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physiological and biochemical attributes of plants is 
altered by salinity thus limiting its growth and 
development (Mudgal et al., 2010). Low external water 
potential, ion toxicity and interference with the uptake of 
nutrients are a range of mechanisms that inhibit plant 
growth due to salinity (Munns et al., 1995). The 
responses of plants to high soil salinity and the 
mechanisms of salt tolerance have been largely 
discussed (Ruan et al., 2010; Grigore et al., 2011). 
Compartmentation of ions in vacuoles and accumulation 
of compatible solutes in the cytoplasm are commonly 
proposing mechanisms of salt tolerance species (Munns, 
2002). The basic mechanisms of salt tolerance in 
halophytes seem  to be mostly dependent in their 
capacity to sequester toxic ions (Na+, Cl-) in the vacuoles 
and to accumulate compatible osmotica in the cytoplasm 
(Le Rudulier, 2005; Grigore et al., 2011). The compatible 
solutes accumulation that are mostly seen in plants are 
proline (PRO) and glycine betaine (GB), but other 
osmolytes can be stored at high concentrations in some 
species (Girija et al., 2002). An increase in salinity 
increases PRO as an adaptative change in metabolism 
pattern (Mudgal et al., 2010). Thylakoid and plasma 
membrane integrity are protected by GB after exposure 
to saline solutions (Rhodes et al., 1987).  

Peanut salt-tolerant cultivars accumulate the highest 
quantity of GB while moderately-tolerant cultivar stored 
intermediate amount and sensitive low quantity (Girija et 
al., 2002). Thus, the accumulation of osmo-protectants in 
tissues of plants growing in arid or semi-arid lands, may 
exhibit more tolerance to salt stress (Munns, 2002). Salt 
stress can lead to stomatal closure, which reduces CO2 
availability in the leaves and inhibits carbon fixation, 
exposing chloroplasts to excessive excitation energy, 
which in turn could increase the generation of Reactive 
Oxygen Species (ROS) and induce oxidative stress 
(Parvaiz and Satyawati, 2008). Plants have developed a 
series of enzymatic and non-enzymatic detoxification 
systems to counteract ROS, and protect cells from 
oxidative damage (Sairam and Tyagi, 2004). The assess-
ment of cell membrane stability is an appropriate 
technique to screen plants under saline condition (Munns 
et al., 2006). Salt stress increased lipid peroxidation or 
induced oxidative stress in plant tissues (Hernandez et 
al., 1993). Malondialdehyde (MDA) has been known as 
the end product of peroxidation of membrane lipids 
(Sajedi et al., 2011). Increase in the level of MDA, 
produced during peroxidation of membrane lipids, is often 
used as an indicator of oxidative damage (Azad et al., 
2012). The salt stress was able to induce excessive 
generation of MDA in the root and leaf of maize seedlings 
(Azad et al., 2012). Phenolic compounds are a large 
group of  secondary metabolites, which can play a role  in  

 
 
 
 
any interaction that a plant can have with its environment 
(Waterman and Mole, 1994). These compounds have 
been implicated to stress resistance against biotic and 
abiotic factors (Bergmann et al., 1994). Total phenolic 
(TP) accumulation could be a cellular adaptive 
mechanism for scavenging oxygen free radicals during 
stress (Mohamed and Aly, 2008). The increased 
synthesis of PRO, TP and the antioxidant activity in dill 
seedlings exhibited a protective mechanism against the 
cellular structures from oxidative damage (Zahra et al., 
2012). 

Grain legumes provide large amounts of high quality 
proteins which contain relatively more of the essential 
amino acids not supplied by cereals in which the content 
of lysine and tryptophan are relatively small (Kay, 1979). 
Peanuts are essential sources of fat (34 to 54%) 
(Nyabyenda, 2005). Legumes intervene in crop rotation 
systems and participate in biological nitrogen fixation 
(Delgado et al., 1994). The selection of tolerant cultivars 
can be done efficiently in cultivated saline environments, 
and thus salt tolerance mechanisms potential can be 
identified within plant species which is becoming an 
increasing research priority in many countries. It is 
important to make a call to the ecophysiological approach 
which can constitute an attenuation of the effect of the 
soil’s salinity on the cultivated plant performances 
(Mekhaldi et al., 2008). This would lead to the search of 
tolerant species or varieties of plant thus imposing a 
mastery of the knowledge of mechanisms to their 
adaptation to salinity.  

The present study was aimed to compare differential 
responses of growth, physiological and biochemical 
characteristics in peanut cultivars differing in salt 
tolerance at the first vegetative growth stage and 
determine biochemical indicators which could serve as 
early selection criteria for tolerance of salt in peanut. 
 
