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DNA methylation plays a vital role during development in gene expression and chromatin organization. 
DNA methyl transferases catalyze the transfer of a methyl group to bases within the DNA helix. Plants 
differ from animals in having methylation at the sites of CHG and CHH. In plant, there are at least four 
classes of cytosine methyltransferase: MET1, CMT3, DRM and DNMT2. They show distinct expression 
patterns and levels in tissues and developmental stages and differential activity on cytosines in different 
sequence contexts. Mutations that cause severe loss of DNA methylation often leads to abnormal 
development. In the present review, we summarized recent findings of the three major DNA 
methyltransferases mutants playing vital role in development of Arabidopsis thaliana. 
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INTRODUCTION 
 
DNA methylation is a major epigenetic event and is found 
widely in the genomes of prokaryotes and eukaryotes.  
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Abbreviations: CMT3, Chromomethyltransferases 3; DDM1, 
decrease in DNA methylation 1; DNMT1, DNA 
methyltransferase 1; DNMT2, DNA methyltransferase 2; 
DNMT3a, DNA methyltransferase 3a; DNMT3b, DNA 
methyltransferase 3b; DNMT3L, DNA methyltransferase 3L; 
DME, demeter; DML, demeter-like

 
proteins; DRM, domains 

rearranged methyltransferases; H3K9, Histone H3 lysine 9; 
H3K27, histone H3 lysine 27; H3K9me2, histone H3 
dimethylation at lysine 9; H3K27me3, trimethylated lys 27 of 
histone 3; HMTase, histone methyltransferase; ibm1, increase 
in bonsai methylation 1; LTR, Long terminal repeat; m5C, C5-
methylcytosine; MET1, methyltransferases1; MEA, medea; 
MTase, methyltransferase; PAI, phorphosibosyl-anthranilate-
isomerase; RdDM, RNA-directed DNA methylation; RRD2, 
RNA-dependent tRNA polymerase; ROS1, repressor of 
silencing 1; SET, histone methyltransferase; SDC, suppressor 
of drm1/2 cmt3; siRNA, small interfering RNA; SUP, superman; 
SUVH4, su(var)3-9 homolog 4; TRDMT1, tRNA aspartic acid 
methyltransferase 1; TGS, transcriptional gene silencing; UBA, 
ubiquitin associated. 

DNA methylation in higher eukaryotes has two essen-
tial roles-defending the genome against transposons and 
regulating gene expression (Chan et al., 2005). It acts 
with other epigenetic modifications such as histone 
modification and chromatin remodeling to regulate chro-
matin structure and gene expression, a process called 
epigenetic regulation.  

In plants and fungi, genomic methylation is mainly 
restricted to transposons, coding sequences and other 
repeats. In mammals, by contrast, most DNA outside reg-
ulatory regions (intergenic DNA, coding DNA and repeat 
elements) appears to be methylated (Weber and 
Schübeler, 2007). The main role of DNA methylation in 
plants, controls the transcription of invading and mobile 
DNA elements, such as transgenes, viruses, transposons 
and retroelements to effect on development (Kidwell and 
Lisch, 2001). Plant DNA methylation in patterns can be 
inherited over multiple generations (Kakutani, 2002); 
changes in DNA methylation that arise somatically during 
the plant life cycle have the possibility of being propa-
gated. Active DNA demethylation, a reverse process 
carried out by DME/ROS/DMLs etc., is important in 
pruning the methylation patterns of the plant genome, 
and even the normally “silent” transposons are under 
dynamic control by both methylation and demethylation 
(Zhu et al., 2007). Therefore, epimutation, a change in 
heritable chromatin marks, might be an  important  source  



Huang et al.         8507 
 
 
 

Mouse DNMT3B(853aa)

Plant MET1(1534aa)

Regulatory region                   Catalytic region

Plant CMT3(791aa)

Plant DRM2(626aa)

Mouse  DNMT1(1616aa)

Mouse DNMT2(415aa)

