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toxicological effects have been evaluated in a number of 
fish species (Sunmonu and Oloyede, 2007; Simonato et 
al., 2008; Jahanbakhshi and Hedayati, 2012) given the 
inevitability of contact and possible uptake once they 
enter aquatic ecosystems.  

In Nigeria, petroleum product spills apart from those 
occurring during refining of crude oil may also result 
during transfers at the jetty, accidents involving tankers, 
dispensing of products to vehicles as well as vehicular 
and generator repairs. Since, the advent of crude oil 
exploration in the country in 1956 (Akpofure et al., 2000) 
spillages of crude and petroleum products have been 
commonplace, raising concerns regarding their polluting 
effects in aquatic ecosystems (Kadafa, 2012). Petroleum 
products are a mixture of hydrocarbons and additives 
which could produce free radicals (Achuba and Osakwe, 
2003). Free radicals are one of the major precursors to 
oxidative stress, binding with the unsatu-rated fatty acids 
of the phospholipids of cell membranes, resulting in lipid 
peroxidation damage (Timbrell, 2000). 

Exposure of animals to pollutants such as hydro-
carbons in their natural environment and laboratory 
conditions has been reported to result in oxidative stress 
(Esiegbe et al., 2012). Oxidative stress is a state in which 
the balance between the production of reactive oxygen 
species (ROS) and their removal by antioxidant defences 
before they can cause damage is upset (Collins, 2009). 
Although biological systems, are constantly exposed to 
free radicals and ROS, there exist a repertoire of anti-
oxidative stress enzymes which naturally serves to 
minimize oxidative damage to cells (Azqueta et al., 
2009).  

High concentrations of toxicants or chronic expo-sures 
may overwhelm the anti-oxidative stress mecha-nisms 
resulting in oxidative stress (Reznick et al., 1998). 
Oxidative damage to cell membranes leads to the release 
of by-products such as alkanes, ketones and aldehydes 
including 4-hydroxy-2-nonenal, 4-hydroxy-2-hexenal and 
malondialdehyde (MDA) (Zielinski and Portner, 2000). 
The presence and activities of enzymes such as 
superoxide dismutase, catalase and glutathione consti-
tutes a formidable defence system against oxidative 
stress (Brucka-Jastrzębska, 2010). Superoxide dismu-
tase (SOD) catalytically breaks down super oxide radicals 
generated in peroxisomes and mitochondria into oxygen 
and hydrogen peroxides (Li et al., 1995) making them 
less lipid soluble and more liable to biochemical action. 

The consistency in reports regarding the link between 
exposures to pollutants and subsequent lipid peroxidation 
damage (Sreejai and Jaya, 2010; Brucka-Jastrzębska, 
2010; Esiegbe et al., 2012) implies that they could be 
suitable candidates for use as biomarkers. Given the 
simplistic nature of overall measured responses in 
making toxicological deductions, the use of biomarkers 
has become commonplace.  

This  study investigates  the  acute  toxicity and  level of 

 
 
 
 
oxidative damage in tadpoles of the African common 
toad, Amietophrynus regularis (Reuss, 1833) following 
exposures to acute and sub-lethal concentrations of 
petroleum products (diesel, kerosene and petrol) and 
engine oils (spent and unused) to explain the possible 
mechanism of toxic action as a continuation of the 
discourse on potential biomarkers for environmental 
pollution monitoring. A. regularis is a common tadpole in 
the rainforests and mangrove swamps of southern 
Nigeria (Onadeko, and Rodel, 2009). Urbanization and 
forest clearance destroys their natural habitats and brings 
them closer to sites of human activities which further 
threaten their survival. Amphibians worldwide are 
reported to be on the decline and the drivers have been 
reported to include global warming (Houlahan, 2000), 
disease (Kiesecker, 2001) and in some cases aquatic 
pollution (Ezemonye and Tongo, 2010). It is com-
monplace to sight their tadpoles in ponds and open 
gutters which are receptacles and easy dumping sites for 
spilt petroleum products and spent engine oils. This 
therefore justifies a study evaluating the toxicities of 
these products to the tadpoles as well as the indicators of 
oxidative stress so as to ascertain the extent to which 
they pose threats to their survival. The enzyme, SOD 
together with levels of some metabolites, such as MDA 
are used as biomarkers of oxidative stress (Idowu et al., 
2014). Thus, their levels in fishes exposed to petroleum 
products and engine oils would give an indication of the 
stress levels in the exposed toads. 
 
