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A reliance on fossil fuels as a source of energy has resulted in the generation of pollutants which have 
entered the environment. Health of humans, animals, plants and microorganisms has been 
compromised due to activities linked to fossil fuel extraction, processing and use. Coal conversion to 
value added products has been investigated in an effort to reduce the cumulative effects of waste 
generated during mining. Clean coal technology, developed to convert coal into value added products 
with reduced pollution, has been a major source of liquid petroleum in South Africa. Although the 
conversion process, neither generates waste nor pollutes the soil environment, the final products either 
through accidental or deliberate spillage can have a severe and protracted impact. Biological methods 
for combating pollutants generated within the fossil fuels sector are preferred to mechanical or 
physicochemical practices. This is due to the production of non- or less toxic by-products, cost 
effectiveness and safety. In this manuscript, an overview of the approaches adopted and factors 
influencing microbial metabolism of fossil fuel contaminants in soil and water bodies is presented. In 
particular, emphasis is placed on bacteria as biocatalysts of choice and their ability to degrade waste 
coal and liquid petroleum hydrocarbons. 
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INTRODUCTION  
 
Fossil fuels are natural substances formed from the 
remains of ancient plants and animals. Over time, heat 
and pressure converted these remains into fuels which 
release energy when burned. The term fossil fuel also 
includes hydrocarbon-containing natural resources that 
are not derived from animal or plant sources. These are 
sometimes called mineral fuels. For the purpose of this 
review, the hydrocarbons derived from decayed plants 

and animals will be referred to as fossil fuels. The age of 
these ancient plant and animal fossil fuels is typically 
millions of years, and in some cases, in excess of 650 
million years (Mann et al., 2003). Different types of fossil 
fuels are formed depending on the combination of animal 
and plant debris present. However, the length of time for 
which the material was buried and the temperature and 
pressure during decomposition also contributed to the 
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type of fossil fuel formed. Fossil fuel has been broadly 
divided into three categories based on the mode of its 
formation. These are solid, liquid and gaseous fossil fuels 
and each is characterized by a high carbon and hydrogen 
content. Within these categories are volatile materials 
with low carbon: hydrogen ratios such as methane, liquid 
petroleum and the non-volatile materials composed 
almost of pure carbon, like anthracite coal. Fossil fuels 
have played an important role in providing energy for 
transportation, power generation, industrial growth, 
agricultural production and other basic human needs 
(Basha et al., 2009). Irrespective of the major roles that 
fossil fuels have played in sustaining the global economy, 
combustion of these fuels is a major source of 
anthropogenic CO₂ emissions (Muradov, 2001). For the 
purpose of this review, only the solid and liquid fossil 
fuels will be discussed.  

Fossil fuel resources are generally a major source of 
revenue for the main oil and gas producing countries in 
Africa (Zalik and Watts, 2006). South Africa, which is one 
of the world’s largest producers (5th) and consumers (7th) 
of fossil fuels (BP, 2012), has experienced a boost in her 
economy due to the production, consumption and 
exportation of coal (UNECA, 2011). Increased production 
over the last 30 years and an over reliance on coal as a 
source of energy has stimulated revenue accrual (ERC, 
2004). BP statistics in 2011 showed that Africa has 
enormous potential in the fossil fuels sector with proven 
reserves accounting for about 9.5, 8 and 4% of the  crude 
oil, natural gas and coal in the world, respectively (BP, 
2011). The generation of electricity from fossil fuels 
cannot be neglected as more than 80% of electricity 
generated across the continent of Africa is from fossil 
fuels (IEA, 2011). The generation and supply of energy 
from fossil fuels has also been documented. IEA, in their 
2011 annual report, stated that fossil fuels account for 
about 50% of the total energy supply and one-third of the 
energy consumed (IEA, 2011). 

Huge problems have emerged due to an over reliance 
on fossil fuels and when viewed from an environmental 
and social perspective, it affects societies locally, 
regionally and globally (UNECA, 2011). Some of these 
problems include ozone depletion, global warming, 
acidification, and depletion of non-renewable resources. 
According to Höök and Tang (2013), energy production is 
the principal contributor to release of greenhouse gases, 
in particular CO₂, with fossil fuel combustion the major 
source. Of the three categories of fossil fuels, liquids 
(petroleum) and solids (coal) are the major contaminants 
in the environment. Any unwanted substance introduced 
into the environment is referred to as a ‘contaminant’ and 
the deleterious effects of these contaminants leads to 
‘pollution’, a process in which a resource (natural or man-
made) is rendered unfit for use, more often than not, by 
humans (Megharaj et al., 2011).  

