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production of cellulases from wastes, solid state fermen-
tation (SSF) is highly an effective method, in which cellu-
losic substrate acts as the carbon source in sufficient 
moisture without free water. Optimal design of the culture 
medium by application of statistical experimental design 
techniques or response surface methodology (RSM) in 
fermentation process can result in improved product 
yields, reduced process variability, closer confirmation of 
the output response to nominal target requirements and 
reduced development time and overall costs. 

In this work RH is the substrate from which A. niger 
MA1 was isolated and upon which rapid production of 
cellulases was statistically optimized which was 
subsequently used in the saccharification of pretreated 
RH and used successfully in bioethanol production. 
 
 
MATERIALS AND METHODS 
 
Solid state fermentation 
 
In 100 ml glass flask, one gram of dried RH moisten with 1 ml of 
basal salt solution contains (g/L) KH2PO4, 15; (NH4)2SO4, 5; 
MgSO4·7H2O, 0.6; ZnSO4·7H2O, 0.14; MnSO4·6H2O, 0.16;   
CaCl2·6H2O, 0.37; and peptone, 2, pH 4.8; autoclaving was done at 
120°C for 20 min. Inoculated was done with 0.5 ml of fungal spore 
suspension (106 spore /ml) of the tested species and incubated at 
28 ±2°C for 10 days. 
 
 
Elution of cellulases enzymes with different eluents 
 
After fermentation, elution of cellulase enzymes were carried out by 
different eluents such as tap water, saline solution and buffer 
solution alone (1:10 w/v) or mixed with different surfactant Triton, 
Berj 35 and Tween 80 (0.25%). After shaking at 200 rpm for 30 min, 
the supernatant was separated by filtration and used for cellulases 
assay. 
 
 
Carboxy methyl cellulose (1.4 -  - D - glucan glucano 
hydrolase EC 3.2.1.4) 
 
A mixture of 0.5 ml of substrate (0.5 w/v of carboxymethyl cellulose, 
sigma) in 0.2 M acetate buffer, pH 4.8 plus 0.5 ml of enzyme was 
incubated for 30 min at 50°C (Magnelli and Forchiassin, 1999). One 
unit of endoglucanase activity is the amount of enzyme required to 
release reducing sugars equivalent to 1 μmole glucose per min 
under the above experimental conditions. 
 
 
Filter paper activity (FPase) 
 
According to Ghose (1987), 1 ml of supernatant of culture is 
incubated with 50 mg filter paper Whatman No. 1 (1.0 × 6.0 cm) in 1 
ml of 0.2 mol acetate buffer (pH 4.8) at 50°C for 60 min. One unit of 
FPase activity corresponds to 1 μmole of glucose equivalent 
released per minute under the experimental assay conditions. 
 
 
β-Glucosidase (cellabiase or β D-glucoside glucohydrolase E C 
3.2.1.21)  
 
β-glucosidase activity against cellobiose was determined by 0.1 ml 
of  culture  supernatant  to  0.5 ml  of  cellibiose  in  0.2 mol  acetate  
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buffer (pH 4.8). The reaction mixture was incubated at 50°C for 30 
min. One β-glucosidase activity unit is equivalent to 1 μmole of 
glucose per minute under the above experimental conditions.  

The released reducing sugars of three enzymes were measured 
by glucose oxidase Kit using glucose as standard (Spinreact 
Company, Spain). 
 
 
Characterization of CMCase and FPase and β-glucosidase 
produced by A. niger MA1  
 
Determination of optimum incubation temperature  
 
The influence of temperature on cellulase activities was determined 
by assaying the cellulase activities in the standard reaction mixture 
at various degrees (20, 30, 40, 50 and 60°C). 
 
 
Thermal stability  
 
Thermostability were determined by incubating the enzyme for 
different times (60, 120, 180 and 240 min) at various temperatures 
(30, 40, 50, 60, 70, 80 and 90°C); the remaining cellulase activities 
were then assayed in its optimum conditions. 
 
