Effect of nifedipine, imipramine and sertraline on the antidepressant-like actions of furosemide in forced swim (FST) and tail suspension (TST) tests models of depression in mice

S. E. Oriaifo1* and E. K. I. Omogbai2

1Department of Pharmacology, College of Medicine, Ambrose Alli University, Ekpoma, Edo State, Nigeria.
2Department of Pharmacology, University of Benin, Benin-City, Edo State, Nigeria.

Accepted 2 April, 2012

The objective of the study was to determine the effect of nifedipine, imipramine and sertraline on the acute and long-term antidepressant-like responses of furosemide in the forced swim (FST) and tail suspension (TST) tests in mice. Groups of mice of six in each group were treated for 30 days with Tween 80, furosemide (10 mg/kg) + nifedipine (5 mg/kg), furosemide (10 mg/kg) + imipramine (10 mg/kg) and furosemide (10 mg/kg) + sertraline (5 mg/kg), respectively. Experiments were done on day 1, 15 and 31 in the FST and TST. In the FST and TST, results showed that in the test groups, sertraline, imipramine and nifedipine enhanced the reduction of immobility of furosemide significantly when 15-day values were compared with acute values (F(3, 20) = 14.21, P < 0.05, < 0.01) and when 30-days values were compared with 15-days values (F(3, 20) = 24.26, P < 0.05, < 0.01). Duncan multiple range (DMR) post-hoc test showed that the furosemide + sertraline combination gave the most significant response. In conclusion, results show that the antidepressant-like action of furosemide is enhanced in the FST and TST models of depression in mice by co-administration of imipramine, sertraline and nifedipine.

Key words: Furosemide, nifedipine, imipramine, sertraline, forced swim test (FST), tail suspension test (TST), antidepressant.

INTRODUCTION

Emerging evidence indicates that antidepressants (ADs) exhibit their long-term clinical actions by their effects on neuroplasticity. There is now a great appreciation of the convergence of mechanisms between stress, depression and neuroplasticity (Pittenger and Duman, 2008; Racagni and Popoli, 2008).

Evidence from a substantial collection of research works implicates the loop diuretic, furosemide, as a neurochemical with neuroprotective effects that affects neuroplasticity and the biomarkers of depression. With its effects on monoamine transporters (Lucas et al., 2007), brain renin angiotensin system (RAS) (Wright et al., 2002), phosphodiesterase (Marcus et al., 1978), furosemide may enhance cyclic adenosine monophosphate-cAMP-response element binding protein-brain derived neurotrophic factor (cAMP-CREB-BDNF) signalling. In the peripheral nervous system, the actions of furosemide may overlap with that of cAMP (Kreydiyyeh et al., 2000). Furosemide’s anti-oxidant actions (Lahet et al., 2003), its effect on cytokines (Yuengsrigul et al., 1999) and its attenuation of glutamate-mediated excitotoxicity (Sanchez-Gomez et al, 2011) enhances neuroplasticity. Its upregulation of brain-derived neurotrophic factor (BDNF) (Szekeress et al., 2010) which is deficient in depression, its enhancement of long-term potentiation (LTP) and neurogenesis being a KCC2 blocker (Wang et al., 2006; Roitman et al., 2002)
and favourable effects on Bcl-2/Bax ratio being a Bax blocker (Lin et al., 2005) enhances the neurotrophic signaling cascade of brain derived neurotrophic factor; early signal regulated kinase-CAMP-response element binding protein-B cell lymphoma 2 (BDNF-ERK 1/2- CREB-Bcl-2), an important mediator of neuroplasticity, which is impaired by stress (Trentani et al., 2002).

Recently, the induction of salt appetite by furosemide has been reported to activate the endogenous enkephalin system (Grondin et al., 2011) and could activate the cocaine-amphetamine regulated transcript (CART) peptides that have antidepressant effects (Peizhong, 2011).

The calcium channel blocker, nifedipine, enhances neuroplasticity through its anti-oxidant actions (Warner et al., 2004) and anti-excitotoxic actions in attenuating the effects of hyperglutamatergic excitotoxicity (Paul, 2001). Sustained Ca\(^{2+}\) increase generates reactive oxygen species (ROS) and the formation of ROS causes the disruption of Ca\(^{2+}\) homeostasis and cell death (Manzil et al., 2004). Nifedipine, by its actions on monoamine transporters (Padmanabhan et al., 2008) and phosphodiesterase (Moore et al., 1985) enhances cAMP-CREB-BDNF signaling (Sasaki et al., 2007), an important factor in neuroplasticity.

The aim of the study was to investigate the enhancement of the antidepressant-like responses of furosemide acutely, at day 15 and 31 by nifedipine, imipramine and sertraline in the FST and TST models of depression in mice.

MATERIALS AND METHODS

Consent for animal experimentation was obtained from the Animal Experimentation Ethical Committee of the University. Male albino mice (25 to 35 g) were used. Groups of mice, six in each group, were housed in the animal house in separate labelled metal cages for 14 days. Animals were housed at room temperature of 25 to 27°C in a 12-h light/dark cycle. They had access to food and water ad libitum and on the day of the test (days 1, 15 and 31), they were transported to the sound-proof testing area in their own cages.

All drugs were supplied by Sigma-Aldrich through Rovet Chemicals, Benin City, Nigeria. All the drugs were dissolved in 10% Tween 80 in distilled water because of furosemide's solubility. The mice were injected intraperitoneally (i.p.). The doses of drugs were chosen from previous studies (Eraley et al., 2006; Luszczyk et al., 2003; Cryan et al., 2004; Kosuda et al., 1997; Hesdorffer et al., 2001; Moglinicka et al., 1987).