 
MATERIALS AND METHODS 
 
Plant material, growth and stress conditions 
 
Experiments were performed using seeds of four peanut (Arachis 
hypogaea L.) cultivars differing in salt tolerance; cv. Fleur 11 (salt-
tolerant), cvs. Mbiah and PC 79-79 (moderately-tolerant) and cv. 
Vanda (salt-sensitive). Mbiah and Vanda were provided by the 
breeding program of the Agronomic Institute for Research and 
Development of Cameroon. Fleur 11 and Pc 79-79 were obtained 
from Senegalese Institute of Agronomic Research. Germination 
trials were conducted in 9 cm sterile Petri dishes lined with 
Whatman No.1 filter papers and moistened with 10 mL of distilled 
water. After seed surface sterilization with 70% (v/v) ethanol 
solution for 15 min, followed by rinsing with distilled water, seeds 
were sowed in Petri dishes and placed in seed germinator at 26°C 
for 5 d. After germination, the plants were sown in pots with 
sterilized sand in a greenhouse (26/23°C light/dark and 51 to 61% 
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hygrometry), located at the Alexandru Ioan Cuza de Iaşi University, 
Romania, from June to September, 2011 and March to July, 2012. 
The pots were arranged in a complete randomized design with five 
replicates. One plant was grown in the middle of each pot. Each 
cultivar had 20 pots divided into four groups. Each group, with five 
replicates, were fertilized every two days with the nutrient solution 
(Boldor et al., 1983) containing 49.2% Ca(CO2)2, 13.6% KH2PO4, 
6.0% MgSO4, 7.5% KCl and 2.5% FeCl3 added with one of the four 
NaCl concentration levels (0, 50, 100 and 200 mM) for one month. 
Plants were harvested for physiological and biochemical analysis at 
35 days after sowing for a total of 20 plants from each treatment. 
 
 
Plant growth parameters determination 
 
Plant growth (root dry weight, shoot dry weight, stems diameter 
(SD) and total leaf area (TLA) was evaluated using twenty plants 
from each cultivar. All tissue parts (leaves, stems, and roots) were 
separated, and fresh weights of these tissue parts were measured. 
For the determination of dry weight, these tissue parts were dried at 
65°C for 72 h. SD was measured every week on plants using a 
caliper. TLA was measured every week and calculated using the 
formula described by Kumar et al. (2002):  
 
TLA (cm2) = L×la×0.80×N×0.662 
 
Where L = length of leaf; la = width of leaf and N = total number of 
leaves. 
 
 
Biochemical parameters determination 
 
Proline (PRO) content was extracted from fresh leaves according to 
the method of Bates et al. (1973). Leaves samples (0.5 g) were 
homogenized in 10 mL of 3% (w/v) aqueous sulfosalicylic acid to 
precipitate protein. Samples were centrifuged at 18,000 g for 10 
min and supernatant was used for estimation of PRO content. The 
reaction mixture consisted of 1 mL acid ninhydrin and 1 mL of 
glacial acetic acid, which was boiled at 100°C for 1 h. After tubes 
cooling in the ice, the products were extracted with 2 mL of toluene 
by vortex mixing and the upper (toluene) phase decanted into a 
glass basin. The absorbance was recorded at 520 nm and the PRO 
concentration was determined as µg g-1FW using a standard curve.  

Glycine betaine (GB) content was measured in leaves tissue 
extracts as described by Grieve and Grattan (1983). The plant 
tissue was finely ground, mechanically shaken with 20 mL 
deionised water for 24 h at 25°C. The samples were then filtered 
through Miracloth and filtrates were diluted to 1:1 with 2 N H2SO4. 
Aliquots were kept in centrifuge tubes and cooled in ice water for 1 
h. Cold KI-I2 reagent was added and the reactants were gently 
stirred with a vortex mixture. The tubes were stored at 4°C for 16 h 
and then centrifuged at 10,000 g for 15 min at 0°C. The supernatant 
was aspirated with a fine glass tube. The periodide crystals were 
dissolved in 9 mL of 1, 2-dichloroethane. After 2 h, the absorbance 
was measured at 365 nm using GB as standard. The GB 
concentration was expressed as µmol g-1DW. 

