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Oil palm (Elaeis guineensis Jacq.), a monocotyledonous plant belonging to the Arecaceae family, is one 
of the most important oil crops in the world. In Nigeria, oil palm has benefited immensely from 
conventional breeding efforts resulting in high yields that have been achieved with this breeding 
material. However, oil palm breeding is slow and time-consuming due to a breeding cycle of about 10 
years. In addition, the process of outcrossing leads to high variation in yield components and vegetative 
traits. Although DNA marker technologies offer great possibilities for plant breeding through marker-
assisted selection, there are so far no reports of its application to oil palm breeding in Nigeria. In this 
study, 32 SSR markers were used for the assessment of marker application in an oil palm breeding 
population coming from the extensive breeding program at the Nigerian Institute for Oil Palm Research 
(NIFOR). Seven SSR markers out of the 32 tested (22%) segregated in the progeny 12 (tenera x Deli 
dura). SSR markers mEgCIR0059, mEgCIR1917, mEgCIR3260, mEgCIR3275, mEgCIR3533 and 
mEgCIR3557 proved to be fully informative markers following a segregation ratio of 1:1:1:1, while 
marker mEgCIR0074 segregated in a 1:1 ratio.  
 
Key words: Oil palm, microsatellite marker, marker-assisted selection, NIFOR. 

 
 
INTRODUCTION 
 
Oil palm (Elaeis guineensis Jacq.; Arecaceae), a mono-
cotyledonous plant, is one of the most important oil crops 

in the world (Low et al., 2008). There are currently two 
species assigned to the genus Elaeis: the African oil
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palm (E. guineensis) and the South American oil palm 
(Elaeis oleifera). The chromosome numbers for E. 
guineensis and E. oleifera were determined with 
2n=2x=32 (Madon et al., 1998). The African oil palm (E. 
guineensis) has three fruit forms differing in their shell 
thickness: dura (thick-shell), pisifera (shell-less) and 
tenera (thin-shell), which results from a cross between 
dura and pisifera (Hartley, 1988). Shell thickness is 
controlled by one major co-dominant gene called Sh 
(Beirnaert and Vanderweyen, 1941) and plays a major 
role in oil yield. In addition, different fruit types (virescens, 
albescens, nigrescens and poissoni) are distributed 
among the three fruit forms (Corley and Tinker, 2003). Oil 
palms allow the production of two distinct kinds of oils from 
two different tissues within the fruits: (red) palm oil from the 
fruit pulp (mesocarp) around the nut and palm kernel oil 
from the kernel  (Akapanabiatu et al., 2001; Asemota et al., 
2004). Red palm oil as a saturated fat contains 44% 
palmitic acid, 39% oleic acid and smaller percentage of 
stearic, linolenic, lauric, myristic and linoleic acid (Burri, 
2012; Oguntibeju et al., 2009). In addition, RPO is rich in 
provitamin A carotenoids (alpha- and beta-carotene) as 
well as vitamin E (both tocopherols and tocotrienols) 
(Burri, 2012). Palm kern oil consists mostly of lauric acid, 
followed by myristic acid, oleic acid and palmitic acid. 
Comparing palm kernel oil from Nigeria (Akapanabiatu et 
al., 2001) with palm kernel oil from Malaysia (Kok et al., 
2011), considerable differences in oleic acid and myristic 
acid content can be observed. Nigerian palm kern oil 
contained 15-19% oleic acid and only 45-48% lauric acid, 
whereas the palm kern oil from Malaysia had only 9-12% 
oleic acid and 51-53% lauric acid. About 90% of the palm 
oil produced is used for food products (Sambanthamurthi 
et al., 2000). Although the unrefined red palm oil has a 
high nutritional value (provitamin A and vitamin E), the 
refined commercial palm oil (color- and odorless) is used 
due to its low costs and its high oxidative stability (Burri, 
2012; Ong and Goh, 2002; Matthäus, 2007).   