 
MATERIALS AND METHODS 
 
Collection and acclimatization of tadpoles 
 
Tadpoles of African common toad, A. regularis (Approximate 
Average length =0.80±0.15 cm), which are commonly found in 
ponds and gutters were collected from an undisturbed pond (N 6° 
31' 1.5960'', E 3° 23' 59.7840'' ) at the University of Lagos campus, 
Lagos, Nigeria, during the breeding season (July 2013), 1 to 2 days 
after hatching. Hand nets were used in the collection of the 
tadpoles and care was taken not to agitate them during the 
process. The tadpoles were transferred into plastic cans containing 
their habitat water collected from the same pond before transporting  
to the Ecotoxicology laboratory about 50 m away. The natural pond 
water was also used during the acclimatization of tadpoles in the 
laboratory. They were kept in large plastic tanks (l x w x h = 60 cm x 
35 cm x 30 cm), half-filled with water and aerated with a 220 v air 
pump so as to maintain dissolved oxygen levels in the tank. They 
were left to acclimatize to laboratory conditions (temperature, 26 to 
28°C; humidity, 65 to 75%; Light: dark, 8:14 h) for a minimum of 72 
h before using them in bioassays. Only tadpoles in tanks having 
mortality of less than 1% were employed for the study. 
 
 
Test compounds 
 
Refined petroleum products (Diesel (Automotive Gas Oil- AGO), 
kerosene (Dual Purpose Kerosene- DPK), petrol (Premium Motor 
Spirit- PMS) approved for use in automobiles in Nigeria by the 
Department of  Petroleum  Resources (DPR) and engine oils (Motor  
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of their toxic effects on sensitive wildlife species such as 
amphibians. This study shows that petroleum products 
(diesel, kerosene, petrol), unused and spent engine oil 
are acutely toxic to the tadpoles of the common African 
toad (Amietophrynus regularis). With respect to the 
relative 96 h LC50, the spent engine (fuel) oil was the 
most toxic and this could be related to the fact that being 
a waste product it may contain all sorts of toxic 
compounds/chemicals emanating from additives and 
heavy metals from worn engine parts. The differential 
toxicity of the petroleum products and engine oils to the 
tadpoles can be linked to their respective physical 
characteristics. Refined petroleum products are more 
volatile than the engine oils and therefore would not be 
retained for long in the bioassay medium. This may 
account for their lower acute toxicity compared to the 
used and unused engine oils. However, their relative 
toxicity should not override the fact that they all constitute 
environmental hazards being rich in hydrocarbons. This 
raises important ecotoxicological concerns given the 
ubiquity of petrol filling stations and auto mechanic 
workshops in major cities and highways in Nigeria. These 
facilities often leave little consideration to waste manage-
ment in their design. Surrounding drainages and ponds 
becomes recipients of their wastes either by deliberate 
introduction or when they are washed off as run off after 
rainfall. Dumping of spent engine oils in gutters and 
drains is commonplace in auto mechanic workshops in 
Nigeria. There are no measures put in place for collection 
and management of spent oils and petroleum products 
from these workshops which are distributed across 
streets corners and major roads of the country. Thus, 
resulting in pollution concerns to animals inhabiting urban 
ecosystems. 

Previous investigations have evaluated the toxicity of 
crude oil and petroleum products on frogs (Udofia et al., 
2013) and guppies (Simonato et al., 2008) linking them 
with acute toxicity as well as a number of sub lethal 
effects following long period of exposure to minute 
concentrations. This study confirms the toxicity of petro-
leum products to tadpoles, specifically of the common 
African toad. The toxicity of petroleum products to the 
tadpoles were found to increase with time of exposure, 
consistent with the findings of King et al. (2012) who 
suggested that the reason for this trend in catfishes and 
hermit crabs could be due to a number of factors 
including permeability of the skin. The LC50 values 
obtained from this study for petrol, diesel and kerosene 
were lower than those reported by King et al. (2012) 
against early life stages of catfishes and hermit crabs. 
Amphibians typically have a characteristic permeable 
skin adapted for cutaneous respiration (Hickman et al., 
2008). Lipohilic pollutants such as petroleum hydrocar-
bons may easily diffuse through their skin, resulting in 
toxic effects. This together with other physiological and 
morphological  differences may account for the increased 