Malondialdehyde (MDA) content was determined in leaves using 
a modified thiobarbituric acid (TBA) assay (Hodges et al., 1999). 
Samples were homogenized with inert sand in 1:25 (g FW:mL) 
80:20 (v/v) ethanol: water, followed by centrifugation at 3,000 g for 
10 min. One millilitre of the sample was added to a test tube with 1 
mL of either (1) TBA solution comprised of 20% (w/v) trichloroacetic 
acid and 0.01% butylated hydroxytoluene or (2) +TBA solution 
containing the above and 0.65% (w/v) thiobarbituric acid. Samples 
were then mixed vigorously, heated at 95°C for 25 min, cooled and 
centrifuged at 3,000 g for 10 min. Absorbance values were 
recorded at 440, 532 and 600 nm. MDA equivalents were 
calculated in the following manner: 

Tekam et al.         4579 
 
 
 
1. [(Abs532+TBA-Abs600+TBA). (Abs532-TBA- Abs600-TBA)] = A 
2. [(Abs440+TBA-Abs600+TBA) 0.0571] = B 
3. MDA equivalents (nmolmL-1) = (A-B/157,000)106 

Results were expressed as MDA equivalents (nmol g-1FW) and 
represent the mean of five samples. 

Total phenolic (TP) content was assayed according to method of 
Marigo (1973) using the Folin-Ciocalteu reagent. 1 g fresh tissues 
leaf was ground at 4°C in 3 mL of 0.1 N HCl for 20 min. After 
incubation the homogenate was centrifuged at 6,000 g for 40 min. 
The supernatant was collected, the pellet re-suspended in 3 mL of 
0.1 N HCl and centrifuged as previously. The two supernatant are 
mixed and constitute the crude extract of soluble phenol. The 
reaction mixture containing 15 µL of extract, 100 µL Folin-Ciocalteu 
reagents, 0.5 mL of 20% Na2CO3 was incubated at 40°C for 20 min 
and absorbance read at 720 nm with a BECKMAN DU 68 
spectrophotometer. A standard curve was established using 
chlorogenic acid. TP content was expressed as µg g-1 FW. 
 
 
Measurements of the chlorophyll content 
 
Chlorophyll (CHL) content in leaves was estimated after extracting 
20 mg of the ground material, following the procedure described by 
Arnon (1949). Chlorophyll of samples was extracted with 80% 
alkaline acetone (v/v). Full extraction of chlorophyll was achieved 
when the sample was discoloured. The absorption of the extracts 
was measured at 663 and 645 nm with a BECKMAN DU 68 
spectrophotometer and CHL was calculated using the following 
formula: 
 
Total chlorophyll = (20.2 x D645 + 8.02 x D663) x (50/1000) x 
(100/5) x 1/2 
 
 Where, D = absorbance and expressed as mg g-1FW. 
 
 
Statistical analysis 
 
Results obtained from all the manipulations are expressed as mean 
±standard deviation and analyzed using SPSS software. Statistical 
differences between treatment means were established using the 
Fisher LSD test at p values < 0.05. Multifactorial ANOVA was used 
to estimate whether cultivar, salinity level, alone or in interaction, 
had a significant influence on the measured parameters. 
 
 
RESULTS 
 
Growth parameters   
 
Peanut growth was estimated by measuring root dry 
weight (RDW), shoot dry weight (SDW), total leaf area 
(TLA) and stem diameter (SD) (Table 1). A significant 
two-way interaction between the factors, salinity level and 
cultivars, was observed for SDW and TLA (Table 1). The 
RDW and SDW of cv. Vanda decreased significantly (p< 
0.05) in salt-treated plants, when compared with control 
plants than those of cvs. Fleur 11, Mbiah and PC 79-79. 
The SDW inhibition effect of salt was notably noted at 
100 mM NaCl in cvs. Mbiah and PC 79-79, while cv. 
Fleur 11 showed significantly (p<0.05) decrease in salt-
treated plants only at 200 mM NaCl but had higher SDW 
accumulation than others (Table 1). TLA of all cultivars 
was negatively affected with increasing levels of salinity 
(Table 1). At the highest salt concentration (200 mM
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Table 1. Peanut cultivars growth parameters at different salinity levels. Data are mean ± standard error (n =5).  
 