In Nigeria, oil palm yield has benefited immensely from 
conventional breeding efforts. For example, average 
yields from the second cycle planting materials coming 
from the Nigerian Institute for Oil Palm Research range 
between 20 to 25 tones fresh fruit bunches per hectare 
per year in a well-managed plantation (NIFOR, 2008). 
However, oil palm breeding is slow and time consuming 
due to a breeding cycle of about 10 years. As an 
outcrossing crop, high variations in yield components or 
vegetative traits are observed in the offspring (NIFOR, 
2008). Regarding the long generation time in oil palm 
breeding, the possibility of selection at the nursery stage 
has often been considered desirable. Exploitation of DNA 
marker technologies combining the knowledge from 
research in molecular genetics and genomics offers great 
possibilities in plant breeding (Collard and Mackill, 2008). 
However, there have been no reported cases of its 
application in breeding of oil palms in Nigeria, so far 
(NIFOR, 2008).  

 
 
 
 

DNA markers can be used to detect the presence of 
allelic variation in the genes underlying traits of interest 
and have been applied to a range of crop species such 
as Flammulina velutipes (Physalacriaceae) (Zhang et al., 
2010), Brassica rapa (Brassicaceae) (Kapoor et al., 
2009), cereals (Gethi et al., 2002; Li et al., 2008; 
McCough et al., 2002; Shehata, et al., 2009; Zheng et al., 
2008), Cucumis sativus (Cucurbitaceae) (Hu et al., 2010), 
Spartina spp. (Poaceae) (Baisakh et al., 2009), Glycine 
max (Fabaceae) (Xia et al., 2007), Nelumbo nucifera 
(Nelumbonaceae) (Kubo et al., 2009; Pan et al., 2007). In 
oil palm, a set of SSR markers have been developed and 
together with AFLP markers have been integrated into a 
general genetic map (Billotte et al., 2005). This genetic 
map consisted of 944 markers on 16 linkage groups, 
corresponding to the expected haploid chromosome 
number of oil palm, and covered 1,743 cM. Linkage 
group 4 carried the Sh gene responsible for the shell 
thickness. The progeny was obtained from a cross 
between two heterozygous Elaeis guineensis Jacq. 
parents: LM2T (tenera palm belonging to the CNRA La 
Mé oil palm breeding program, Ivory coast) and DA10D 
(dura palm selected from a Deli population introduced to 
Indonesia in the 19th century). QTL for phenotypic traits 
regarding fruit variety, yield components and vegetative 
growth were localized together with the Sh gene for shell 
thickness on this map (Billotte et al., 2010). Additional 
genetic maps were constructed by Seng et al. (2011), 
Singh et al. (2009) and Ting et al. (2013). In between, the 
Sh gene was isolated from E. guineensis (dura [Sh+/Sh+] 
and pisifera [Sh-/Sh-] form) and two independent 
mutations were identified in the pisifera forms, Congo 
AVROS and Nigerian T128, that lead to non-functional 
MADS box transcription factors that cannot support the 
formation of the shell (Singh et al., 2013a). 

Simple sequence repeat markers (SSR), also known as 
microsatellites, are particularly interesting for plant 
breeding due to the properties of genetic co-dominance, 
high reproducibility, multi-allelic variation, easy amplify-
cation by PCR, and production of results that are easy to 
interpret in self-pollinating species (Collard and Mackill, 
2008). In addition, the technology is relatively easy to 
transfer from one laboratory to the other (Zheng et al., 
2008). In view of the above mentioned advantages, SSR 
markers have been used for marker-assisted selection 
e.g. in rice (Shen et al., 2001), in sunflower (Tang et al., 
2003) and peach (Sajer et al., 2012). However, in 
outbreeding crops like e.g. oil palm, eucalyptus, loblolly 
pine, cassava or potato, the identification of the 
segregation patterns of the SSRs in the progenies is 
challenging. Whereas, in inbred lines, the maximum 
number of alleles that can segregate in crosses is two 
(van Ooijen, 2011), the number of segregating alleles per 
locus in the offspring derived from a cross between two 
individuals of an outcrossing species (full-sib) family can 
range between one and four. This represents a major 
distinction between a progeny of inbred lines and a full-sib 



 

 
 