 
 
 
 
toxicity to the tadpoles reported in this study. Ayoola and 
Akaeze (2012) however reported 96 h LC50 value of 562 
ml/L in catfishes exposed to spent oil, a value which is 
over 200 times less than that observed for tadpoles in 
this study. Besides differences in species susceptibility, 
this may be due to the wide variation in the constituents 
of the spent engine oils and other practices in the 
automobile workshops from where they were collected. 
Thus, the difficulty in comparing responses between 
species as well as used/spent engine oils is hereby 
noted.  

The assessment of MDA, the by-product of oxidative 
damage to the phospholipids of cell membranes indicated 
significant harm to cells in tadpoles exposed to the 
petroleum products relative to the control individuals. 
Lipid peroxidation damage is one of the first indicators of 
damage to cells by toxicants and represents a key 
biomarker of oxidative stress (Cini et al., 1994).  Much of 
the work on lipid peroxidation resulting from petroleum 
products and their components in Nigeria have been 
focused on fishes (Achuba and Osakwe, 2003; Avci et 
al., 2005; Doherty, 2014). Avci et al. (2005) have earlier 
reported lipid peroxidation in the muscles and liver of 
fishes obtained from a river contaminated petroleum 
products from a nearby refiner. This study therefore 
provides an opportunity to extend the knowledge of the 
oxidative stress impacts of petroleum products on 
tadpoles of the common African toad. 

The results from the biochemical assays indicated that 
there was inhibition of SOD activities in the exposed 
tadpoles relative to the control. Inhibition of SOD 
activities have been reported in the African sharp tooth 
catfish (Clarias gariepinus) exposed to polycyclic 
aromatic hydrocarbons (Otitoloju and Olagoke, 2011). 
This gives credence to the possibility of oxidative stress 
resulting from the hydrocarbon fractions of the petroleum 
products and confirms results from the lipid peroxidation 
assay in this study. Specific petroleum hydrocarbons 
such as benzene, ethylbenzene, toluene and xylene have 
been also found to induce oxidative stress at sub lethal 
concentrations, in Clarias gariepinus (Doherty, 2014). 
SOD, though involved in the protection of biological 
systems from the actions of free radicals and may be 
overwhelmed in the event of excessive toxic onslaught, 
resulting in oxidative stress, a condition that may be 
characterized by its eventual inhibition. This therefore 
justifies its use as a biomarker for assessing the toxic 
effects and responses to toxicants in this study.  
 
 
Conclusion 
 
The findings from this study points to a largely consistent 
relationship between the toxicity of petroleum products 
and spent engine oils and their respective SOD activity 
and MDA levels. This conclusion is based on the fact that  



 
 
 
 
 
rank differences between the three parameters did not 
exceed 1 (one) for all toxicants except for unused engine 
oil. The relatively consistent relationship between SOD 
and MDA reported in this study was also consistent with 
the findings of Brucka-Jastrzębska (2010) who reported 
inhibition of SOD which was simultaneously associated 
with increase in MDA in catfishes exposed to heavy 
metals, lead and cadmium. The importance of antioxi-
dative enzymes as sensitive biomarkers in monitoring 
environmental pollution therefore cannot be downplayed 
owing to the large number of investigators who have 
demonstrated this in a variety of animal groups as 
documented by Otitoloju and Olagoke (2011). 

This study therefore justifies the use of MDA levels and 
SOD activity as suitable compliments for monitoring 
oxidative stress resulting from exposure to petroleum 
products. The consistent relationship between these bio-
markers and 96 h LC50 values for some of the tested 
products is noteworthy and presents an opportunity for 
more investigative studies so as to understanding the 
mechanisms of action and make a case for their use in 
routine assessments of impacts of such spills in the 
environment. 
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