The drastic increase  in the  demand  for coal has led to 

 
 
 
 
an increase in mining of this natural resource in countries 
like South Africa with subsequent generation of wastes 
and an increase in the level of pollution. One of the basic 
reasons behind the increase in demand for coal is due to 
the various products derived from coal during its con-
version processes. For instance, in South Africa where 
liquid and gaseous fossil fuels are not readily available, 
coal liquefaction is one option available for obtaining 
these products. However, the utilization of coal and coal 
derived products is associated with serious environ-
mental problems from the mining stage through to its final 
utilization by consumers (Geo-4, 2007). To reduce 
environmental damage by this energy source, new 
conversion technologies are urgently needed. One of the 
strategies adopted in reducing environmental damage is 
clean coal technology. Clean coal technologies which 
make use of biological processes to effect pollutant 
biodegradation have received considerable attention in 
recent years (Klein et al., 2008; Sekhohola et al., 2013). 
Similarly, the use of biocatalysts to remediate liquid 
petroleum hydrocarbon and diesel contaminated sites 
has been the subject of much recent attention (Sander et 
al., 2010; Diya’uddeen et al., 2011; Vaidehi and Kulkarni, 
2012; Elazhari-Ali et al., 2013; Kang, 2014). In this paper, 
we present an overview of some of the approaches used 
in the biodegradation of coal, coal related contaminants, 
and liquid hydrocarbon pollutants in an effort to stimulate 
the search for and emergence of successful 
bioremediation strategies. 
 
 
BIODEGRADATION OF COAL AND COAL-RELATED 
PRODUCTS 
 
Studies on the breakdown of coal by bacteria and fungi 
started as far back as 1920 (Olson and Brinckman, 
1986). Although, it was accepted that microorganisms are 
capable of degrading coal, significant research effort 
occurred only after demonstration of the successful 
breakdown of coal by bacteria (Fakoussa, 1981). One 
year later, Cohen and Gabriele (1982) demonstrated the 
breakdown of low rank leonardite using wood rot fungi. 
Following these breakthroughs, intensive study by 
various research groups was carried out with the aim of 
establishing a better understanding of the mechanisms 
involved in the biological transformation of coal and in 
combination with the production of value-added products 
(Polman et al., 1994; Fakoussa and Frost, 1999; 
Fakoussa and Hofrichter, 1999; Gotz and Fakoussa, 
1999; Ralph and Catcheside, 1999; Machnikowska et al., 
2002; Igbinigie et al., 2008; Jiang et al., 2013).  

The complexity and recalcitrance of coal suggested 
initially that microorganisms might not be able to modify 
the physicochemical structure of this substrate. Thus, 
according to Klein et al. (2008), the colonization and 
breakdown of  coal by microorganisms  was  not possible 



 
 
 
 
 
unless certain necessary conditions such as moisture 
content, mineral salt availability, additional nitrogen 
sources and a stable pH were met. To date, a number of 
microorganisms have been identified as being able to 
modify the structure of coal (Yuan et al., 2006; Kang, 
2014). Different mechanisms as suggested by various 
authors appear to be used to achieve modification of the 
coal structure and these include enzymatic changes 
(Cohen et al., 1987; Pyne et al., 1987; Fakoussa and 
Hofrichter, 1999), alkaline solubilisation (Strandberg and 
Lewis, 1987; Quigley et al., 1989a), metal ion chelation, 
and the action of surfactants (Fakoussa, 1988; Quigley et 
al., 1989b; Fredrickson et al., 1990).  
 
 
Enzymatic modification of coal structure 
 
A large number of biological molecules responsible for 
many chemical interconversions have been linked to the 
structural modification of coal otherwise called depolyme-
rization (Hofrichter and Fakoussa, 2001). The depolyme-
rization of brown coal occurs at low pH values (pH 3-6) 
resulting in the cleavage of bonds inside the coal 
molecular structure which leads to the formation of 
yellowish, fulvic-like substances with low molecular mass 
(Hofrichter and Fakoussa, 2001). Although a wide range 
of enzymes with coal degrading ability have been 
identified the majority appear to be from fungi. For 
instance, Sekhohola et al. (2013) provided a detailed list 
of the purported catalysts used in coal biodegradation 
which shows that nearly all of the enzymes that have 
been linked to coal biodegradation are of fungal origin. 
Even so, contradictory reports have been published with 
regard to fungal activity and breakdown of coal (Torzilli 
and Isbister, 1994). For instance, studies by Cohen et al. 
(1987) initially suggested that the ability of fungi to 
degrade coal was the result of enzymatic activity. 
However, in a subsequent report, these authors identified 
the coal solubilizing agent from T. versicolor by infrared 
spectroscopy and x-ray studies as ammonium oxalate 
monohydrate (Cohen et al., 1990) while Fredrickson et al. 
(1990) argued that the coal solubilizing activity of T. 
versicolor was not ammonium oxalate monohydrate but a 
siderophore-like compound. In addition to fungi, several 
gram positive and negative bacteria have been implicated 
in the biodegradation of coal.  