Plant DNMT2

Glu-rich     NLS           BAH       BAH Ⅰ Ⅳ Ⅵ Ⅷ Ⅸ Ⅹ

PBD      NLS   Cys-rich         BAH      BAH Ⅰ Ⅳ Ⅵ Ⅷ Ⅸ Ⅹ

UBA UBA UBA Ⅵ ⅨⅩ Ⅰ Ⅱ Ⅲ ⅣⅤ

PWWP                C ys-rich              Ⅰ Ⅱ ⅢⅣⅤ Ⅵ Ⅸ Ⅹ

BAH                   Ⅰ CD      Ⅳ Ⅵ Ⅷ Ⅸ Ⅹ

Ⅰ Ⅳ Ⅵ Ⅷ Ⅸ Ⅹ

Ⅰ Ⅳ Ⅵ Ⅷ Ⅸ Ⅹ

 
 
Figure 1. Schematic diagrams of plant DNA methyltransferases. There are four classes of DNA cytosine methyltransferases in 
Arabidopsis thaliana genome. The methyltransferases are divided into an N-terminal regulatory part and a C-terminal catalytic 
part. The size of each protein is indicated in amino acid numbers, and conserved motifs in the catalytic region are indicated by 
closed boxes with Roman numerals defined for the prokaryotic enzymes from the data base. Briefly, the conserved catalytic motifs 
I and X are involved in the AdoMet binding. Motif IV, which contains the invariant prolylcysteinyl, doublet has been identified as the 
functional active site of all known C5-MTases. Motif VI provides a glutamic acid that plays an important role in the target cytosine 
binding. Motif VIII is suggested to make nonspecific contacts with cytosine, which contribute to the neutralization of the negative 
charge of the DNA backbone. Motif IX is involved in the organization of the target recognition domain (TRD) (Pavlopoulou and 
Kossida 2007). Specific regions in the regulatory region are indicated by shaded boxes with appropriate names. Glu-rich, 
glutamine rich acidic region, NLS, nuclear localization signal; BAH, bromo-adjacent homology domain; PBD, PCNA binding sites; 
Cys-rich, cysteine-rich region; UBA, ubiquitin association domain; PWWP, Pro-Trp-Trp-Pro domain; CD, chromodomain. 

 
 
 

of variation during plant evolution (Gehring and Henikoff, 
2007).  

DNA methylation occurs not only in CG dinucleotide, 
but also at CHG and CHH (an asymmetric site, where H 
is A, C or T) sequences in plants. In the Arabidopsis 
genome, the CG sites are generally methylated over 80% 
or not at all, whereas CHG sites are typically 20 - 100%, 
and CHH sites tend to be below 20% (Cokus et al., 
2008). Approximately 20% of its genome is methylated, 
with transposons and other repeats comprising the 
largest fraction, whereas the promoters of endogenous 
genes are rarely methylated (Zhang, 2008). Usually, DNA 
methylation is catalyzed by various methyltransferase 
enzymes. These proteins modify cytosine residues speci-
fically in definite DNA nucleotide sequences (Vanyushin, 
2005). All methyltransferases utilize a common catalytic 
mechanism and employ AdoMet cofactor (S-adenosyl-
methionine) as the source of the methyl group (Eden et 
al., 2003; Villar-Garea et al., 2003). These functions are 
separated into two domains: the variable N-terminal 
domain and the catalytic C-terminal domain, respectively. 
In mammals, DNA methylation patterns are established 
and maintained by at least five methyltransferases 
enzymes: DNMT1, DNMT2, DNMT3a, DNMT3b, and 