Cultivar 
Salinity level  

(mMNaCl) 

Plant dry weight (g plant-1) 
Stem diameter (cm) 

Total leaf area 
(cm2 plant-1) Shoot Root 

Fleur 11 

0 0.74±0.04b 0.11±0.01b 0.27±0.01a 39.83±2.33e 
50 0.78±0.02a 0.14±0.02a 0.27±0.02a 36.91±2.19f 
100 0.75±0.03b 0.14±0.02a 0.26±0.03a 29.74±2.11h 
200 0.50±0.02f 0.12±0.01ab 0.25±0.02a 28.79±1.96h 

      

Mbiah 

0 0.65±0.02c 0.10±0.03b 0.27±0.02a 64.89±1.55a 
50 0.68±0.02b 0.12±0.03ab 0.27±0.02a 58.23±2.67b 
100 0.58±0.02e 0.14±0.02a 0.26±0.03a 51.96±3.02c 
200 0.43±0.01g 0.07±0.03c 0.25±0.01a 44.32±2.23d 

      

PC 79-79 

0 0.70±0.04c 0.15±0.05a 0.27±0.01a 46.76±1.70d 
50 0.67±0.05c 0.14±0.04a 0.27±0.03a 41,69±1.02e 
100 0.43±0.03g 0.14±0.02a 0.26±0.04a 35.67±2.09f 
200 0.34±0.03h 0.12±0.01ab 0.24±0.02ab 32.58±1.33g 

      

Vanda 

0 0.74±0.01b 015±0.03a 0.26±0.01a 40.98±2.98e 
50 0.63±0.03cd 0.06±0.01c 0.25±0.02ab 32.60±1.88g 
100 0.37±0.01h 0.05±0.01c 0.24±0.02ab 26.47±1.44i 
200 0.26±0.01i 0.03±0.00cd 0.23±0.01b 23.42±1.12j 

Cultivar (C)  * * ns * 
Salinity level (S)  *** ** * * 
C x S  * ns ns * 

 

Within columns, means followed by the same letter are not significantly different (p< 0.05) by Fisher LSD test; *, **, ***, Significant at p 
< 0.05, p < 0.01 and p < 0.001 respectively, ns not significant. 

 
 
 
NaCl), after four weeks of salt treatment, TLA was 
strongly reduced in cv. Vanda compared to control plants 
than those of cvs. Fleur 11, Mbiah and Pc 79-79. SD of 
all cultivars was not affected by salinity levels except for 
Pc 79-79 and Vanda at high salinity level (200 mM) after 
four weeks of salt treatment (Table 1). In general, plant 
growth was influenced by NaCl treatment except for SD 
and the magnitude of responses varied according to 
cultivars differing in salt-tolerance (Table 1). 
 
 

Biochemical characteristics 
 
Proline (PRO) content in leaf of control and NaCl 
stressed plants of all peanut cultivars were found at 35 
DAS and results are presented in Figure 1a. The PRO 
content was significantly increased in the stressed plants 
compared to control plants of all cultivars at all salinity 
levels but differences in PRO accumulation have been 
noticed during plant growth between peanut cultivars. 
The highest increased was observed in cv. Fleur 11 while 
the lowest was found in cv. Vanda; cv. Mbiah maintained 
higher increase of PRO content than the cv. PC 79-79.  

Glycine betaine (GB) content was determined in the 
absence (non-saline control) as well as in presence of 
NaCl in leaves of all the peanut cultivars after 4 weeks of 

salinity treatment (Figure 1b). GB content significantly 
(p<0.05) increased in presence of NaCl in all the cultivars 
compared to control plants. This increase was more 
pronounced in cv. Fleur 11 than others, while cv. Vanda 
showed the lowest increase.  

NaCl salinity induced total phenolic (TP) accumulation 
in leaves in all cultivars compared to control plants 
(Figure 1c) with higher values increasing salt concen-
trations. TP increased significantly (p < 0.05) at higher 
salt level (200 mM NaCl) in cv. Vanda than others, while 
cv. Fleur 11 showed the lowest increase. A rise in malon-
dialdehyde (MDA) content, an indicator of membrane 
damage was observed under NaCl salinity. MDA levels in 
the leaves increased with increasing salinity 
concentrations in cv. Vanda (Figure 1d). Results showed 
that MDA of the cvs. Mbiah and PC 79-79 increased at 
50 mM also, but decreased at 100 and 200 mM NaCl. 
MDA levels in the leaves showed no change in cv. Fleur 
11 at 50 and 100 mM NaCl but decreased at 200 mM 
NaCl.  
 
 

Changes in the chlorophyll content 
 
Leaf total chlorophyll content (CHL) was substantially 
increased in cvs. Fleur 11 and PC 79-79 with increasing
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exhibit more tolerance to salt stress (Munns, 2002). Salt 
stress can lead to stomatal closure, which reduces CO2 
availability in the leaves and inhibits carbon fixation, 
exposing chloroplasts to excessive excitation energy, 
which in turn could increase the generation of Reactive 
Oxygen Species (ROS) and induce oxidative stress 
(Parvaiz and Satyawati, 2008). The osmo-protectants 
that accumulate most commonly are PRO and GB, 
although other molecules can accumulate to high 
concentrations in certain species (Girija et al., 2002).  

