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cancer- related deaths and an aggressive tumor with a 
poor prognosis (Ferlay et al., 2010). Current curative 
treatments such as liver resection and transplantation are 
limited to the early disease stage. Chemotherapy has 
generally not improved overall mortality in HCC except 
for a recent report using sorafenib, which improved 
advance stage mortality by less than 3 months (Thomas 
et al., 2010). Therapeutic strategies against this disease 
target mostly rapidly growing differentiated tumor cells. 
However, the result is often dismal because of the 
chemo-resistant nature (Thomas et al., 2008). 

Recent research efforts on stem cells and cancer 
biology have shed light on new directions for the 
eradication of CSCs in HCC (Zou, 2010a). The CSCs 
theory has been proposed to explain the tumor 
heterogeneity and the carcinogenesis (Reya et al., 2001). 
According to this model, tumor can be viewed as a result 
of abnormal organogenesis driven by CSCs, defined as 
self-renewing tumor cells able to initiate and maintain the 
tumor and to produce the heterogeneous lineages of 
cancer cells that consist of the tumor (Clarke et al., 
2006). The existence of CSCs was first proven in acute 
myeloid leukemia (Lapidot et al., 1994), and more 
recently in many solid tumors including breast (Ponti et 
al., 2005), brain (Singh et al., 2003), prostate (Collins et 
al., 2005; Patrawala et al., 2006), pancreatic (Li et al., 
2007), colon cancer (Ricci-Vitiani et al., 2007) and 
melanoma (Schatton et al., 2008). To date, it has been 
shown that CSCs in HCC can be identified by several cell 
surface markers, such as CD133 (Ma et al., 2007; 
Suetsugu et al., 2006; Yin et al., 2007; Zhu et al., 2010) 
and epithelial cell adhesion molecule (EpCAM) (Terris et 
al., 2010; Yamashita et al., 2009). 

Chemotherapy is a main treatment for cancer, while 
MDR is the main reason for chemotherapy failure and 
tumor relapse (Zhou et al., 2009). Cancer often recurs 
after treatment and this can be attributed to the presence 
of CSCs. CSCs are a subpopulation of cancer cells, 
which may be inherently resistant to chemotherapy be-
cause of their low proliferation rate and resistance mecha-
nisms, such as the expression of multidrug transporters 
of the ATP-binding cassette (ABC) superfamily (Dean et 
al., 2005). Some studies have suggested that chemo-
therapy has no effect on CSCs and can enrich CSCs 
(Bertolini et al., 2009; Dylla et al., 2008; Levina et al., 
2008; Yu et al., 2007). Two recent reports suggested that 
pancreatic cancer cells resistant to chemoradiotherapy 
rich in stem-cell-like tumor cells (Du et al., 2011) and 
CSCs can be isolated with drug selection in human 
ovarian cancer cell line SKOV3 (Ma et al., 2010). 

TGF-β1 (transforming growth factor- beta1) is a multi-
potent cytokine that plays an important biological effect 
on tissue and organ development, cellular proliferation, 
differentiation, survival, apoptosis and fibrosis (Ikushima 
and Miyazono, 2010; Kelly and Morris, 2010). In the liver, 
TGF-β1 is hypothesized to serve as an important link 
between  chronic  injury, cirrhosis,  and HCC  (Matsuzaki, 
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2009). Previous reports indicate that TGF-β1 expression 
is decreased in early-stage HCC and increased in late-
stage HCC (Abou-Shady et al., 1999; Matsuzaki et al., 
2000). A recent report indicated that dysregulation of the 
TGFβ pathway leads to HCC through disruption of normal 
liver stem cell development (Tang et al., 2008). Two more 
recent studies reported that the percentage of SP (side 
population) cells, a potent marker of stem cell, and 
CD133+ cells are increased by TGF-β treatment 
(Nishimura et al., 2009; You et al., 2010). Furthermore, 
their results suggested that the phenotypic change with 
increased aggressiveness in HCC cells caused by TGF-β 
stimulation may be relevant to the kinetics of CSCs 
(Nishimura et al., 2009; You et al., 2010). 