Studies by Crawford and Gupta (1991) demonstrated 
that extracellular bacterial enzymes were capable of 
depolymerizing a soluble coal polymer although the 
enzymes involved were neither specified nor identified. 
Nevertheless, the depoly-merisation process appears to 
be non-oxidative which may indicate that non-oxidative, 
enzymatic depolymerization of coal is possible. Reports 
on the utilization of low rank coal as a source of carbon 
by several bacteria including Pseudomonas oleovorans, 
Rhodococcus ruber and  Bacillus sp. Y7 have  also been  
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published (Fuchtenbusch and Steinbuchel, 1999; Jiang et 
al., 2013). The ability of Bacillus sp. Y7 to degrade lignite 
was attributed to the production of extracellular 
substances (Jiang et al., 2013) while oxidized lignin 
solubilisation was ~90% in the presence of Pseudomonas 
putida (Machnikowska et al., 2002). For the latter 
example however, it was stated that pre-treatment of 
lignite with nitric acid was essentially responsible for the 
enhanced rate of biodegradation. In an experiment 
carried out by Tripathi at al. (2010) on the fungal 
biosolubilisation of lignite and the subsequent production 
of humic acid, these authors concluded that the likely 
mechanism of lignin breakdown by fungi was somehow 
linked to action of oxidative (peroxidases and laccases) 
and hydrolytic enzymes (esterases) initially secreted by 
bacteria confirming an earlier observation based on a 
comparative study of coal solubilisation by both bacteria 
and fungi (Torzilli and Isbister, 1994). Some of the 
enzymes secreted by fungi which are believed to play a 
major role in the biodegradation of coal include lignin 
peroxidase (Hofrichter and Fritsche, 1997b; Laborda et 
al., 1999), laccase (Fakoussa and Frost, 1999), esterase 
(Laborda et al., 1999) and phenol oxidase (Laborda et al., 
1999) and although their precise role in coal 
biodegradation remains unclear, a model for the phyto-
biodegradation of low rank coal by mutualistic interaction 
between ligninolytic microorganisms and higher plants 
has recently been proposed (Sekhohola et al., 2013).  
 
 
Alkaline substance modification of coal structure 
 
A different mechanism of coal biodegradation has been 
suggested based upon results which indicate microbial 
secretion of alkaline substances that facilitate the 
breakdown of coal (Quigley et al., 1988). During this non-
enzymatic process, often the formation of black liquids is 
observed coincident with higher pH (pH 7-10). The 
increase in pH has been attributed to the release of 
alkaline substances by bacteria which aid in coal 
solubilisation (Hofrichter and Fakoussa, 2001). The 
actual mechanism of coal biodegradation by bacteria due 
to alkaline substances is not well defined and as a 
consequence, not fully understood. Thus, Machnikowska 
et al. (2002), in an experiment on the microbial degradation 
of low rank coals, reported an increase in pH of medium 
containing sub-bituminous coal and suggested that the 
pH change arose as a result of the production of alkaline 
substances. Details of the alkaline substances involved 
however, in this and other studies and the effect of these 
on coal biodegradation remain obscure. As highlighted by 
Sekhohola et al. (2013) many different bacteria appear 
capable of secreting alkaline substances when inoculated 
into coal media including; Pseudomonas putida, Arthrobacter 
sp., Streptomyces viridosporous, Streptomyces setonii, 
Bacillus pumilus, and Bacillus cereus. 
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Metal ion chelation and the action of surfactants on 
the modification of coal 
 
Experiments on coal bio-solubilisation carried out by Yin 
et al. (2011) pointed to the importance of surfactants in 
the synthesis of enzymes responsible for coal 
breakdown. These authors went further and showed that 
in the absence of surfactants; limited enzymes were 
adsorbed onto the coal surface while the reverse was the 
case in the presence of surfactants. Thus, interaction 
between enzyme and coal is possibly due to the 
presence of surfactants which modify the charge and the 
hydrophilic properties of the coal surface (Yin et al., 
2011). Nonetheless, studies on the biological breakdown 
of coal have concentrated on fungi as the biocatalysts of 
choice and very few reports have examined the 
contribution by bacteria. A summary of the historical 
progress made so far in the field of coal biodegradation is 
presented in Table 1. 
 