DNMT3L (Bestor, 2000; Li, 2002). So far, the plant DNA 
methyltransferases have been identified and grouped into 
four main families based on their linear domain 
arrangement: methyltransferases 1 (MET1), chromomethyl-
transferases 3(CMT3), the domains rearra-nged 
methyltransferases (DRM) and DNMT2 (Figure 1). MET1 
and CMT3 are presumed to be responsible for the main-
tenance of CG and CHG methylation, respectively, whereas 
DRM appear to be the principal de novo methyl-trans-
ferase. DNMT2, which is lacking the N-terminal domain, 
is conserved in many eukaryote genomes, but its function 
is unknown (Finnegan and Kovac, 2000; Bartee and 
Bender, 2001; Cao et al., 2003). In Arabidopsis, the 
methyltransferase genes are dispersed across all five 
chromosomes besides the chromosome II, with most of 
the genes occurring as families consisting of two to three 
members (Figure 2A). That may result from genome 
duplication and gene reshuffling. METs locate on chromo-
some IV except MET1 which may result from large-
segment gene-duplication and share one ancestral gene 
with CMT (Figure 2B) (Pavlopoulou and Kossida, 2007). 
It is tempting to think that all the methyltransferase genes 
may share a common ancestor, incline to different 
polarization during evolution and carry out diverse function 
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Figure 2. Genomic structure and phylogenetic relationship between the members of the Arabidopsis methyltransferase gene 

family. A, Physical map showing the distribution of the Arabidopsis methyltransferase genes (Table 1) among the five 
chromosomes with tags indicating genes ( http://www.arabidopsis.org/servlets/sv) B, Phylogenetic analysis to infer the 
evolutionary relationships of DNA methyltransferases by employing the Neighbor-Joining method (Saitou and Nei, 1987). 
Phylogenetic analyses were conducted in MEGA 4.0.1 (Tamura et al., 2007). Mus stands for mouse. 

 
 
 

by further duplication based on the order and orientation.  
In this review we summarize the properties of the three 

main classes of plant DNA methyltransferase in Arabidopsis 
and their important roles in development, highlighting 
their emerging interactions uncovered by the most recent 
investigations on multiple mutants of different methyl-
transferase classes and other molecular components that 
are required for correctly methylating genomic DNA. 
 
 
MET1: MAINTENANCE OF CG DNA METHYLATION 
 
MET1 is similar to the mammalian Dnmt1. They share 
50% amino acid identity in the C-terminal catalytic 
domain but only 24% identical in the N-terminal regu-
latory domain (Figure 1) (Finnegan and Dennis 1993; 
Finnegan and Kovac, 2000). It is encoded by a member 
of a multigene family with four characterized genes 
(METI, METIIa, METIIb, and METIII) (Table 1) that 
contain conserved intron positions (Genger et al., 1999). 
Arabidopsis met1 mutants display severe reduction in CG 
methylation and moderate loss of non-CG methylation in 
the genome (Kankel et al., 2003), and are responsible for 
the release of transcriptional gene silencing and morpho-
logical abnormalities such as delayed flowering and 
reduced fertility (Finnegan et al.,1996; Kankel et al., 
2003; Saze et al., 2003). But mutant alleles are weak with 
no morphological phenotype and accumulate numerous 
epimutations due to the loss or gain of endogenous gene 
silencing via following inbreeding (Jacobsen et al., 2000; 
Soppe et al., 2000; Kankel et al., 2003). Zilberman et al., 
(2007) compare global transcript levels in met1 and wild 
type plants and find that the expression of both methyl-
ated and unmethylated genes increase in met1, with the 
formers more significantly. Also, a few genes have been 
found to be mis-expressed in met1 and are responsible 

for some of the developmental phenotypes. Such as ibm1 
(increase

 
in bonsai methylation 1) (Saze et al., 2008), 

Sadhu6-1 (a non-autonomous retroposon) (Rangwala 
and Richards, 2007) or RPS (a repetitive hypermethylated 
Petunia hybrida DNA fragment in transgenic Arabidopsis 
line RA5) (Singh et al., 2008) are reported to be affected 
by CG methylation in met1 background. 
In the gametophytic phase MET1 is responsible for 
copying mCG (Figure 3A) patterns through DNA replication. 
In the absence of CG methylation, new and aberrant 
epigenetic patterns are progressively formed over several 
plant generations (Mathieu et al., 2007). That is illustrated 
by the phenotypes of met1 mutants which are severely 
compromised in the accuracy of epigenetic inheritance 
during gametogenesis, including elimination of imprinting 
at paternally silent loci such as FWA or MEDEA (MEA) 
(Pien and Grossniklaus, 2007). Imprinting, the pheno-
menon of expression in a parent-of-origin-specific manner 
either from the paternal or maternal allele, is not 
established by acquisition of DNA methylation, rather it is 
correlated to DEMETER (DME) in endosperm of 
flowering plants (Arnaud and Feil 2006; Kinoshita et al., 
2004). DME encodes putative DNA glycosylase and in-
volves in the removal of 