It is believed that CSCs resist the radiotherapy and the 
cytotoxic effect of chemotherapy (Dean et al., 2005; Zhou 
et al., 2009). However, the relationship between chemo-
therapy and CSCs is not clear and needs to be further 
elucidated. Based on the potential role of TGFβ1 in liver 
cancer progression and the importance of CSCs in HCC, 
we hypothesized that chemotherapy can enrich liver 
CSCs through constituted activation of TGF-β1 pathway. 
Using Huh7.5.1 HCC cells and PTX, we developed a 
MDR HCC subline model, Huh7.5.1/PTX. Furthermore, 
we found that MDR Huh7.5.1/PTX cells showed high 
percentage of CD133, CD90 and EpCAM positive cells 
and strongly activated the TGF-β1/Smad3 signaling. 
Activation of TGF-β1/Smad3 signaling can lead to 
propagation of CD133+ population, while inhibition of this 
pathway activity attenuated the percentage of these cells. 
In summary, our findings propose that CSCs could be 
enriched in MDR HCC cells, which is partially dependent 
on TGF-β1/Smad3 pathway.  
 
 
MATERIALS AND METHODS  
 
Cell line and cell culture 
 
The human hepatocellular carcinoma cell line, Huh7.5.1, was kindly 
gifted from Dr. Wenyu Lin (Massachusetts General Hospital, 
Harvard Medical School). Huh7.5.1 cells were cultured in 
Dulbecco’s modified eagle’s medium/high glucose (DMEM/H) 
containing 10% (v/v) fetal bovine serum (FBS), penicillin (100 
U/mL), streptomycin (100 μg/mL), and were incubated at 37°C in a 
humidified incubator with an atmosphere of 5%CO2. 
 
 
Reagents 
 
DMEM/H, FBS and Trypsin-EDTA were purchased from Hyclone 
(Thermo Scientific). CCK-8) was obtained from Beyotime 
(Hangzhou, China). Paclitaxel (PTX), Cisplatin (DDP), gemcitabine 
(GEM), 5-fluorouracil (5-Fu), doxorubicin (ADM), and mitomycin 
(MMC) was obtained Shanghai Xudong Haipu Pharmaceutical Co. 
Ltd (Shanghai, China). Fluorochrome-conjugated antibodies against 
human CD29, CD34, CD44, CD54 and CD105 (ICAM-1), and 
CD133 and associated isotype control antibodies were from 
eBioscience, Inc (San Diego, CA USA) and CD90, CD326 
(EpCAM), and CD338 (ABCG2) and associated isotype control 
antibodies  were from Biolegend  (San Diego, CA USA).  Antibodies 
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against CD133, Smad3, Smad4, and phosphorylated Smad3 
(pSmad3) were from Abcam Inc. (Abcam,Cambridge, MA). 
Cytokine TGF-β1 and antibodies against TGF-β1 and β-actin were 
from R&D Systems INC. (Minneapolis, MN). SIS3, a specific 
Inhibitor of Smad346, was from Merck (NJ, USA). 
 
 
Establishment of a PTX-resistant Huh7.5.1 cell line 
(Huh7.5.1/PTX) in vitro 
 
Huh7.5.1/PTX was produced by exposing Huh7.5.1 cells to PTX 
repeatedly at a single high concentration over a period of 12 h. 
Briefly, Huh7.5.1/PTX was selected by a procedure consisting of six 
pulse drug treatments with 5 μg/ml PTX. When Huh7.5.1 cells were 
growing exponentially, they were exposed to PTX for 12 h. The 
majority of the cells were dead following 12 h exposure to PTX. The 
treated cells were then washed with phosphate buffered saline 
(PBS) and cultured in PTX-free growth medium. After two to three 
days, the dead cells were washed out with PBS and fresh medium 
was added again. The resistant subclones were isolated by limiting 
dilution.  

After four weeks’ incubation at 37°C in a humidified atmosphere 
containing 5% CO2, the cells recovered at an exponential rate and 
were then subcultured. Once cells reached 80-90% confluence, the 
cells were preserved and treated again as described above. The 
PTX-resistant subclone was established 6 months after the 
treatment was initiated, and the resistant phenotype developed. For 
maintenance of PTX -resistant cells, the Huh7.5.1/PTX cells were 
grown in the presence of 0.01 μg/ml PTX. Before experimentation, 
Huh7.5.1/PTX cells were maintained in a PTX-free culture medium 
and subcultured at least 3 times.  
 