 
Determination of optimum pH  
 
The pH of moistening agent was adjusted using 0.05 M acetate 
buffers to different pH levels (4.6, 4.8, 5, 5.4, 5.7 and 6). Then the 
flasks were incubated for 42 h at 30°C. The flasks were harvested 
for extraction and determination of cellulases activity. 
 
 
pH stability 
 
Mixture of the enzyme solution and 0.5 acetate buffers were 
adjusted to cover the pH range from 3.6 to 5.6 and were incubated 
at 4°C for 6, 12, and 18 and 24 h, the remaining cellulase activities 
were then assayed in its optimum conditions. 
 
 
Pretreatment of RH 
 
Alkali pretreatment: NaOH at the concentrations of 10% (w/v), 
was mixed with RH in 1:7 weight of RH to volume of NaOH, 
autoclaved at 121°C for 20 min, washed with distilled water 
thoroughly and then dried at 50°C. 
 
Steam explosion: Ten grams of RH was placed in 100 ml glass 
flask, treated with 2 par of saturated steam in autoclave. After 5 
min, the pressure is suddenly reduced to atmospheric pressure. 
 
Acidic pretreatment: Ten grams of RH was treated with diluted 
H2SO4 (2% )then autoclaved at 121°C for 20 min, washed with 
distilled water thoroughly and then dried at 50°C. 
 
 
Statistical optimization of cellulases enzyme production in 
solid-state fermentation 
 
Plackett-Burman design 
 
For each variable, a high (+1) and low (-1) level was tested. All 
trials were performed in triplicate, and each experiment was 
repeated twice, with the mean considered for the response. Using 
Microsoft Excel, statistical t-values for equal unpaired samples were 
calculated for the determination of variable significance. 
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Table 2. Box-Behnken factorial experimental design, representing the response of cellulases activity as influenced by yeast extract, peptone 
and corn steep liquor by A. niger MA1 on RH after 42h of incubation. 
  

Trial Yeast extract Peptone Corn steep 
CMCase (U/g)  FPase (U/g)  β-glucosidase (U/g) 

Response Predicted  Response Predicted  Response Predicted 

1 -1 -1 0 16.81 16.71  3.70 3.76  64.60 63.87 
2 1 -1 0 13.04 12.86  3.44 3.32  60.80 61.44 
3 -1 1 0 13.33 13.43  4.20 4.31  58.01 57.36 
4 1 1 0 20.07 20.08  4.10 4.03  48.90 49.62 
5 -1 0 -1 13.04 13.16  3.10 2.97  47.70 49.25 
6 1 0 -1 18.01 18.21  3.60 3.66  48.20 48.38 
7 -1 0 1 17.30 17.08  4.80 4.74  66.00 65.81 
8 1 0 1 15.02 14.83  3.21 3.33  58.07 56.51 
9 0 -1 -1 10.21 10.12  1.88 1.93  60.09 59.25 

10 0 1 -1 17.52 17.20  2.31 2.31  35.06 34.15 
11 0 -1 1 15.23 15.50  2.42 2.41  54.76 55.66 
12 0 1 1 12.30 12.32  3.33 3.27  61.60 62.43 
13 0 0 0 18.01 17.30  3.90 3.97  86.10 85.98 
14 0 0 0 17.28 17.30  4.05 3.97  87.05 85.98 
15 0 0 0 16.72 17.30  3.98 3.97  84.80 85.98 

 
 
 
Statistical optimization of medium using response 
surface methodology for cellulase production by A. 
niger MA1 under SSF of RH 
 
 

Placket Burman experimental design 
 
The analysis of randomized Plackett-Burman experi-
mental of 15 independent variables (data not shown) 
namely; weight, moisture content, pH, inoculum size, 
sand particles, (NH4)2SO4, NH4NO3, NaNO3, peptone, 
yeast extract, corn steep liquor, wheat bran, MgSO4, 
CaCl2, and Tween 80, showed that, yeast extract, corn 
step liquor and peptone had significantly influence on the 
productivity of CMCase, FPase and β-glucosidase of A. 
niger MA1. 
 