m
C. To date, all imprinted genes 

identified in plants are expressed in the endosperm and 
maintenance of DNA methylation is essential for parental 
imprinting during the Arabidopsis life cycle (Jullien et al., 
2006). Analysis on met1 mutant also shows that maternal 
and paternal genomes play distinct roles in the regulation 
of seed size; paternal genome hypomethylation causes 
seed size reduction, whereas maternal genome hypome-
thylation has no effect on seed size (FitzGerald et al., 
2008; Berger and Chaudhury, 2009). That is why MET1 is 
necessary for the maintenance of methylation during 
gametogenesis of the Arabidopsi thaliana life cycle (Saze 
et al., 2003; Xiao et al, 2003; Kinoshita et al., 2004).  
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Figure 3. Cytosines are often methylated by de novo cytosine methyltransferase. After semiconservative 
DNA replication, the result of the symmetric cytosine methylation (A.) and asymmetric cytosines 
methylation (B.) is different. 

 
 
 

MET1 control heterochromatin assembly at chromoce-
nters by its influence on CG methylation and subsequent 
methylation of H3K9. Removal of CG methylation results 
in a clear loss of H3K9me2 (Figure 4) (Soppe et al., 
2002; Tariq et al., 2003). At the same time H3K27me3 
moves into selected heterochromatic loci depleted of CG 
methylation in met1, even though H3K27me3 is excluded 
from heterochromatin in wild type (Mathieu et al., 2005). 
Methylation of H3 and H4 histones is a prerequisite for 
DNA methylation, but not vice versa (Fuchs et al., 2006). 
Actually, histone modifications and chromatin remodeling 
are vital in the differential epigenetic control of repeats 
and genes. The above mentioned strongly suggest that 
maintenance of CG DNA methylation is critical for contro-
lling endogenous gene expression and normal plant 
development.  

CHG sites are particularly abundant in repetitive DNA 
sequences and they are also found to a significantly 
higher degree in the heterochromatic regions. Disruption 
of MET1 expression induces higher levels of short 
interfering RNA accumulation and affects transposons 
and centromeric repeats (Chen et al., 2008). It is tempting 
to think that MET1 appears to be necessary to maintain 
CHG methylation. However, when the CMTs emerged, 
containing the chromodomain motif which interacts with 
chromatin proteins and may direct CMTs to the targeted 
heterochromatic region (Henikoff and Comai, 1998), 
METs possibly narrowed their preference to CG methyl-
ation targets (Pavlopoulou and Kossida 2007). Therefore, 
the CMT proteins maintain CHG methylation in plants, 
offering an evolutionary advantage to the plants (Goll and 

Bestor, 2005).  
 
 
CMT3: THE UNIQUE METHYLTRANSFERASE IN THE 
PLANT KINGDOM 
 
CMT is a second class of methyltransferase and unique 
to the plant kingdom, controlling non-CG methylation 
(Figure 3B) (Cao and Jacobsen, 2002a). It is encoded by 
three genes (CMT1, CMT2 and CMT3) in Arabidopsis 
(Table 1). Mutations in CMT3 lead to global loss of both 
CHG and asymmetric CHH methylation at repetitive 
centromeric regions (with minor loss of CG methylation) 
and transposon reactivation. But they are morphologically 
normal, even after several generations of inbreeding, 
which are in contrast to met1 mutation (Bartee et al., 
2001; Lindroth et al., 2001). It may suggest that CMT3 
function is specialized for only a subset of methylated 
regions in the genome. As known, CHG sites are 
particularly abundant in repetitive DNA sequences, and 
they are found to a significantly higher degree in the hete-
rochromatic regions (Pavlopoulou and Kossida, 2007). 
However, chromocenter formation does not depend on 
CHG methylation in Arabidopsis (Fransz et al., 2006).  