 
BIODEGRADATION OF PETROLEUM 
HYDROCARBONS 
 

The biosolubilisation of coal and the serial production of 
liquid fuels has been investigated (Ackerson et al., 1990). 
In this report, bio-extracts from solubilized coal were 
converted to liquid alcohols, one of the earliest clean coal 
technologies for petroleum production. In South Africa 
many petroleum products are derived from coal using 
Fischer-Tropsch synthesis including fuels, plastics, oils, 
synthetic rubbers etc. Globally, there is high demand for 
petroleum products (Hasan et al., 2010) and during 
transportation of these from point of production to point of 
consumption spillage is inevitable (Das and Chandran, 
2011). It has been estimated that natural crude oil 
seepage exceeds 600000 metric tons per year with a 
range of uncertainty of 200000 metric tons per year 
(Kvenvolden and Cooper, 2003). Accidental or deliberate 
release of crude oil into the environment has also led to 
serious pollution which affects both water and soil 
resources (Atlas, 1981; Okoh, 2006). Just like coal, 
different strategies including mechanical, chemical and 
biological have been developed and used to remediate 
sites contaminated with these petroleum hydrocarbons 
(Lohi et al., 2008).  

A common mechanical means of remediating 
petroleum contaminated waters includes floating booms, 
skimmers, and oil-water separators (Ventikos et al., 2004; 
Yang et al., 2000). Unfortunately, removal of spilled oils 
from contaminated sites by these means is usually 
incomplete leading to progressive accumulation of 
residual hydrocarbons (Yang et al., 2000). Chemical 
remediation of oil contaminated sites on the other hand 
has been associated with increased dissolution of oil in 
seawater, which affects both water bodies and benthic 
biota (Doerffer, 1992). The  reason why this technology is 

 
 
 
 
associated with increased dissolution of oil in water is 
because it makes use of chemical dispersants such as 
surfactants (Lohi et al., 2008). In contrast to the above, 
biological  remediation technologies which have been 
intensively studied both in controlled conditions and field 
experiments (Okoh, 2006), appear to be the most 
environmentally friendly methods for removal of hydro-
carbon pollutants (Barathi and Vasudevan, 2001; Balba 
et al., 2002; Urum et al., 2003; Liu et al., 2008; Das and 
Chandran, 2011). Bioremediation, which is one example 
of a biological remediation process, has been defined as 
the use of microorganisms to detoxify or remove 
pollutants from contaminated water and soil bodies 
(Medina-Bellver et al., 2005; Mukherjee and Bordoloi, 
2012) and a comparison of treatment costs for South 
Africa reveals that it is by far the most economical 
technology (Table 2). 

Different microorganisms including bacteria and fungi 
have been used to remediate hydrocarbon contaminated 
sites.  Addition of nutrients to an oil spilled site to stimu-
late the growth of resident microorganisms in degrading 
contaminants is known as biostimulation while isolation, 
growth and introduction of microorganisms (that can 
degrade contaminants) from a different environment into 
oil spilled sites to remediate those sites is known as 
bioaugmentation. It has been argued that biostimulation 
is a superior technique to bioaugmentation (Alexander, 
1999; Van Hamme et al., 2003; Philp and Atlas, 2005; 
Lohi et al., 2008) based on the outcome of field 
experiments (Abdulsalam et al., 2011). Studies by 
Devinny et al. (2000) and Bento et al. (2005) seem to 
support the above conjecture and show that augmented 
microorganisms easily lose their intrinsic degradation 
ability during the time it takes for acclimatisation to the 
new environment. Different amendments have been used 
to stimulate resident microorganism populations in oil 
spilled environments and a summary of these is 
presented in Table 3.  

According to D’Annibale et al. (2006) and Yi et al. 
(2011), fungi are the organisms of choice with regards to 
bioaugmentation as these synthesize relatively unspecific 
enzymes involved in cellulose and lignin decay. Fungal 
enzymes degrade high molecular weight, complex and 
more recalcitrant toxic compounds, including aromatic 
structures (Grinhut et al., 2007; Mancera-Lopez et al., 
2008). However, Sutherland (1992) explained how fungi 
degrade hydrocarbons indirectly by co-metabolism and 
stated that fungi generally do not utilize petroleum 
hydrocarbons (PHC) as their sole carbon and energy 
source but transform these compounds co-metabolically 
to detoxified metabolites. Different fungal species have 
been implicated in bio-augmentation studies involving 
both low and high molecular weight polyaromatic 
hydrocarbons (PAHs) in soils. For instance, Mancera-
Lopez et al. (2008) carried out studies on petroleum 
hydrocarbon contaminated soils using Rhizopus sp.,
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Table 1. Historical overview of advances in coal bioconversion. 
 