 
Detection of cellular sensitivity to anticancer drugs using CCK-
8 assay 
 
The MDR characteristics of these Huh7.5.1/PTX cells were tested 
using various concentrations of anticancer drugs including PTX, 
DDP, GEM, ADM, MMC and 5-FU. The effects of chemotherapeutic 
agents on the growth of Huh7.5.1 and Huh7.5.1/PTX cells were 
evaluated with CCK-8. Cells (5× 103) were seeded into 96-well 
plates in 100 μL of DMEM/H with 10% FBS incubated at 37°C in a 
humidified atmosphere containing 5% mL/L CO2. After 12 h, the 
medium was removed, and exchanged with media containing a test 
chemotherapeutic agent at various concentrations. After incubation 
for 48 h at 37°C, the drug-containing growth medium was replaced 
with 110 μL medium containing CCK-8 reagent. After 2 h, the 
absorbance was read at 450 nm with a reference wavelength at 
600 nm. The experiment was replicated at least 3 times. The IC50, 
defined as the drug concentration required to reduce cell survival to 
50%, was calculated by probit regression analysis using SPSS 13.0 
statistical software.  
 
 
FCM analysis of cell surface markers expression levels 
 
FCM was used to measure cell surface markers expression levels 
(CD11b, CD29, CD34, CD40, CD44, CD45, CD54, CD90, CD105, 
CD133, EpCAM and ABCG2 in Huh7.5.1 and Huh7.5.1/PTX cells). 
The cultured Huh7.5.1 and Huh7.5.1/PTX cells with or without 
SIS3, TGF-β1 and anti-TGF-β1 monoclonal antibody stimulation 
were collected by trypsinization, washed in ice-cold PBS, and then 
directly immunostained using fluorochrome- conjugated antibodies 
described above. The isotype control IgG was evaluated in each 
experiment to determine the level of background fluorescence of 
negative cells. Mean fluorescence intensity was determined for 
positively stained cells. Samples and results were analyzed using a 
Epics XL flow cytometer and WinMDI 2.9 software. 

 
 
 
 
WB 
 
The cultured Huh7.5.1 and Huh7.5.1/PTX cells with or without 
stimulation were lysed in radio-immuno-precipitation assay buffer. 
The samples were incubated for 2 h on ice. Samples were then 
centrifuged at 12 000 g for 15 min and protein concentrations were 
measured in the supernatants using a BCA protein assay kit 
(Beyotime Institute of Biotechnology, Jiangsu, China). Cell extracts 
were denatured in LDS sample buffer for 5 min at 95°C, and 
electrophoresed on a 10-20% SDS-PAGE and blotted onto PVDF 
membranes (0.2 μm, Invitrogen). Membranes were blocked with 5% 
milk or 5% bovine serum albulin (BSA) in TBS-T (TBS containing 
0.05% Tween 20) for 1 h at room temperature and were 
subsequently incubated overnight at 4°C with primary antibodies 
described above. After incubation with the respective primary 
antibodies, membranes were washed three times for 5 min in TBS-
T, and then incubated with species-specific horseradish peroxidase 
(HRP)-labeled secondary antibodies at 37°C for 1 h. The 
membrane was developed using the ECL Plus WB reagent 
(Biomiga) with visualization on X-ray films. The expression of β-
actin was detected as an internal control.  
 
 
Statistical analysis 
 
All experiments were run at least three times, and the results are 
given as mean ± SD. Statistical analyses were performed using 
either a one-way analysis of variance (ANOVA) or Student T test. 
The difference was considered statistically significant when the P 
value was less than 0.05. All statistical analyses were carried out 
with GraphPad Prism 5 software. 
 
 
RESULTS AND DISCUSSION 
 
Huh7.5.1/PTX cells show higher chemotherapeutic 
resistance and MDR 
 
To study the enrichment of CSCs in HCC by 
chemotherapy, we firstly developed a drug-resistant 
model. We compared the sensitivity of Huh7.5.1 cells to 
various drugs and found that Huh7.5.1 cells were most 
sensitive to PTX (Figure 1A). By exposing Huh7.5.1 cells 
to PTX repeatedly at a single high concentration over a 
period of 12 h, the PTX-resistant clones was established 
six months after the treatment was initiated. To test the 
resistance to anticancer drugs, we used CCK-8 assay to 
determine the effects of PTX, DDP, GEM, 5-Fu, ADM and 
MMC on the growth of Huh7.5.1 and Huh7.5.1/PTX cells. 
We found that besides PTX, Huh7.5.1/PTX cells were 
also more resistant to some other anticancer drugs 
including DDP, GEM, 5-Fu, ADM and MMC. 
Huh7.5.1/PTX cells showed high resistance to PTX and 
the IC50 (50% inhibitory concentration) of these drugs in 
Huh7.5.1/PTX cells were significantly higher than those in 
Huh7.5.1 cells (Figure 1B). Huh7.5.1/PTX cell showed 
MDR and varying degree of drug-resistance, high degree 
of PTX and DDP, medium degree of 5-Fu and ADM, and 
low degree of MMC and GEM concerning that RI 
(resistance index) of Huh7.5.1/PTX cells to PTX, DDP, 
GEM,5 -Fu, ADM and MMC was 15.70, 11.41, 5.00, 5.29, 
2.26 and 2.31, respectively (Figure 1C).  
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support of the hierarchic cancer model for many solid 
tumors (Collins et al., 2005; Li et al., 2007; Patrawala et 
al., 2006; Ponti et al., 2005; Ricci-Vitiani et al., 2007; 
Schatton et al., 2008; Singh et al., 2003) including HCC 
(Ma et al., 2007; Suetsugu et al., 2006; Thomas et al., 
2010; Yamashita et al., 2009; Yang et al., 2008a; Yang et 
al., 2008b; Yin et al., 2007; Zhu et al., 2010). The CSCs 
are posited to be responsible not only for tumor initiation 
but also for the generation of distant  
metastasis and relapse after therapy (Zhou et al., 2009). 
CSCs are responsible for the formation and growth of 
neoplastic tissue and are naturally resistant to chemo-
therapy, explaining why traditional chemotherapy can 
initially shrink a tumor but fails to eradicate it in full, 
allowing eventual recurrence (Dean et al., 2005). 