 

Box-Behnken design (BBD) 
 
The result of 15 runs in BBD of yeast extract (X1), 
peptone (X2), and corn steep liquor (X3) chosen for 
optimization of A. niger MA1 cellulases are shown in 
Table 2. All the three activities varied distinctly with the 
conditions tested. CMCase showed divergence from 
10.21 to 20.07 U/g, FPase activity between 1.88 and 4.80 
U/g while β -glucosidase varied from 35.06 to 87.05 U/g. 

The experimental results suggest that these variables 
strongly affected the fermentation process. The analysis 
of variance (ANOVA) of the model for CMCase, FPase 
and β-glucosidase (Table 3) showed validity of 
predictions in terms of p-value (<0.05) and the 
coefficients of determination (R2) of their models were 
98.78, 98.97 and 99.60%,   where the R2(adj) were 96.57, 
97.13 and 98.89% respectively. The R2 and adj R2 value 

provides a measure of variability in the observed 
response values that can be explained by the experi-
mental factors and their interactions. The closer the R2 
and adj R2 value to 1, along with non-significant lack of fit, 
the stronger the model is, the better it predicts the 
response. 
 
 
CMCase productivity optimization 
 
The interactive effects of the studied variables on 
cellulases activity were studied by plotting 3D surface 
curves against any two independent variables, while 
keeping other variables at its central (0) level. The 
response surface of CMCase is shown in Figure 2a to c. 
It shows the increase in CMCase at high level of any of 
the corn steep liquor and yeast extract, interaction 
between high levels of peptone and corn steep liquor and 
low levels of peptone and yeast extract; it was also 
enhanced by high levels of yeast extract which interacted 
with moderate level of corn steep liquor. The final 
response function to predict CMCase activity was 
 
YCMCase = 17.30 + 0.70X1 + 0.98X2 +0.13X3 + 2.62 X1 

X2  - 1.82X1 X3  - 2.55 X2X3  + 0.25 X1
2 - 1.77 X2

2 - 1.72X3
2  

 
 

FPase productivity optimization 
 
As shown in Figure 3a-c, the interaction of moderate 
levels of yeast extract, corn steep liquor and peptone 
supported high FPase activity. For predicting the optimal 
point; within experimental constrains, the following 
second-order polynomial function was fitted to the 
experimental results of FPase activity: 
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Table 3. ANOVA of CMCase, FPase and β-glucosidase production of A. niger MA1 under SSF of RH. 
 

Enzyme Source DF Adj SS Adj MS F P 

1CMCase   

Regression 9 100.71 11.19 44.85 0 
Linear 3 11.873 3.9575 15.86 0.005 
Square 3 21.938 7.3128 29.31 0.001 
Interaction 3 66.895 22.298 89.37 0 
Residual error 5 1.248 0.2495   
Lack-of-fit 3 0.388 0.1292 0.3 0.827 
Pure error 2 0.86 0.43   

       

2FPase  

Regression 9 8.6613 0.9624 53.62 0 
Linear 3 2.0737 0.6912 38.51 0.001 
Square 3 5.4316 1.8105 100.87 0 
Interaction 3 1.156 0.3853 21.47 0.003 
Residual Error 5 0.0897 0.018   
Lack-of-Fit 3 0.0785 0.0262 4.64 0.182 
Pure Error 2 0.0113 0.0056   

       

3β-Glucosidase  

Regression 9 3115.3 346.15 139.89 0 
Linear 3 524.69 174.9 70.68 0 
Square 3 2311.9 770.63 311.44 0 
Interaction 3 278.74 92.91 37.55 0.001 
Residual error 5 12.37 2.47   
Lack-of-fit 3 9.82 3.27 2.57 0.293 
Pure error 2 2.55 1.28   