 
 
family. An additional challenge has to be faced if the 
parents of the experimental breeding populations are not 
available. For mapping markers under these circum-
stances, the reconstruction of the parental genetic consti-
tution from the observed segregation patterns in the full-
sib family is required. Markers that allow this are called 
informative markers (van Ooijen, 2011). Markers with 
segregation type ab x cd provide information regarding 
the genotypes of the parents of the population. In this 
case, the four genotypes (ac, ad, bc and bd) can be 
considered the complete genotypes in an allogamous full-
sib family. In addition, markers with a segregation type ef 
x eg also provide complete information regarding the 
genotypes of the parents of the population (van Ooijen, 
2011). These fully informative markers follow segregation 
ratios of 1:1:1:1 as deduced from their banding patterns 
and the reports of Lespinasse et al. (2000) and Billotte et 
al. (2005). 

The objective of this study was to carry out an 
assessment of an oil palm breeding population from 
NIFOR for its suitability for marker-assisted selection 
(MAS) using a new DNA isolation protocol and SSR 
markers. The parental material was not available, so that 
the genetic constitution had to be derived from the 
observed segregation patterns in the progeny. This is the 
first of series of experiments undertaken by NIFOR 
towards the incorporation of molecular markers into its 
breeding programs. SSR markers were chosen for this 
study because of the reliable ability to detect polymer-
phisms among closely related individuals (Shehata et al., 
2009). 
 
 
MATERIALS AND METHODS 
 
Breeding population 
 
The oil palm population (progeny 12) used for this study was 
derived from the Nigerian Institute for Oil Palm Research 
experimental oil palm breeding program (second cycle population) 
planted in 1987. Progeny 12 is a cross between 13.386 T (tenera) 
and 26.1074 D (Deli dura). Ninety-two (92) individuals of the 
population were used for the molecular investigations. 
 
 
DNA extraction 
 
Genomic DNA was extracted from 92 individuals of progeny 12. 
Between 0.15 to 0.2 g of fresh leaf tissue was ground quickly in 800 
µl of DNA extraction buffer (100 mM Tris-HCl, pH 8.0; 50 mM 
EDTA, pH 8.0; 500 mM NaCl; 5% SDS). The homogenate (buffer 
and ground tissue) was transferred into 1.5 ml Eppendorf tube. 
Extra 200 µl of DNA extraction buffer was added, mixed well and 
centrifuged for 2 min at 10,000 x g (4°C). The supernatant was 
collected into another Eppendorf tube and labeled. Then 200 µl of 5 
M potassium acetate were added and mixed well. An equal volume 
of phenol-chloroform-isoamylalcohol (25:24:1) was added and 
mixed very well. The mixture was centrifuged for 5 min at 10,000 x 
g (4°C). The supernatant was carefully transferred into another 
Eppendorf tube and 800 µl of absolute ethanol was added. To 
precipitate the DNA, the mixture was kept on ice for 20 min and 
later  centrifuged  for 5 min  at  10,000 x g  (4°C).  Finally,  the  DNA 
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pellet was washed twice with 70% ethanol, air dried at ambient 
temperature and re-suspended in 200 µl of TE (10 mM Tris-HCl, pH 
8.0; 1 mM EDTA, pH 8.0) and stored at -20°C. 
 
 
DNA quantification and standardization 
 
The DNA concentrations (ng/μl) and the optical density (OD) ratios 
260/280 were calculated by measuring the OD at UV wavelength of 
260 and 280 nm using a spectrophotometer (UltrospecTM 2 3100 
pro, GE Healthcare Europe GmbH, Freiburg, Germany). The DNA 
was then diluted to 50 ng/µl and used for SSR analyses. 
 
 
SSR analyses 
 
The SSR loci that were used for this study were sequenced and 
mapped by Billotte et al. (2005). Sequences for a total of 32 SSR 
loci (Table 1) were downloaded from National Center for 
Biotechnology Information (NCBI) using the accession numbers 
given in Billotte et al. (2005). Due to the special breeding interest in 
linkage group 4 because of the presence of the Sh gene as well as 
QTLs for yield, bunch components and vegetative traits located on 
this linkage group (Billotte et al., 2010), most SSR markers came 
from this linkage group. Forward and reverse SSR primers were 
designed from the sequences (Table 1) using the online Primer3 
version 4 (http://frodo.wi.mit.edu/).  
 