CMT contains a special chromodomain amino acid 
motif between the conserved motifs II and IV (Figure 1), 
which are critical for guiding proteins to heterochromatin, 
suggesting a role for CMT in modifying DNA in heteroc-
hromatin (Eissenberg, 2001). They may have evolved to 
maintain the methylation status in the heterochromatic 
regions  of  the  plant  genome  (Papa  et  al.,  2001). The 
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Figure 4. The network simply illustrates the genetic interactions between different methyltransferases. MET1 is 
essential for the maintenance of global cytosine methylation. CMT3 is involved in de novo methylation at non-CG 
positions and also maintains CHG methylation. The chromodomain of CMT3 binds histone H3 tails when positions at 
H3K9 and H3K27 are simultaneously methylated. CMT3, H3K9me2 and H3K27me3 are working together for non-CG 
methylation. DRM is responsible for virtually all de-novo DNA methylation and maintains non-CG methylation. Real 
line and broken line each stands for maintenance and establishment of methylation. 

 
 
 

process is related to the histone H3K9 methyltransferase 
AtSUVH4 [also named KRYPONITE (KYP)], which 
contains a SET domain and seems to be required for the 
maintenance of CHG and CHH methylation (Jackson et 
al., 2002; Malagnac et al., 2002). The chromodomain of 
CMT3 is shown to bind histone H3 tails when the 
positions at H3K9 and H3K27 are simultaneously methy-
lated (Figure 4). The above mentioned phenomenon 
suggests that this is a signal for DNA methylation at CHG 
and CHH mediated by CMT3 and for transcriptional gene 
silencing (TGS) (Lindroth et al., 2004).  

CMT3 mutants abolish epigenetic silencing at both the 
SUPERMAN (SUP) and the repeat phosphoribosyl-
anthranilate-isomerase (PAI) loci in Arabidopsis (Bartee 
et al., 2001; Lindroth et al., 2001). In addition to con-
trolling CHG methylation at SUP and PAI, CMT3 also 
methylates several additional endogenous sequences 
such as the Athila and Ta3 transposons (Lindroth et al., 
2001). Interestingly, Sadhu6-1 with the strongest

 
CHG 

methylation is expressed in a met1 CG methyltransferase
 

mutant, but not in cmt3 mutants (Rangwala and Richards, 

2007). It is interesting to determine how many genes are 
controlled by CMT-mediated methylation via gene-chip 
experiments.  
 
 
DRM: THE MAJOR DE NOVO METHYLATION 
ENZYMES 
 
DRM proteins are found only in plants. Their catalytic 
domains show sequence similarity to mammalian DNMT3 
and possess a characteristic rearrangement in catalytic 
motifs, between I-V and VI-X (Figure 1) (Cao et al., 
2000). However, unlike DNMT3 in mammalian, the DRMs 
have unique N termini containing two or three ubiquitin 
associated (UBA) domains that are not present in other 
eukaryotic methyltransferases. UBA domains show a 
conserved hydrophobic patch on the solvent-accessible 
surface (Figure 1), which may act as a common protein-
interacting interface functioning in protein-protein intera-
ctions (Mueller and Feigon, 2002). The potential mecha-
nism may be that the UBA  domains  recruit  the  DRM  to 
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Table 1. Summary of the methyltransferases from Arabidopsis thaliana. 
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certain DNA regions targeted for de novo methylation by 
interacting with chromatin proteins.  