 
1S = 0.4995, PRESS = 8.135, R2 = 98.78%, R2 (pred) = 92.02%,  R2 (adj) = 96.57%; 2S = 0.1339, 
PRESS = 1.280, R2= 98.97%, R2 (pred) = 85.36%,  R2 (adj) = 97.13%; 3S = 1.5730, PRESS = 
162.86, R2= 99.60%,  R2 (pred) = 94.79%,  R2 (adj) = 98.89%; DF: degree of freedom; SS: sum of 
squares; MS: mean of squares; F:F-value; P: significance level of P-value (at significance 
level<0.05). 

 
 
 

YFPase= 3.97 - 0.18X1 + 0.31X2 + 0.35X3 + 0.04 X1 X2  - 
0.52 X1 X3 +  0. 0.12 X2X3  + 0.53 X1

2 - 0.65 X2
2 - 0.83X3

2 
 
 
β-Glucosidase productivity optimization 
 
For β-glucosidase (Figure 4a to c), the interaction 
between the moderate concentration of the three variable 
give maximum production of the enzyme. Elliptical 
contour plots obtained from the data of the present study 
clearly show significance of the mutual interactions 
between the variables. The following second-order 
polynomial function was fitted to the experimental results 
of β-glucosidase activity: 
 
Y β-glucosidase = 85.98 - 2.54X1 - 4.58X2 + 6.17X3  -

1.32 X1 X2 - 2.10 X1X3 + 7.96X2X3  - 12.89 X1
2  -15.01 

X2
2 - 18.09X3

2 
 
 
Multi-response optimization  
 
Based  on  actual values of the  multi-response  optimiza- 

zation of the three enzymes, the data in Table 4 shows 
that the amounts of the tested nutrient could be added to 
RH for maximizing the cellulases production simulta-
neously, in this respect, the desirability function recorded 
0.846; this value is somehow accepted.  
 
 
Scaling up via solid-state tray fermentation 
 
Taking into consideration the multi-response optimization, 
A. niger MA1 cellulases production process was scaled-
up in the laboratory using simple and cheap solid-state 
tray fermentation. The total productivity of the three 
enzymes increased with increasing in the size of 
fermentation container in contrast to productivity per 
gram of RH.  As shown in Table 5 the maximum 
productivity of CMCase, FPase and β-glucosidase are 
noticed when A. niger MA1 was cultivated in Petri dishes 
(20 g in 20 cm diameter Petri dish) giving 16.7, 3.02 and 
55.9 U/g and in glass flask (10 g in 120 ml) giving 10.02, 
3.17 and 52.32 U/g respectively. In trays the three 
enzymes productivity decreased gradually with increasing 
amount of RH parallel to tray size. 
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Table 4. Multi-response optimization of CMCase, FPase and β-glucosidase production of A. niger MA1 under SSF of RH after 42 h of fermentation 
 

Yeast extract (mg/gm) Peptone (mg/g) Corn steep (µl/gm) 
CMCase (U/g) FPase (U/g) β-glucosidase (U/g) 

*Desirability 
Response Predicted Response Predicted Response Predicted 

2.06 3.68 47.87 16.41 17.73 4.28 4.80 78.60 76.39 0.846 
 

*Desirability function is used to test the possibility of optimizing more than one response at the same time, the closer to 1, the more accuracy of desirability function. 
 
 
 

Table 5. Scaling up of cellulases production by A. niger MA1 after 42 h of SSF. 
 

