
2002). Some studies in the literature indicated that HRP 
is more stable in polar than non polar solvents, and that 
sub saturated hydration levels cause a decrease in the 
catalytic efficiency of enzymes (Ryu and Dordick, 1992). 
Also, the literature shows that heme peroxidases may 
also have catalytic activity in non-native states (Lin and 
Wang, 2013). 

Furthermore, large amounts of oxidant may inactivate 
the enzyme (Van der Velde et al., 2001). Therefore, the 
proportion of organic solvent, the quantity and speed of 

the addition of oxidant and the reaction time must be 
monitored to ensure enzyme activity (Azevedo et al., 
2003; Santos et al., 2003; Santos et al., 2004). The  
epoxidation of isosafrol (1) was conducted (Figure 2) at 
room temperature (298 K), using the partially purified 
protein fractions from the extracts. Epoxidation with 
MCPBA was also performed to afford a direct comparison 
of the epoxidation with POD extracts. Blank tests showed 
that the substrate was not oxidized in the absence of 
extracts. Table 2 shows the results obtained in the 
experimental runs. Epoxidation with MCPBA as an 
oxidant gave low conversions (max. 44%) and selec-
tivities (max. 71%) under the same experimental 
conditions. In addition to the epoxide, there was presence 
of glycol, derived from isosafrol, and piperonal, with 
maximum selectivities of 15 and 14%, respectively (Table 
2, entry 5). According to the literature, the conventional 
epoxidation process utilizes acid to elicit oxygen transfer 
to double bonds, resulting in low yields due to side 
reactions such as the acid-catalyzed ring opening of 
oxiranes (Kim et al., 2007). In the order hand, the 
enzymatic epoxidation provides a mild and simple 
alternative, especially for the production of sensitive 
epoxides. The best result for the epoxidation of isosafrol 
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Table 2. Description of catalytic systems to oxidize Isosafrol 1 (0.04 mmol), 25°C. 

 

# Catalyst 
Oxidant 

(mmol) 

Solvent 

(10 mL) 

Time 
(h) 

Conversion 

(%)
a* 

Selectivity (%) 

Epoxide Glycol Piperonal By products 

1 Radish -Ia (1,0 U) H2O2 30% (0.04) 20% C2H5OH / H2O 48 88 > 98 - - - 

2 Turnip - Ia (1,8 U) H2O2 30% (0.04) 20% C2H5OH / H2O 48 7 > 98 - - - 

3 - MCPBA (0.06) CH2Cl2 48 14 63 22 - 10 

4 - MCPBA (0.06) CH3CN 48 32 71 18 8 - 

5 - MCPBA (0.08) CH3CN 48 44 70 15 14 - 
 
a*

Determined by GC. Piperonal and glycol had retention times of 6.75 and 10.8 min, respectively.  
 
 
  

 
 

A B C 

 
 
Figure 3. Chromatograms of the GC analysis of the reaction products. A) Control reaction. Retention times: Z-isosafrol (7.64 min) and E-isosafrol (8.65 min). B) 

Catalysis by POD Raphanus sativus L. (entry 1). C) Catalysis by POD Brassica napus (entry 2). Peak at 11.7 min is attributed to epoxide 3 (oxirane), which is 
validated by the mass spectrum. 

 
 
 

was obtained with the POD extract obtained from 
radish as the catalyst, with the production of 3-
methyl-[3´,4´-methylenedioxiphenyl]-oxirane 3 as 
the sole product (88% conversion and 98% 

selective for forming the epoxide). POD derived 
from turnip resulted in lower conversions of the 
reactant (7%), likely due to its lower stability in 
alcohol compared to  radish  POD,  but  with  high  

selectivity for the epoxide (greater than 98%). 
Figure 3 presents the chromatograms of the GC 
analysis of the reaction products for the control 
(Figure 3A) and POD-catalyzed runs (Figure 3B,



 
 
 
 
C). Peaks derived from the isosafrol isomers are 
identified at 7.64 min (Z isomer) and 8.65 min (E-isomer). 
Control sample analysis showed only the presence of the 
isosafrol isomers (Figure 3A). The peak at 11.7 min is 
attributed to epoxide 3 (oxirane), which is validated by the 
mass spectrum. 

The results indicate that it is possible to obtain higher 
conversions and selectivity with the use of plant POD as 
a catalyst for the epoxidation of isosafrol. In comparison, 
epoxidation using other plant peroxidases as catalyst 
show low yield. Hirata and colleagues performed the 
epoxidation of styrene using peroxidase from Nicotiana 
tabacum, reaching maximum yield of only 7.5% using cis-
2-methylstyrene as substrate (Hirata et al., 1998). Our 
group report the oxidation of E- and Z-4-(1-propenyl)-1,2-
methylenedioxybenzene (E- and Z-isosafrole) into 4-
carboxaldehydro-1,2-methylene-dioxybenzene 
(piperonal) using different strains of Aspergillus, 
Cladosporium, Peacilomyces and Pseudomonas. These 
microorganisms are able to oxidize the above 
compounds to piperonal, in the presence of H2O2, but not 
in its absence, indicating that this biotransformation is 
catalyzed by peroxidases in these microorganisms 
(Santos et al., 2003; Santos et al., 2004). Also, heme-
monooxygenases (P-450 CIT), ω-monooxygenases and 
methane monooxygenases are capable of catalyzing an 
epoxidation reaction (Archellas and Furstoss, 1997). 
Some authors have also reported the oxidation of olefins 
using chloroperoxidase (CPO) (Allain et al., 1993). 
Enzymes from other sources, such as Coprinus cinereus 
peroxidase, myeloperoxidase (Tuynman et al., 2000) and 
chloroperoxidases (Dexter et al., 1995; Hu and Hager, 
1999), are capable of catalyzing epoxidation both mildly 
and selectively.  
 
 

Conclusion 
 

Peroxidases from radish (R. sativus L.) and turnip (B. 
napus L.) were extracted and precipitated with 
ammonium sulfate. By this methodology only radish POD 
was pre-purified (purification factor 1.51). The protein 
fractions from the radish and turnip extracts applied in the 
epoxidation of isosafrol in 20% (v/v) aqueous ethanol 
solution using 30% (v/v) H2O2 as the terminal oxidant are 
effective catalysts to epoxidize isosafrol with high 
selectivity (> 98); but only with POD derived from radish, 
excellent chemical conversion is observed (88%). 
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