In Arabidopsis, there are at least three DRM related 
genes: DRM1, DRM2 and DRM3 (Table 1). Genetic 
analysis suggests that DRM1 and DRM2 may be 
responsible for methylation of cytosines in inverted-
repeat transgenes at both CHG and CHH sites (Figure 
3B). DRM1 is expressed at a much lower level than 
DRM2 and the drm2 mutant recapitulates all the tested 
phenotypes of drm1 drm2 mutants (Cao and Jacobsen, 
2002b). drm1 drm2 double homozygotes show morpho-
logy that is similar to the wild-type WS strain and do not 
normally lose their methylation during the plant life cycle, 
even after five generations of inbreeding. But they block 
de novo CHG and asymmetric methylation and gene 
silencing of the endogenous SUPERMAN (SUP) gene. In 
drm2 mutant pants, genes demethylated by ROS1 
accumulate methylation at CG sites (Penterman et al., 
2007). This means that the DRM genes are important and 
required for establishing methylation in CG, CHG and 
CHH (Figure 4). 

Interestingly, the phenotypes in mutants in RNA-
silencing genes are similar to the de novo methyltra-
nsferase drm1 drm2 double mutant, which may indicate 
that the guidance of DNA methylation by siRNA. This is 
confirmed by a drm mutant that is found to suppress de 
novo methylation directed by generation of small 
interfering RNA molecules (siRNA) (Cao et al., 2003; 
Chan et al., 2004; Zilberman et al., 2004), although the 
mechanism is unknown. siRNA are preferentially asso-
ciated with methylated transposable elements, but not 
with methylated genes (Vaughn et al., 2007). Miki and 
Shimamoto (2008) point out that the exogenous siRNA 
are strong inducers of de novo DNA methylation in 

transcribed sequences of rice endogenous genes, but are 
insufficient to induce heterochromatin formation. Silen-
cing

 
of

 
tobacco (Nicotiana tabacum) LTR retrotransposon 

Tnt1 in Arabidopsis also occurs via an RNA-directed DNA 
methylation process, and can be partially overcome by

 

some stresses (Pérez-Hormaeche et al., 2008).  
 
 
GENETIC INTERACTIONS BETWEEN DIFFERENT 
METHYLTRANSFERASES AND THE BEYOND 
 
The importance of cytosine methylation for plant deve-
lopment is first testified by treatment of plants with the 
hypomethylation agent 5-azacytidine (Richards, 1997) 
and later by genetic manipulations on various methyl-
transferase mutants showing a range of degree of 
reduction in total genomic cytosine methylation. Different 
classes of MTase appear to have their distinct target 
sequence texts/regions but also with some overlapping 
functions. In the model plant A. thaliana, the general 
scheme appears to be that MET1 is essential for the 
maintenance of global cytosine methylation for CG at 
hemimethylated sites, and may also participate in de-
novo methylation (Aufsatz et al., 2004). CMT3 is involved 
in de-novo methylation at non-CG positions and also 
maintains CHG methylation. DRM is responsible for 
virtually all de-novo DNA methylation and are also 
required for maintenance of symmetric methylation. How-
ever, things may not be so simple: multiple mutant 
analysis (Zhang et al., 2006; Penterman et al., 2007; 
Singh et al., 2008) combined with whole genomic scale 
mapping of m5C at single base-pair resolution (Lister et 
al., 2008; Cokus et al., 2008) have revealed complicated 
interactions between different MTases,  as  well  as  other  
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cellular components/signals, such as machineries for 
DNA demethylation (DME, ROS and DMLs), histone 
modification (SUVH4), chromatin remodeling (DDM1) and 
those for RNA directed DNA methylation (RdDM) path-
way, some of which have been described above, such as 
RPS. In a drm1/2/cmt3 mutant, its CG methylation is lost, 
and in a met1 mutant, non-CG methylation is almost 
completely eliminated, implying an unusual cooperative 
activity of all three DNA methyltransferases required for 
maintenance of both CG and non-CG methylation in RPS 
(Singh et al., 2008). 