Year Progress Reference 

1981 
Effects on hard coals by Pseudomonas strains, simultaneous 
biotenside-excretion 

Fakoussa (1981) 

   
1982 Solubilization of lignite to droplets on agar plates by fungal action Cohen and Gabriele (1982) 
1986 Acceleration of solubilisation by pre-treatment of coal Scott (1986), Grethlein (1990) 
   

1986 
Solubilisation of coal by an extracellular component produced by 
Streptomyces setonii 75Vi2 in submerged culture 

Strandberg and Lewis (1987) 

   

1987 
First solubilisation mechanism elucidated: production of alkaline 
substances (fungi + bacteria) 

Quigley et al. (1988), Quigley et al. (1989a), 
Quigley et al. (1991) 

   

1988 Second mechanism elucidated: production of chelating agents 
Quigley et al. (1988), Quigley et al. (1989), 
Cohen et al. (1990), Quigley et al. (1991) 

   
1989 First product on market: Solubilized lignite as fertilizer Arctech Inc. (2007) 
1991 Evidence that chelators alone are not responsible for all effects Fakoussa (1994) 
   

1994 
Decolourisation and reduction of molecular weight of soluble 
lignite-derived humic acids proves catalytic enzymatic attack 

Ralph and Catcheside (1994), Hofrichter and 
Fritsche (1997a and b) 

   
1994 Analysis of low-molecular mass products from bio-solubilised coal Toth-Allen et al. (1994) 
   

1997 
In vitro systems shown to degrade humic acids and attack matrix 
and coal particles 

Hofrichter and Fritsche (1997a and b) 

   

1997 
First fine chemical produced successfully from heterogeneous 
humic acid mixtures to polyhydroxyalkanoates (PHA, “Bioplastic'') 
by pure cultures 

Fuchtenbusch and Steinbuchel (1999) 

   

1999 
Involvement of laccase in depolymerization of coal implied by 
conversion of coal humic acid to fulvic acids in vivo by Trametes 
versicolor (basidiomycetous fungi) 

Fakoussa and Frost (1999) 

   

2001 
Microbial solubilisation of lignites. Preliminary gasification tests 
with solubilized coal yielding 21% energy recovery from methane 

Gokcay et al. (2001) 

   

2006 

Mechanisms of coal solubilisation in Penicillium decumbens P6 
combination of production of alkaline materials, peroxidase and 
esterase. First report on involvement of biosurfactant in coal 
solubilisation by fungi 

Yuan et al. (2006) 

   
2007 Degradation of LRC by Trichoderma atrovide (ES 11)  Silva-Stenico et al. (2007) 
   

2007 
Phytoremediation of coal mine spoil dump through integrated 
biotechnological approach 

Juwarkar and Jambhulkar (2008) 

   

2008 
The effect of the particulate phase on coal biosolubilisation 
mediated by Trichoderma atrovide in a slurry bioreactor 

Oboirien et al. (2008) 

   

2008 
Fungal biodegradation of hard coal by a newly reported isolate, 
Neosartorya fischeri 

Igbinigie et al. (2008) 
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2013 
Formation of biosolubilised humic acid from lignite using Bacillus 
sp. Y7 

Jiang et al. (2013) 

   

2013 
Production of methane from coal by a fungal isolate Penicillium 
chrysogenum MW1 

Haider et al. (2013) 

 
 
 

Table 2. A comparison of soil remediation treatment technology costs in South Africa. 
 

Method of treatment                          Approximate cost (ZAR/tonne soil)         

Biological   70 - 2 395 
Chemical   169 - 8 455 
Physical                                              282 - 2 395 
Solidification/stabilization                   239 - 2 409 
Thermal                                               423 - 10 569 

 
 
 

Table 3. Examples of various biostimulation methods used to treat hydrocarbon contaminated sites. 
 