 
Primer tailing 
 
An M13 tailing procedure (Oetting et al., 1995) was applied for 
fluorescence labeling of the PCR amplification products. An M13 
tail (5’-TTTCCCAGTCACGACGTT-3’) was added to the 5’-end of all 
the designed forward primers. All unlabeled primers were ordered 
from Invitrogen and the M13-IRD800 (=DY-781) labeled primer was 
ordered from biomers.net (Ulm, Germany). 
 
 
PCR amplification 
 
The PCR amplification was performed in a GeneAmp® PCR System 
2700 thermal cycler (Applied Biosystems, Darmstadt, Germany). 
For the PCR, 4 µl of DNA (50 ng/µl) was mixed with 11 µl master 
mix. The master mix contained 0.3 µl dNTPs (10 mM), 8.7 µl H2O, 
1.5 µl 10x PCR buffer (for FIREPolTaq polymerase), 0.15 µl M13-
IRD800 primer (5 pmol/µl) for labeling, 0.05 µl FIREPolTaq 
polymerase (5 U/µl), 0.15 µl forward primer (5 pmol/µl) and 0.15 µl 
reverse primer (5 pmol/µl). The PCR conditions included an initial 
denaturation at 95°C for 5 min, followed by 36 cycles of 95°C for 20 
s, 50°C for 20 s and 72°C for 30 s and a final elongation step at 
72°C for 5 min. 
 
 
Polyacrylamide gel analysis 
 
The PCR products were mixed with equal volume (15 µl) of loading 
buffer (98 ml formamide, 2 ml of 0.5M EDTA pH 8.0 and 37.5 mg 
bromophenol blue). This mixture of PCR products and loading 
buffer was denatured for 2 min at 94°C and transferred onto ice 
before loading 0.5 µl into the well for separation. The PCR products 
were separated on 6% denaturing polyacrylamide gels using the 
DNA Analyzer Model 4300 (LI-COR Biosciences, NE, USA). 
 
 
Segregation analyses 
 
The number of alleles that segregated in our study was determined
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Table 1. SSR primer combinations tested in progeny 12 from the NIFOR breeding program. SSR markers were 
named according the SSR loci sequenced by Billotte et al. (2005). 
 

Marker name 
NCBI accession 

number 
LG Primer sequences1 (5’-3’) 

Product 
size (bp)2 

mEgCIR3275 AJ578630 4 
F-GGTGGAAGCTTTTTGTCTGC 
R-ATTGAAGAGGGCAGGGTTTT 

192 

     

mEgCIR3716 AJ578711 4 
F-CAGACATGGCAGCAAAAAGA 
R-ATCTTGTCTGGGGGATGTTC 

229 

     

mEgCIR3194 AJ578625 4 
F-TGGTGGTTGGGAGTGATT 
R-TGTTAGTTTGCTAACTTGAAACAGG 

262 

     

mEgCIR3413 AJ578665 4 
F-GGAAGGAAAGAAGCGAGAGG 
R-ACATGTCCATGCTGTTGGAA 

255 

     

mEgCIR3286 AJ578633 4 
F-ATTTTGGGGTCAGGGTTTGT 
R-CAGGTCCATGGGAAAAGAGA 

184 

     

mEgCIR3526 AJ578673 4 
F-TGACAGAGAGAAAAGGGAGAGG 
R-TGGTGTTCATTCTGCTCGTC 

216 

     

mEgCIR1917 AJ578575 4 
F-GCAATGGAAAGAGCTGGAAG 
R-GGTGGATCAGTCGAGCATTT 

208 

     

mEgCIR0786 AJ578541 4 
F-AGTTCCGTGCACCCACTTAC 
R-CAGCAGACAGGGAGCTAACC 

266 

     