Chemotherapy is used to treat unresectable liver 
cancer with limited efficacy, which might result from HCC 
cells with stem-like properties and chemo-resistant 
characteristics (Dean et al., 2005; Zhou et al., 2009; Zou, 
2010b). However, the molecular mechanism by which 
CSCs escape conventional therapies remains unknown. 
Therefore, investigating the possible molecular mecha-
nism of chemotherapy regulating the expression of CSCs 
markers is very significant. Some studies have suggested 
that chemotherapy could enrich CSCs (Bertolini et al., 
2009; Du et al., 2011; Dylla et al., 2008; Levina et al., 
2008; Ma et al., 2010; Yu et al., 2007). However, in the 
context of HCC, the relationship between chemotherapy 
and CSCs remains unclear and the molecular mecha-
nism is unknown. Therefore, we investigated whether 
drug treatment could enrich CSCs in HCC cells and the 
possible potential molecular mechanism of chemotherapy 
regulating the expression of CSCs markers. 

Firstly, to test our hypothesis, we established a MDR 
cell model, Huh7.5.1/PTX. The reasons why we used 
Huh7.5.1 cells are as follows: (1) There’s a moderate 
percentage of CD133+ cells (19.4% of CD133+) compared 
to some others HCC cell line in Huh7.5.1 cells (including 
HepG2, Bel-7402, SMMC-7721, Huh7 and MHCC97-H) 
(data not shown); (2) If there’s a lower or higher percent-
tage of CD133+ cells in HCC cells, they may not be 
suitable for enrichment of CSCs. For example, there are 
almost no CD133+ cells in HepG2 and we found that 
chemotherapy did not affect the percentage of them (data 
not shown). Huh7 cells contained high percentage of 
CD133+ cells (data not shown)and we found that low 
concentration of chemotherapeutic drugs almost have no 
effect on this cell, while use of high concentration of 
drugs in experiments, especially in clinical patients, is no 
account. Concerning the percentage of CD133+ cells and 
the sensitivity of cells to drugs, we therefore selected 
Huh7.5.1cells that contained moderate percentage and 
PTX to carry out our experiments. The reasons why we 
used PTX are as follows: (1) Huh7.5.1 cells showed 
higher sensitivity to PTX at a low concentration (Figure 
1A); (2) CSCs are mainly shown in the cell cycle of 
G0/G1 phase (Kamohara et al., 2008) and PTX mainly kill 

 
 
 
 
cells that are in the G2/M phase (Jin et al., 2010). As a 
result, we selected PTX so that we can kill non-stem cells 
in cancer to enrich the stem-like cells in HCC cells. 
Besides that, there are two methods of establishment of 
drug-resistant model including gradually increasing con-
centrations of drugs and intermittent administration of 
high-dose of drugs (Zhang et al., 2010a; Zhang et al., 
2010b; Zhou et al., 2010). Concerning the latter, it 
mimicked the clinical regimen that patients with cancers 
would receive. As a result, we selected this method to 
establish our MDR model, which ensured that more than 
90% of cells underwent apoptosis or senescence or 
necrosis with the cells eventually dying, thereby selecting 
the most resistant clones. Eventually, it took us six 
months to establish the chemo-resistant model-
Huh7.5.1/PTX. 