RH (g) Container 
 CMCase  FPase  β-glucosidase 

 u/g Total  u/g Total  u/g Total 

10 Glass flask (120 ml)  10.02 100  3.17 32  52.32 523 
20 Petri dishes (20 cm)  16.70 334  3.02 60  55.90 1118 
    
Tray 
100 (2494 cm3)  8.20 820  2.70 270  47.60 4760 
150 (3438 cm3)  6.60 990  2.04 306  45.02 6753 
200 (4582 cm3)  6.20 1240  1.80 360  42.13 8426 

 
 
 

Elution of A. niger MA1 cellulases by different 
eluents 
 
After scaling up, elution process is very critical for 
this purpose. Many eluents were tested and as 
shown in Figure 5, maximum activity of CMCase 
wer released with Tap water + 0.25% Brej 35 
which  gave 16.87 U/g with 149.37% efficiency as 
well as  FPase; 4.65 U/g with 184.40% efficiency, 
for β-glucosidase  Brej 35 was also more efficient 
but this time with saline solution. 
 
 
Characterization of CMCase, FPase and -
glucosidase of A. niger MA1 
 
Temperature of incubation 
 
In different incubation temperature from 20 to 
60°C,   cellulases   activity   was   increased   with 

increase in temperature with maximum activity of 
CMCase, FPase and β-glucosidase at 50°C which 
recorded 16.01, 4.90 and 62.94 U/g respectively, 
while further increase in temperature showed 
decrease in cellulases activity. 
 
 

Thermal stability 
 
CMCase enzyme showed good thermal stability in 
temperatures below 70°C as 81.69, 74.65 and 
73.71% of the activity remained after 12, 18 and 
24 h respectively at 50°C and 68.54 and 58.22% 
of the activity remained after 12 and 18 h  
respectively at 60°C with nearly half life time 
reaching to 24 h at 60°C; similar results were 
obtained for FPase activity where -glucosidase is 
more resistance to thermal denaturation as its 
activity was 93.3% after 12 h of exposure to 50°C 
and retain 60% of its activity after 24 h of 

exposure to 70°C and reached 32.31% of its 
activity after 6 h at 80°C, where it denatured and 
lost all of its activity after 24 h of exposure to 
90°C. 
 
 
Effect of pH  
 
CMCase have high activity in a pH range from 4.6 
to 6; the highest CMCase produced by A. niger 
MA1 was recorded at pH 5, where FPase and β-
glucosidase showed high activity at pH range from 
4.6 to 5.6 with optimum at 4.8. 
 
 
pH stability  
 
CMCase have a high pH stability, it retained 99.00, 
96.25, 95.25, 99.00, 97.25, 98.25 and 95.75% of 
(3.6 to 5.6) respectively and showed 95.75 and
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Table 6. Bioconversion of enzymatically hydrolyzed RH 
sugars to bio-ethanol by Saccharomyces cerevisae.  
 

Analyses (%) Steam explosion 

Total reducing sugars (g/L) 16.36 (±0.03) 
Ethanol content (g/L) 9.42 (±0.08) 
Fermentation efficiency (%) 89.93 (±4.9) 
Remaining reducing sugars (g/L) 0.40 (±0.03) 

 
 
 
Contrarily, amount of reducing sugar are lower in alkali 
and acidic pretreatment of RH which recorded 6.33 and 
9.90 mg/ml. 
 
 
Bioconversion of enzymatically hydrolyzed RH 
sugars into bioethanol 
 
As shown in Table 6, the resultant yield of total sugars 
after enzymatic saccharification of steam exploited RH 
using cellulases enzymes of  A. niger MA1 to final 
concentration of 16.36 mg/ml;  this amount of sugar was 
fermented by S. cerevisae for 24 h to 9.42 g/L ethanol.  
 
 
DISCUSSION 
 
In fungal bioconversion, the selection of active isolate is 
essential. In this work the RH is the target of hydrolysis 
and in the same time the source of fungal isolates; by this 
strategy the selected A. niger MA1 is more adapted to 
produce cellulases upon RH and showed maximum 
activity after only 36 h of incubation. This relatively short 
incubation time is shorter than 3 to 8 days reported as 
optimum incubation period of cellulolytic enzymes during 
SSF of lignocellulosic residues (Abo-State et al., 2010) 
and shorter than 80 h recorded by A. niger in production 
of cellulases from potato peel (Santos et al., 2012) also 
shorter than 96 h  recorded by A. niger in saw dust 
(Acharya et al., 2008) and in rice straw (Pericin et al., 
2008) whereas the results obtained by Panagiotou et al. 
(2003) and Narasmish et al. (2006) are in agreement with 
our results. Generally the optimum incubation time of 
cellulase production depends on the substrate and the 
tested fungus (Alam et al., 2005). 