mEgCIR3439 AJ578670 4 
F-TGACAAGCCAACTTGAAAGC 
R-GTTGACAACCTGACCAAGCA 

248 

     

mEgCIR3232 AJ578627 4 
F-CAAGCCCCTTAGCTGCATAC 
R-TGGAGGAGCAGCTTTAGCAT 

213 

     

mEgCIR3310 AJ578644 4 
F-TGGCCGATCTGTATTAACCA 
R-AAATTCTGAGCCCATGCCTA 

169 

     

mEgCIR3535 AJ578676 4 
F-AAAAACAAAAGGTGGGGAAA 
R-CCAGCCATTGCCGTATCTAT 

199 

     

mEgCIR2423 AJ578598 4 
F-ACCCCATGAGGAATTTGGAT 
R-TGTGCCCATATGTGTGTGTG 

184 

     

mEgCIR1716 AJ578569 4 
F-TTTGTGGTAACATGTGGTTGC 
R-CCCCTTCCGCATGTAAATTAT 

181 

     

mEgCIR3693 AJ578706 4 
F-TTGGCCACTTTGAAGAATCC 
R-TTTTCTGGTCAGGGTTAGCTG 

170 

     

mEgCIR3533 AJ578674 4 
F-ACGGTCTATGGCTCTGTCGT 
R-ACATGAGGAAAGCGCTAGGA 

199 

     

mEgCIR1753 AJ578573 4 
F-CGATTCATGAACATTACAAGCA 
R-TCCAAGGTGATGGTCTGTGA 

189 

     

mEgCIR3769 AJ578723 4 
F-TACTTCCTACTGGCCCATGC 
R-CGGATAGCTGGTGACATCCT 

225 

     

mEgCIR0074 AJ578500 4 
F-CGATGATGAGGCTTGTGCTA 
R-TGAATGGCTATGACCGTGAA 

225 

     

mEgCIR2595 AJ578611 4 
F-CAATATCAAAGAGCCGCACA 
R-AATGCATCTCTGGTCCTTGC 

265 
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Table 1. Contd. 
 

mEgCIR3705 AJ578709 4 
F-AACCATCCACCATGCAGAA 
R-TTCCACAATTCCATTCATTCAA 

234 

     

mEgCIR3040 AJ578622 4 
F-GATCTCTTGTGGGTGCGTTA 
R-AGGTCCTCATCCGACTTGTG 

228 

     

mEgCIR3477 AJ578671 4 
F-TAGCATGCAGACCACACACA 
R-ATGCTGGGAAAATCATGCTG 

222 

     

mEgCIR0059 AJ578499 4 
F-TGCAGGGGATGCTTTTATTT 
R-GGCCCTTAATTCCTGCCTTA 

189 

     

mEgCIR3775 AJ578724 4 
F-ATGTGGGAACTCCTGAAACG 
R-TCCTTAGCGGCTTCACTTGT 

168 

     

mEgCIR3557 AJ578682 4 
F-CATTGCCATTCCCTTCAAGT 
R-TCCCCTCTGTTCACTCAAGC 

226 

     

mEgCIR0369 AJ578516 3 
F-AACCAAGGGGTAGCAAACCT 
R-TTTTAATCCCTGCCTGATGC 

212 

     

mEgCIR3260 AJ578628 3 
F-GGGCAAGTCATGTTTCCTACA 
R-TAAGGGCGAGGTATTTCTGC 

236 

     

mEgCIR0408 AJ578519 2 
F-AGCGCAGTTGCTCGGTATAA 
R-CCCTGCAGTGTCCCTCTTTA 

163 

     

mEgCIR3683 AJ578703 2 
F-CATCAGTAGCTTGAACCTGAAAAA 
R-CTGAGGTCTACAGGGCATGTT 

190 

     

mEgCIR0874 AJ578558 1 
F-TGCTCCAGTTGTCGAGTTGT 
R-TTGCAGTTTATTTGGCTACCAG 

185 

     

mEgCIR3788 AJ578728 1 
F-TGACCAAAGACAGCATGAGC 
R-CATGAGCGCAACATCAGACT 

194 
 
1Each forward primer contained in addition the M13 tail (TTTCCCAGTCACGACGTT) at the 5’-end. 2The visible size on the 
gel will be 18 bp larger due to the M13 tail. 