Amendment type Reference 

Chelating agents Da Silva et al. (2005) 
Activated sludge from wastewater treatment Juteau, et al. (2003), Maki et al. (1999) 
Bio-solids and maize Sarkar et al. (2005), Rivera-Espinoza and Dendooven (2004) 
Immobilized-cell systems Chen et al. (2009) 
Nitrogen and phosphorous  Jiménez et al. (2006), Bento et al. (2005), Evans et al. (2004) 
Surfactants or bio-surfactants Rahman et al. (2002) 
Bulking agents e.g. wheat straw, hay and sawdust Namkoong et al. (2002), Rahman et al. (2002), Rhykerd et al. (1999) 
Biocompatible hydrophobic solvents Zawierucha et al. (2011) 

 
 
 
Penicillium funiculosum and Aspergillus sydowii isolated 
from two aged soils contaminated with petroleum 
hydrocarbons and showed that each fungus was able to 
degrade PAHs effectively when compared to 
biostimulated soils. Bacteria on the other hand, though 
able to degrade aromatic hydrocarbons, only degrade low 
molecular weight PAHs. Many pure cultures of bacteria, 
including various strains of Pseudomonas putida, have 
been evaluated for their benzene, toluene and xylene 
(BTX) biodegradation potential (Jean et al., 2002, 2008). 
The highest PAHs that bacteria have been recorded to 
degrade are the PAHs containing four benzene rings 
such as pyrene and chrysene (Boonchan et al., 2000).  

Mukherjee and Bordoloi (2011) reported that 
remediation of oil spilled sites usually requires the 
cooperation of more than a single species of 
microorganism because individual microorganisms can 
metabolize only a limited range of hydrocarbon 
substrates. Therefore, assemblages of mixed populations 
with overall broad enzymatic capabilities are required to 

energize the rate and extent of petroleum hydrocarbon 
degradation. Thus, various researchers have shown that 
consortia comprising bacteria and fungi are better 
bioaugmentation agents than individual bacterial and 
fungal isolates (Boonchan et al., 2000; Jacques et al., 
2008). Table 4 presents a brief summary of single 
isolates of bacteria and fungi that are known to degrade 
aromatic hydrocarbons using bioaugmnetation as a 
strategy and various consortia of bacteria and fungi that 
successfully carry out this process. 

Aliphatic hydrocarbons on the other hand which are 
basically made up of straight, branched and cyclic 
structures are more readily degraded by microorganisms 
than aromatic hydrocarbons (Das and Chandran, 2011). 
For instance, Colombo et al. (1996) investigated the 
biodegradation of aliphatic and aromatic hydrocarbons by 
natural soil microflora and pure cultures of imperfect and 
ligninolytic fungi. In their experiments, they discovered 
that the natural microbial soil assemblage isolated from 
an urban forest area was unable to significantly degrade  
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Table 4. A summary of microorganisms involved in the degradation of aromatic hydrocarbons using bioaugmentation as a strategy. 
 

Microorganism   Contaminants treated Reference 

Single strains 
Mycobacterium sp. Pyrene (PAH) Heitkamp et al. (1988) 
Pseudomonas paucimobilis Fluoranthene  (PAH) Weissenfels et al. (1990) 
Pseudomonas cepacia HMW PAHs Juhasz et al. (1996) 
Sphingomonas paucimobilis PAHs Ye at al. (1996) 
   

Burkholderia cepacia   
fluoranthene, pyrene, benz[a]anthracene 
and dibenz[a,h]anthracene   

Boonchan et al. (1998) 

   

Comamonas testosteroni BR60 Crude oil, PAHs Gentry et al. (2001) 
Arthrobacter chlorophenolicus A6L 4-Chlorophenol Jernberg and Jansso (2002) 
Absidia cylindrospora Fluorene Garon et al. (2004) 
Pseudomonas sp. ST41 Marine gas oil Stallwood et al. (2005) 
Pseudomonas aeruginosa WatG Diesel oil Ueno et al. (2006) 
Sphingobium chlorophenolicum ATCC 39723 Pentachlorophenol Dams et al. (2007) 
Burkholderia sp. FDS-1 Fenitrothion Hong et al. (2008) 
Aspergillus sp. LEBM2   Phenol Santos et al. (2008) 
Gordonia sp. BS29 Aliphatic/aromatic hydrocarbons Franzetti et al. (2009) 
Pseudomonas putida ZWL73 4-Chloronitrobenzene Niu et al. (2009) 
Aspergillus sp. LMW-PAHs (2–3 rings) Silva et al. (2009a) 
   

Trichocladium canadense, Fusarium 
oxysporum, Aspergillus sp., Verticillium sp., 
Achremonium sp. 