Solid state fermentation (SSF) is an attractive and 
economic process to produce cellulases due to lower 
capital investment, lower operating expenses (Yang et 
al., 2004), ease of use, superior productivity, use of 
simpler fermentation media, reduced production of waste 
water and easier control of bacterial contamination 
(Pandey et al., 1994). Among the advantages of SSF, it is 
often cited that enzyme titer is higher in SSF than in 
submerged fermentation (SMF) (Gonzalez et al., 2002). 
In this study using RH as a substrate for cellulases 
production  is  based on reduction in  the  production cost  

 
 
 
 
which is a critical target in cellulase research. A. niger 
MA1 cellulases productivity using RH as a sole carbon 
source is more than that produced by Trichoderma sp. 
FETL on RH or on mixture of sugar cane baggase and 
palm kernel cake via SSF (Pang and Ibrahim, 2006). 
More recently, it was also better than that produced by A. 
fumigatus in SSF of alkali treated rice straw (Sherief et 
al., 2010). Our result confirms the high β-glucosidase 
productivity of A. niger similar to records of Wen et al. 
(2005) and Kang et al. (2004). 

 In screening the factors affecting production of 
cellulases enzymes, it's very important to test as many 
factors as possible to identify the significances of each of 
them. Plackett- Burman designs offers good and fast 
screening procedure and mathematically computes the 
significance of large number of factors in one experiment, 
which is time saving and maintain convincing information 
on each component. Among fifteen independent 
variables, yeast extract, peptone and corn steep liquor 
have significant effect on production of A. niger  MA1 
cellulases which further optimized in BBD and revealed 
considerable increases in the three enzymes. In this 
connection Gao et al. (2008) and Ng et al. (2010) 
reported that the organic nitrogen sources favored 
cellulases production by A. terreus M11 and β-
glucosidase production by P. citrinum YS40-5. On the 
contrary, Sasi et al. (2012) found that A. flavus showed 
the highest production of cellulase enzyme utilizing 
ammonium sulfate as nitrogen source than yeast extract. 
In scaling up trials, the cellulases enzyme production per 
gram decreases with increase in quantity of RH and size 
of tray, due to low aeration and heat transfer with 
increase in the depth of substrate (Gowthaman et al., 
2001). 

The effectiveness of elution is necessary to recovery of 
enzyme from the fermented biomass, to best of our 
Knowledge; Brej 35 is not used before in extraction of 
cellulases, the addition of this surfactant gives maximum 
elution of CMCase and FPase activity with tap water. Tap 
water is commonly available, save and low cost 
extraction and used by other workers (Ahmed, 2008). 
The eluted CMCase and FPase  enzymes of A. niger 
MA1 in the present investigation, showed good thermal 
stability with half-life time reached to 24 hours at 60°C, 
similar to (CMCase and Aviclase) of A. fumigatus (Parry 
et al., 1983), T. reesei (Busto et al.,, 1996) and more than 
that of A. oryzae KBN616 (Kitamoto et al., 1996). -
glucosidase of A. niger MA1 is more resistant to thermal 
denaturation with activity 60% after 24 h of exposure to 
70°C which is more than that repoted by  A. niger 322 
which lost most of its activity at temperature higher than 
50°C (Peshin and Mathur, 1999). These data encourage 
the application of A. niger MA1 cellulases in 
saccarfication trials of RH. For enhancing this process, 
pretreatment of RH make the process more efficient. In 
the present study, amount of reducing sugar produced 
from cellulases treatment of steam exploited RH are 
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Table 7. Comparing the results of the present investigation of reducing sugar and ethanol content with the previous work on RH. 
 