NaCl salinity induced total phenolic content (TP) 
accumulation in leaves in all cultivars compared to control 
plants (Figure 1c). TP accumulation in leaves under salt 
stress could be a cellular adaptative mechanism for 
scavenging oxygen free radicals during stress conditions 
(Mohamed and Aly, 2008). Numerous studies have 
reported that TP production is stimulated by NaCl (Hanen 
et al., 2008; Zahra et al., 2012). Antioxidants prevent lipid 
oxidation and can act in different ways, including 
decreasing oxygen concentrations, scavenging initiating 
radicals, and binding metal ions to prevent initiating 
radical formation (Dorman et al., 2003).  

In this study, we present the evidence that salt stress is 
able to produce excessive quantity of malondialdehyde 
(MDA) in the leaf of cv. Vanda plants than others cultivars 
(Figure 1d).  Increase in the level of MDA, produced 
during peroxidation of membrane lipids, is often used as 
an indicator of oxidative damage (Azad et al., 2012). Free 
radical-induced peroxidation of lipid membranes is a 
reflection of stress-induced damage at the cellular level 
(Nagest and Devaraj, 2008). As a sequel, lipid 
peroxidation products such as MDA will accumulate and 
severe membrane damage will inevitably occur (Azad et 
al., 2012). Previously, it has been reported that there was 
an improvement in MDA content in leaves of salt-
sensitive Vigna radiata and Plantago media, but 
decreased at 200 mM in salt-tolerant Plantago maritime 
under salinity (Sekmen et al., 2007; Saha et al., 2010). 
MDA level and cell membrane damage increased under 
salt stress condition in salt-sensitive cv. Vanda because 
of elevating of ROS production (Azad et al., 2012). MDA 
concentration decreased at 200 mM in salt-tolerantcv. 
Fleur 11. These results suggested that the cv. Fleur 11 
showed a better protection mechanism against oxidative 
damage caused by salt stress by its higher induced 
activities of antioxidant enzymes than the salt-sensitive 
cv. Vanda (Sekmen et al., 2007). 
 
 
Changes in the chlorophyll content 
 
Salinity decreased the chlorophyll (CHL) content in salt-
sensitive cv. Vanda (Figure 2) leaves, which is in 
accordance with Taffouo et al. (2010a; b), and 
Giannakoula et al. (2012). This effect of salt was 
attributed to a salt-induced weakening of protein-pigment- 
lipid complex (Strogonov et al., 1970) or increased 
chlorophyllase enzyme activity (Stivesev et al., 1973). By 
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contrast, the CHL content was substantially increased in 
Fleur 11 and PC 79-79 with increasing NaCl concen-
trations. Similar observations have been reported by 
Robinson et al. (1983) and Morales et al. (1992) in salt-
stressed spinach and barley, respectively. Moreover, the 
cultivars Fleur 11 and PC 79-79 screened for their salt 
tolerance in this study were grown under natural field 
conditions of Bambey (Senegalese) and were probably 
exposed to different environmental constraints. The 
interaction between these stresses could be taken as a 
part of the adaptive mechanisms of plants to survive 
under saline conditions and high temperatures 
(Giannakoula et al., 2012). 
 
 
Conclusion 
 
In general, the results of this study showed that salt 
stress caused a serious decrease in plant growth by 
means of reduced RDW, SDW and TLA due to ionic 
toxicity and decrease osmotic potential in all peanut 
cultivars but the magnitude of responses varied accor-
ding to cultivars. Higher osmolyte accumulation, espe-
cially proline and glycine betaine was found in the salt 
tolerant cultivar (Fleur 11) whereas the lower in salt-
sensitive one (Vanda). The salt stress was able to 
excessively generate MDA in the leaves of Vanda plants, 
that is, an indicator of oxidative damage. MDA levels 
increased under salt stress in the leaves of cv. Vanda but 
decreased in cvs Mbiah, PC 79-79 and Fleur 11 at 100 
and 200 mM, respectively. These results suggest that 
Fleur 11 exhibits a better protection mechanism against 
oxidative damage caused by salt stress due to its higher 
induced activities of antioxidant enzymes and osmolyte 
accumulation than Mbiah, PC 79-79 and Vanda. Fleur 11 
can tolerate moderate saline conditions owing to better 
antioxidant system. It seems that the evaluation of 
osmolyte accumulation and antioxidant system is useful 
for assessment of salinity tolerance of peanut cultivars. 
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