 
 
 
following the genotype configuration demonstrated by Ritter et al. 
(1990), Lespinasse et al. (2000) and Billotte et al. (2005). Alleles 
were labeled Ai with i ranging from 0 (null allele = no amplification 
product) to 4 in case of four segregation alleles. Patterns for the 
individual SSR markers were identified in the full-sib family (Tab. 2). 
Chi square tests χ2 = Σ (o-e)2/e, in which o represents the observed 
values and e the expected values and P-value calculation were 
performed using the statistics functions in Excel to verify if the 
observed segregation pattern corresponds to the expected 
segregation pattern at p > 0.05. Degrees of freedom were 
calculated as the number of categories (patterns) in this population 
minus 1. 
 
 
RESULTS  
 
DNA isolation using the novel DNA protocol 
 
High quality genomic DNA could be extracted from 92 
individuals of progeny 12 (tenera x Deli dura) each 
showing one major band larger than 23 kilobase (kb) on 
an ethidium bromide agarose gel. No visible signs of 

degradation of the DNA were detectable (Figure 1). 
Estimation of the DNA concentrations showed OD 
260/280 ratios ranging between 1.7 and 2.0, supporting 
the visual picture. This proved that the developed simpli-
fied DNA extraction protocol allows efficient isolation from 
oil palm leaves. 
 
 
SSR analyses in progeny 12 (NIFOR) 
 
From 32 tested primer combinations for SSR markers 
coming from four linkage groups (1, 2, 3 and 4), nine 
gave reproducible patterns in progeny 12 (13.386 T × 
26.1074 D). Two of these SSR markers (mEgCIR3439 
and mEgCIR3535) resulted in monomorphic banding 
patterns. However, seven SSR markers out of the 32 
tested (22%) segregated in the progeny (Table 2). Their 
banding patterns (except for mEgCIR0074) are shown in 
Figures 2 and 3. One of the segregating SSR markers 
(mECIR3260) belongs to linkage group 3, all other  SSR
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Table 2. Number of alleles segregating in progeny 12 and the corresponding segregation ratios. 
  

Primer no. 
Progeny 12 (Tenera x Deli Dura)  

Lg 
No Of Alleles 
Segregating 

Parents             
P1    P2 

Allelic pattern 
Segregation 

ratio 
DF χ2 value P value 

mEgCIR0059 4 3 1:1:1:1 3 22.091* 0.0 

        

mEgCIR0074 4 1 1:1 1 1.103 0.294 

        

mEgCIR1917 4 4 1:1:1:1 3 1.515 0.679 

        

mEgCIR3260 3 3 1:1:1:1 3 8.378* 0.039 

        

mEgCIR3275 4 3 1:1:1:1 3 6.205 0.102 

        
mEgCIR3439 4 Monomorph      
        

mEgCIR3533 4 3 1:1:1:1 3 58.910* 0.0 

        
mEgCIR3535 4 Monomorph      
        

mEgCIR3557 4 3 
 

 

1:1:1:1 3 61.587* 0.0 

 

*Significant at p < 0.05 
 
 
 
and four, varying from locus to locus.  Six SSR markers 
mEgCIR1917, mEgCIR0059, mEgCIR3260, 
mEgCIR3275, mEgCIR3533 and mEgCIR3557 proved to 
be fully informative markers following a segregation ratio 
of 1:1:1:1. However, SSR marker mEgCIR0074 belongs 
to a genotype configuration where in one parent only one 
allele was amplified, the other being a null allele with no 
amplification occurring in this parent (Table 2). Such 
markers segregate in either 1:1 or 3:1 ratios (Billotte et 
al., 2005; Lespinasse et al., 2000). Also, such markers 
provide complete information about one of the parents 
but no information on the other parent (van Ooijen 2011).  