HMW-PAHs (4-7 rings) Silva et al. (2009a) 

   

Neosartorya sp. BL4 Total petroleum hydrocarbons Yi et al. (2011) 
 
Consortia 
Rhodococcus sp., Acinetobacter sp., 
Pseudomonas sp. 

PAHs (fluorene, phenanthrene, pyrene) Yu et al. (2005) 

   

Bacillus subtilis DM-04, Pseudomonas 
aeruginosa M and NM 

Crude petroleum-oil hydrocarbons 
Das and Mukherjee (2007) 
 

   

Mycobacterium fortuitum, Bacillus cereus, 
Microbacterium sp., Gordonia 
polyisoprenivorans, Microbacteriaceae 
bacterium, Fusarium oxysporum 

PAHs (anthracene, phenanthrene, 
pyrene) 

Jacques et al. (2008) 

   

Rhizopus sp., Penicillium funiculosum, 
Aspergillus sydowii 

Petroleum hydrocarbons Mancera-Lopez et al. (2008) 

   

Bacillus strains B1F, B5A and B3G, 
Chromobacterium sp. 4015,  Enterobacter 
aglomerans sp. B1A,  Achremonium sp.,  
Aspergillus sp., Verticillium sp. 

Mixture of PAHs (naphthalene, 
phenanthrene, anthracene, pyrene, 
dibenzo[a]anthracene, benzo[a]pyrene)   

Silva et al. (2009b) 
 

 
 
 
crude oil, whereas pure fungi cultures effectively reduced 
the residues by 26-35% in 90 days. They also reported 
that normal alkanes were almost completely degraded in 
the first 15 days, whereas degradation of aromatic 
compounds (for example, phenanthrene and methylphe-
nanthrene) exhibited slower kinetics. Another experiment 

conducted on the kinetics of the degradation of aliphatic 
hydrocarbons by the bacteria Rhodococcus ruber and 
Rhodococcus erythropolis, showed that the growth of 
these bacterial isolates on n-alkanes was intense when 
compared to growth in diesel medium (Zhukov et al., 
2007). A comparative study on the degradation of both
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by Whyte et al. (1998 and 1999) to have successfully 
degraded short chain alkanes at 0°C. However in a report 
by Atlas (1981), a direct correlation between increased 
microbial degradation with an increase in temperature 
was recorded. This means that when microorganisms 
that are isolated from a cold region are introduced into an 
environment that has an elevated temperature, their 
metabolic activities tend to be faster (Atlas, 1981). 
According to Okoh (2006), highest degradation rates 
generally occur in the range 30-40°C in soil environ-
ments, 20-30°C in some fresh water environments, and 
15-20°C in marine environments. 

Biodegradation rates have also been measured in 
relation to pH (Strandberg and Lewis, 1988). Outcomes 
from various experiments conducted show that biodegra-
dation is effectively carried out at an optimum of pH 7.0 
(Zaidi and Imam, 1999). In a contaminated environment 
such as soil that is acidic in nature, the dominant 
microbial species that are capable of metabolising the 
contaminants in a short space of time appear to be fungi 
(Jones et al., 1970). The isolation of bacteria from an 
alkaline medium that were able to degrade phenol at pH 
7.0-10.6 has also been reported (Kanekar at al., 1999). 
The importance of nutrients in the degradation of 
hydrocarbons has also been stressed (Cooney, 1984). 
During biodegradation of hydrocarbons, lack of nutrients 
such as nitrogen, phosphorus, potassium, and iron may 
either hinder the breakdown process or result in an 
incomplete breakdown of contaminants. In fresh water 
environments, nutrients are particularly deficient. The 
supply of carbon significantly increases during major oil 
spills in marine and fresh waters with nitrogen and 
phosphorus serving as limiting factors (Atlas, 1985). A 
deficiency in these nutrients in fresh water is due to 
demand by plants, and photosynthetic and non-photosyn-
thetic microorganisms. Enhancement of biodegradation in 
different experiments has been achieved through the 
addition of nutrient supplements (Breedveld and 
Sparrevik, 2000; Li et al., 2006; Xia et al., 2006; Vyas and 
Dave, 2010). It should be noted however, that excessive 
nutrient concentration can impact the microbial 
degradation of hydrocarbons negatively (Oudot et a., 
1998; Chaîneau et al., 2005).  

The stability of water activity in aquatic environments 
has caused researchers to focus more attention on soils. 
For instance, Bossert and Bartha (1984) stated that the 
water activity of an aquatic environment is 0.98 while that 
of soil has a range between 0.0 and 0.99. The wide range 
of water activity in soils has made biodegradation of 
petroleum hydrocarbons very difficult. For effective 
biodegradation in soils, water activity must be kept 
constant and at an optimum level. 