Multiple mutant analyses reveals that in the drm1/2 
cmt3 triple mutant, the vast majority of non-CG methyl-
ation eliminated with little change in CG methylation, 
leading to several developmental defects, such as curled 
leaves, short stature, reduction in biomass, and partial 
sterility. However, single mutants are phenotypically 
normal even after prolonged inbreeding (Cao et al., 2003; 
Chan et al., 2006). SUPPRESSOR of drm1/2

 
cmt3 (SDC) 

is responsible for these phenotypes. It encodes an F-box 
protein and contains

 
seven promoter tandem repeats, 

which show a  unique
  
silencing  requirement  for  non-CG 

DNA methylation directed redundantly
 

by histone 
methylation and siRNA (Henderson

 
and Jacobsen, 2008). 

The embryos of the met1 cmt3 mutants show reduced 
viability concretely exhibiting incorrect patterns of cell 
divisions, polarity, and auxin gradients and mis-expressed 
genes that specify embryo cell identity. This means that 
DNA methylation is necessary for proper embryo 
development and viability in Arabidopsis (Xiao et al., 
2006). Furthermore, met1 cmt3 adult plants exhibit a 
number of severe developmental defects, such as extre-
mely late flowering, reduced leaf size, shorter stature, 
and complete sterility. The phenomena is the same with 
drm1/2 met1 mutants (Zhang and Jacobsen, 2006; Cokus 
et al., 2008), and met1 cmt3 double mutant is equally 
effective in reducing CHH methylation as is drm1/2 cmt3 
(Cokus et al., 2008). drm1/2 cmt3 met1 plants can be 
recovered from drm1/2 cmt3 met1/+ parents and such 
quadruple mutant plants grow very slowly, exhibit a suite 
of severe developmental phenotypes, and fail to flower 
after about 7 months (Zhang and Jacobsen, 2006). When 
drm1drm2cmt3 plants are transformed with DRM2 or 
CMT3, the developmental phenotypes could be reversed, 
involving in RNA silencing, 24-nucleotide short interfering 
RNA (siRNA) pathway as well as histone H3K9 methy-
lation (Chan et al., 2006). These results suggest that the 
methyltransferases via a net work of persistent targeting 
signals has been co-opted to regulate developmentally 
important genes. At the same time, they supported the 
notion that CG methylation and non-CG control important 
developmental genes in Arabidopsis. It means that 
methyltransferases function both independently and 
dependently in a complex manner to establish and 
maintain correct DNA methylation. It is also possible that 
the gross loss of DNA methylation in these multiple 
mutants may undermine the general structure and func-
tion of the chromosomes (e.g., chromosome  segregation  

 
 
 
 
or heterochromatin condensation) and thus affect normal 
cell divisions (Zhang and Jacobsen, 2006).  

Recent characterization of the DNA demethylases 
ROS1, DME, DML2, and DML3 in Arabidopsis suggests 
that subsets of genomic DNA methylation patterns are 
the products of antagonistic methylation-demethylation 
activity (Penterman et al., 2007). By studying rdr2 and 
drm2 mutant plants, Penterman et al., 2007, find that 
genes demethylated by ROS1 accumulate CG methyl-
ation. They propose that this hypermethylation is due to 
the ROS1 down-regulation that occurs in these mutant 
backgrounds, suggesting an interesting interaction bet-
ween ROS and DRM2/RdDM pathway. It remains to be 
determined how DNA demethylase activity is regulated 
and a precise understanding of the genomic targets of 
methylation and demethylation is essential to deconvo-
lute how these opposed activities forge the methylation 
landscape that is observed. 

In summary, so far the experimental evidences indicate 
that different DNA methyltransferases not only have their 
own roles in the establishment and maintenance of DNA 
methylation, but also function redundantly or interdep-
endently in complex ways. To function properly, they also 
require the participant of other molecular components 
within the cell. Further studies should focus on how the 
methyltransferases interact with histone methyltrans-
ferases and chromatin-remodeling proteins to achieve 
DNA methylation for the regulation of gene and chromo-
somal activities and plant development. Future experi-
ments on DNA methylation in different organisms may get 
results beyond our imagination. So far the most of the 
existing information about methyltransferases is obtained 
by reverse genetics and researchers may use forward 
genetics to confirm their results on how methyltransfe-
rases would function in plant development.  
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