Type of 
pretreatment 

Enzyme used 
Amount of reducing 

sugars 
Amount of 

ethanol (g/L) 
Strain of fermentation 

Fermentation 
time (h) 

Reference 

Steam explosion 
Cellulases enzyme (mix of 
CMCase, FBase and β-
glucosidase) of A. niger MA1 

16.36 g/l 
9.42 

Saccharomyces cerevisae 
24 This study 

163 mg/g hulls 

Diluted H2SO4 
1% pretreatment 

Commercial enzyme (cellulase, 
xylanase, esterase, beta-
glucosidase and Tween20) 

42.0±0.7 g/l (acid, 
enzyme, overliming) 

9.1±0.7 

(1) E. coli strain FBR5 

39 Saha and Cotta, 2005 simultaneous saccharification 
and fermentation with 
recombinant E. coli FBR5 

Alkaline H2O2 
pretreatment 

Commercial enzyme (cellulase, 
beta-glucosidase and xylanase) 

428±12 mg/g 8.2±0.2 (1) (1) E. coli strain FBR5 (1) 24 
Saha and Cotta, 2007 8.0±0.2 (2) (2)recombinant E. coli FBR5 (2) 48 

  

Lime 
pretreatment 

Commercial enzyme 
preparations(cellulose, beta-
glucosidase and hemicellulase) 

154±1 mg/g 9.8±0.5 1) E. coli strain FBR5 (1)19 

Saha and Cotta, 2008 19.8±0.6 g/l 11.0±0.1  
simultaneous saccharification 
and fermentation with 
recombinant E. coli FBR5 2) 

(2) 53 

  
Fungal 
pretreatment with 
A. awamori and  
Pleurotus 

FPU 34 mg/g 8.5  Saccharomyces cerevisae 168  Patel et  al., 2007 

 
 
 
16.36 g/L (163 mg/g RH). This result (Table 7) is 
much more than 34 mg/g RH recorded by Patel et 
al., (2007) with fungal pretreatment by A. awamori 
and  Pleurotus  sajorcaju and application of FPase 
enzyme and closer to 154 mg/g RH  which 
recovered after lime pretreatment and hydrolysis 
by commercial enzyme preparations (cellulose, β -
glucosidase and hemicellulase) (Saha and Cotta., 
2008). On the other hand it lower than 428±12 
mg/g RH that obtained after pretreatment with 
alkaline H2O2 and application of commercial 
enzyme (cellulase, β-glucosidase and xylanase) 
(Saha and Cotta, 2007).  With respect to variation 
in amount of reducing sugar produced pretreat-
ment with steam explosion is preferred because it 
save method, have no chemical wastes that can 
be produced from acid and alkalia treatment. 

In continual improvements in the yield of ethanol 
the amount of ethanol produced from steam 
explosion pretreated RH are 9.42 g/L higher and 
faster than that exhibited by Patel et  al (2007) 
who produce (8.5 g/L) from fungal pretreatment of 
RH with A. awamori and P. sajorcaju and 
fermentation with Saccharomyces cerevisae after 
168 h. other researchers who used commercial 
cellulases in scarification of RH like Saha et al., 
(2005) who obtained similar yield (9.1 g/L) by 
simultaneous saccharification and fermentation of 
H2SO4 treated RH using recombinant E. coli FBR5 
after 39 h. as well as  Saha and Cotta (2008) 
when used E. coli strain FBR5 in fermentation of 
lime pretreatment RH with simultaneous saccha-
rification they obtained 9.8 and 11.0 g/L ethanol 
after 19 and 53 h, respectively. 

Conclusion 
 
Simple optimization of RH as medium for A. niger 
MA1 can be used in rapid production of 
considerable amount and mixture of cellulases 
which used in scarification of RH and 
subsequently fermented to bioethanol.  
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