Secondly, to test whether our model is available, we 
tested the drug sensitivity of Huh7.5.1/PTX. Results 
demonstrated the availability of the Huh7.5.1/PTX. 
Huh7.5.1/PTX cells showed high resistance to PTX and 
had various degree of resistance to other chemothe-
rapeutic drugs. Recent studies have started to link CSCs 
to chemo-resistance (Dean et al., 2005; Zhou et al., 
2009). Therefore, we next compared parental and 
chemo-resistant Huh7.5.1 cells for cell surface stem cell 
markers, including CD133, CD90, EpCAM and other 
stemness-associated markers including (CD29, CD34, 
CD105, CD308 etc.). We found that MDR Huh7.5.1 cells 
showed elevated expression of known CSCs markers 
such as CD90, CD133, and EpCAM in HCC. Recently, 
the cell surface marker CD133 identifies cancer-initiating 
cells in a number of malignancies and it has also been 
used to isolate stem-like cells from HCC cells (Ma et al., 
2007; Suetsugu et al., 2006; Yin et al., 2007; Zhu et al., 
2010). In summary, these data suggest that chemo-
resistant cells derived from cancer cell lines are enriched 
for CSCs. 

Thirdly, we found that chemotherapy can enrich the 
percentage of CSCs. However, the mechanism of this 
phenomenon is unknown. Some other reports also 
suggested that chemotherapy could enrich stem-like cells 
in breast (Yu et al., 2007), lung (Bertolini et al., 2009; 
Levina et al., 2008), colorectal (Dylla et al., 2008), 
pancreatic (Du et al., 2011), and ovarian (Ma et al., 2010) 
cancer. To the best of our knowledge，the mechanism 
study of chemotherapy regulating the CSCs is not 
researched so far. Therefore, we next investigated the 
potential mechanism of this enrichment. TGF-β1 pathway 
plays an important role in cell proliferation, apoptosis, and 
tumorigenesis (Ikushima and Miyazono, 2010; Kelly and 
Morris, 2010). Recently, a report suggested that CD133+ 
liver CSCs exhibited relative resistance to TGF-β1-
induced apoptosis (Ding et al., 2009). Cells through 
epithelial-mesenchymal transition by TGF-β could acquire 
the features of stem cells (Mani et al., 2008; Singh and 
Settleman, 2010). A recent research reports that 
dysregulation of the TGFβ pathway leads to HCC through 



 
 
 
 
disruption of normal liver stem cell development (Tang et 
al., 2008). Two more recent studies reported that the 
percentage of SP and CD133+ cells were increased by 
TGF-β treatment in HCC cells (Nishimura et al., 2009; 
You et al., 2010). Based on the potential role of TGFβ in 
HCC and CSCs, we hypothesized that chemotherapy 
resistant cells may have constituted activation of TGF-β1 
pathway activity. To validate our hypothesis, we com-
pared the activity of TGF-β/Smad3 pathway in Huh7.5.1 
and MDR Huh7.5.1/PTX cells. Our results demonstrate 
the higher activity of TGF-β/Smad3 pathway in 
Huh7.5.1/PTX cells. 

Eventually, now that MDR Huh7.5.1/PTX cells showed 
both high percentage of CSCs and higher activity of TGF-
β1/Smad3 signaling, we hypothesized that 
MDRHuh7.5.1/PTX cells may enrich these cells through 
activation of TGF-β1/Smad3 pathway. In order to assess 
whether TGF-β1/Smad3 signaling regulates the 
expression of CSCs markers, we investigated the 
association of cancer stem markers expression changes 
and activity of TGF-β1/Smad3 signal. Through activation 
and inhibition of TGF-β1/Smad3 pathway, we found that 
CD133 expression was decreased when inhibition and 
elevated when activation of TGF-β1 pathway. Besides 
that, we also analyzed other cell surface marker 
expression such as CD90 and CD326; our results show 
that there were no significant changes via inhibition or 
activation of TGF-β1 signal (data not shown). Perhaps, 
there are other mechanisms involved in regulation of 
CD90 and CD326 (reported as liver CSCs candidated 
markers) in MDR Huh7.5.1/PTX cells. We will investigate 
the possible mechanism in future. 

In conclusion, we are the first to report on the 
mechanism of chemotherapy regulating the expression of 
CD133+ CSCs in HCC, which is involved in TGF-
β1/Smad3 pathway. Taken together, our results suggest 
that MDR HCC cells are enriched for CSCs, which is 
partially dependent on TGF-β1/Smad3 pathway. These 
findings could provide some insight into novel therapy via 
inhibition of TGF-β1/Smad3 pathway, which may be 
useful for targeting CSCs to develop more effective 
treatments for HCC. 
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