The efficiency of molecular markers lies in the fact that 
they can be used as a tool to detect sequence variation 
that exist between and within species (Doveri et al., 

2008) and also to identify inbred lines (Shehata et al., 
2009). SSR markers are particularly interesting in this 
regard and have been extensively used in oil crops 
(Cloutier et al., 2011; Rotondi et al., 2011; Xie et al., 
2012). From the findings observed in the present study, 
the SSR markers segregated in the breeding population 
with up to four alleles. No immediate reason could be 
given why not all the SSR markers, which were used for 
the study, produced amplification products other than the 
fact that the primers (forward and/ or reverse) did not 
anneal due to sequence differences between the 
populations. Progeny 12 is quite different from the 
population used to develop the markers by Billotte et al. 
(2005). However, 22% of the SSR markers were poly-
morph in the NIFOR population. This is about in the 
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range for transferability of SSR markers observed in 
other families for example, Rosaceae (Sajer et al., 2012), 
where 25% of the tested SSR markers proved on 
average to be polymorph in another mapping population. 

Segregation distortion describes a phenomenon that 
observed genotypic frequencies deviate from the 
expected Mendelian frequencies (Sandler and Novitski, 
1957). In progeny 12, distortions were observed for some 
of the SSR markers at p > 0.05. This was also reported 
by Billotte et al. (2005), however, for different markers, 
indicating in our case the detection of population-specific 
or population dependent distorted markers. In rice, Xu et 
al. (1997) investigated segregation distortion of markers 
on a large scale with six mapping populations and 1558 
markers. A total of 17 chromosomal regions with distorted 
markers distributed over all 12 chromosomes were 
detected. Marker-assisted selection in distorted regions 
can be extremely useful to increase the frequency of the 
favorable allele by selecting for recombinants in the 
distorted region (Xu et al., 1997). Distorted markers are 
usually discarded prior to QTL mapping because 
unexpected consequences are feared (Zhan and Xu, 
2011; Montoya et al., 2013). However, the former authors 
claim that segregation distortion can be actually helpful in 
the detection of QTLs (Xu, 2008; Xu and Hu, 2010) and 
developed a generalized linear mixed model for segre-
gation distortion analyses (Zhan and Xu, 2011).  

The application of molecular markers to the existing 
breeding programs at NIFOR has been considered. It is 
expected that with molecular markers higher accuracy, 
precision and earlier release of improved planting 
materials can be achieved within the shortest possible 
time when compared with the existing approach that is 
based on phenotypic observation. For the successful 
application of molecular markers for marker-assisted 
selection, high levels of variation should exist in the 
chosen breeding population. From the result of this study, 
it is clear that the progeny 12 can be used for the 
application of markers in crop improvement programs. 
The result of this study indicates that SSR markers can 
be of great benefit for breeding purposes at NIFOR if fully 
exploited.  Even with the genome sequence (Singh et al., 
2013b) and several transcriptome resources for fruit 
mesocarp maturation and ripening and other traits 
available (Bourgis et al., 2011; Tranbarger et al., 2011; 
Shearman et al., 2013), traits of interest still need to be 
localized on the genome using markers like for example, 
SSRs. In addition, breeding programs require markers for 
marker-assisted selection. Cost efficiencies of markers in 
breeding programs have been estimated for some crops 
and proved to be very efficient when integrated at the 
right generation into the breeding program (Dreher et al., 
2003; Kuchel et al., 2005; Miah et al., 2013; Morris et al., 
2003; Slater et al., 2013). Progeny 12 (13.386 T x 
26.1074 D) was used in this first assessment of SSR 
markers for marker-assisted selection in the NIFOR 
breeding  program. In   addition, 14   additional   mapping  

 
 
 
 
populations of the same size are available from the 
NIFOR breeding program (Okwuagwu 1989, NIFOR 
2008). Shared parents in some of these populations will 
even allow multi-parent QTL analysis as performed by 
Billotte et al. (2010). 

This is the first report of successfully applying SSR 
markers developed for the cross La Mé x Deli Dura 
(Bilotte et al., 2005) to the NIFOR oil palm breeding 
program opening the field to future breeding strategies 
applying marker-assisted selection. 
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