The chemical composition of contaminants in any 
environment is another factor that influences microbial 
degradation of such contaminants. Petroleum hydrocar-
bons which is made up of four classes; saturates, aromatics, 

 
 
 
 
asphaltenes (phenols, fatty acids, ketones, esters, and 
porphyrins), and resins, differ in their susceptibility to 
microbial attack. Biodegradation of hydrocarbons in 
decreasing order of susceptibility is ranked in the 
following order: n-alkanes > branched alkanes > low-
molecular-weight aromatics > cyclic alkanes (Leahy and 
Colwell, 1990). According to Okoh (2006) the biodegra-
dation of heavier crude oils is generally much more 
difficult than lighter ones. However, a report contrary to 
that of Okoh (2006) published by Cooney et al. (1985) 
stated that the degradation of more complex compounds 
such as naphthalene was faster than that of hexadecane 
in water-sediment mixtures from a freshwater lake. This 
observed result could be as a result of the action of co-
metabolism by the organisms acting on the substrates.  

Metabolic rate of microorganisms in mineralising 
contaminants in different environments tends to decline 
with increasing salinity (Ward and Brock, 1978; Minai-
Tehrani et al., 2006). The ability of different 
microorganisms to degrade hydrocarbons in 
contaminated environments in the presence of elevated 
concentration of salts has been tested. Results showed 
that almost 100% of initial phenanthrene and 
dibenzothiophene were degraded at a salt concentration 
of 35 g/L (Díaz et al., 2002) while Abed et al. (2006) 
reported that at salinities ranging from 60 to 140 g/L, 
alkane biodegradation rates were 50 to 60% with a lesser 
degradation rate of less than 30% at 180 g/L. Contrary to 
these reports, Bertrand et al. (1990) isolated an Achaeon 
from a water-sediment interface with salinity of 310 g/L 
which was able to degrade eicosane more efficiently at a 
rate of 64% in a medium that contained sodium chloride 
at a concentration of 146 g/L.   

Due to the dispersion of oil in water during spillage, a 
slick typically forms which gives rise to emulsions 
(mousse) (Leahy and Colwell, 1990). The formation of an 
emulsion in water increases the surface tension of the oil 
thereby making it available for microorganisms to 
degrade (Salleh et al., 2003). Emulsion formation through 
microbial production and release of biosurfactants has 
been documented (Kosaric, 2001; Kumar et al., 2008; 
Aparna et al., 2011; Mnif et al., 2011). Kumar et al. 
(2008) reported that a hydrocarbon degrading and 
biosurfactant producing strain of Pseudomonas, DHT2, 
which was isolated from oil contaminated soil was able to 
degrade crude oil, fuels, alkanes and PAHs. These 
authors also established that the biosurfactants which 
were produced by the organism lowered the surface 
tension of the medium from 54.9 to 30.2 dN/cm and 
formed a stable emulsion. 
 
 
CONCLUSION 
 
Bacterial degradation of fossil fuels (solids and liquids) is 
an important and emerging aspect of biotechnology which 



 
 
 
 
 
is neither fully described nor understood and as a 
consequence, technologies for implementation as 
commercial remediation strategies are few. While fungal 
biodegradation/biosolubilisation of coal and coal related 
products has been widely reported, it appears that work 
with bacteria has lagged and in some cases it has been 
completely ignored. In contrast, the use of bacteria and 
bacterial consortia for the remediation of petroleum 
hydrocarbon contamination is well established (Pinedo-
Rivilla et al., 2009; Basha et al., 2010; Zhang et al., 2013; 
Ma et al., 2013; Martin et al., 2013) and as a 
consequence, commercial remediation protocols and the 
associated biocatalysts are widely available. Even so, 
there is a growing realisation that a mutualistic relation-
ship between microorganisms and higher plants is neces-
sary for complete remediation of contaminated sites 
(Ndimele, 2010; Sekhohola et al., 2013). Thus, further 
study is needed to enhance our understanding of the 
processes involved in the bacterial bioconversion of coal 
and petroleum hydrocarbon contaminants in order to 
facilitate both a reduction in pollutant levels and to 
explore the potential for generating products of value. 
While the use of single strains to degrade coal and liquid 
hydrocarbon contaminants has been widely reported, 
consortia of bacteria or bacteria together with fungi 
appear to be the biocatalysts of choice as biodegradation 
agents. 
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