Drug studies with the forced swimming test

The mice, after acclimatisation and care in the animal house, were transported from the housing room to the sound-proof testing area in their own cages and allowed to adapt to the new environment for one hour before testing. The groups of mice were treated with the test compounds by intraperitoneal (i.p.) injection one hour prior to the test of immobility. In the TST first formulated by Steru in 1985, the mice were suspended on the edge of a shelf 58 cm above a table-top by adhesive tape placed approximately 1 cm from the tip of the tail. The duration of immobility was recorded for a period of 5 min by an observer unaware of the test compound.

In the experiment, the control group received 0.25 ml of 10% Tween 80 i.p. daily for 30 days. The second group received furosemide (10 mg/kg) + nifedipine (5 mg/kg) i.p. daily for 30 days. The third group received furosemide (10 mg/kg) + imipramine (10 mg/kg) i.p. daily for 30 days and the fourth group received furosemide (10 mg/kg) + sertraline (5 mg/kg) i.p. daily for 30 days. On the test days, (days 1, 15 and 31), doses remained unchanged except the furosemide dose which was increased to 100 mg/kg because this dose was found in a preliminary experiment to give the most significant antidepressant response. Doses below 25 mg/kg were found not to give antidepressant response. For the acute single drug experiment, separate groups of mice received 100 mg/kg of furosemide, 5 mg/kg of nifedipine, 10 mg/kg of imipramine and 5 mg/kg of sertraline i.p. before experimentation in the FST.

Drug studies with the tail suspension test

The mice, after acclimatisation and care in the animal house, were transported from the housing room to the sound-proof testing area in their own cages and allowed to adapt to the new environment for one hour before testing. The groups of mice were treated with the test compounds by intraperitoneal (i.p.) injection one hour prior to the test of immobility. In the TST first formulated by Steru in 1985, the mice were suspended on the edge of a shelf 58 cm above a table-top by adhesive tape placed approximately 1 cm from the tip of the tail. The duration of immobility was recorded for a period of 5 min by an observer unaware of the test compound.

In the experiment, the control group received 0.25 ml of 10% Tween 80 i.p. daily for 30 days. The second group received furosemide (10 mg/kg) + nifedipine (5 mg/kg) i.p. daily for 30 days. The third group received furosemide (10 mg/kg) + imipramine (10 mg/kg) i.p. daily for 30 days and the fourth group received furosemide (10 mg/kg) + sertraline (5 mg/kg) i.p. daily for 30 days. On the test days, (days 1, 15 and 31), doses remained unchanged except the furosemide dose which was increased to 100 mg/kg because this dose was found in a preliminary experiment to give the most significant antidepressant response. Doses below 25 mg/kg were found not to give antidepressant response. For the acute single drug experiment, separate groups of mice received 100 mg/kg of furosemide, 5 mg/kg of nifedipine, 10 mg/kg of imipramine and 5 mg/kg of sertraline i.p. before experimentation in the TST.

Statistical analysis

In the results, data were presented as mean ± SEM seconds. One-way ANOVA was applied to compare the means followed by DMRT as post-hoc test. Mann-Whitney non-parametric test was used to compare only two groups. The difference was considered to be significant if P < 0.05, < 0.01.

RESULTS

In the acute condition of the FST, it was 43.02 ± 1.04 s before the control mice became immobile. Still in the acute condition, the single agents of furosemide (100 mg/kg), nifedipine (5 mg/kg), imipramine (10 mg/kg) and
sertraline (5 mg/kg) prolonged the onset of immobility of mice to 63.78 ± 1.08 s, 70.86 ± 0.55 s, 84.43 ± 1.13 s and 75.30 ± 1.11 s, respectively; and the values were significant (P < 0.01) when compared with controls. At day 15, it became 39.40 ± 1.35, 73.98 ± 1.52, 88.33 ± 0.63 s and 100.46 ± 0.90, 168.64 ± 2.00 and 114.10 ± 0.63 s, respectively (Figure 1).

In the acute condition of the FST (Figure 1), the furosemide (10 mg/kg) + nifedipine (5 mg/kg) combination prolonged the period of onset of immobility in the FST to 79.04 ± 1.02 s, and this became 101.14 ± 3.68 s and 114.10 ± 0.63 s at 15 and 31 days, respectively. The furosemide (10 mg/kg) + imipramine (10 mg/kg) combination gave 79.25 ± 1.19 s acutely, 105.50 ± 4.36 s at days 15 and 170.79 ± 0.50 s at day 31. The furosemide (10 mg/kg) + sertraline (5 mg/kg) combination gave 125.90 ± 1.33 s acutely, 150.00 ± 2.00 s at day 15 and 177.90 ± 2.89 s at day 31. The drug combinations significantly enhanced responses when the subchronic values were compared with the acute values (F(3, 20) = 14.21, P < 0.05, < 0.01), and when chronic values were compared with subchronic values (F(3, 20) = 24.26, P < 0.05; < 0.01). Post-hoc DMR test showed that the furosemide + nifedipine response as the most significant. This combination displayed synergy because the values at days 15 and 31 were more than the sum of the individual acute values. The furosemide + imipramine combination only showed synergistic response on day 31 (after chronic administration).

In the acute condition of the TST, the duration of immobility was 211.72 ± 4.39 s for the control mice. Still in the same condition, the single agents of furosemide (100 mg/kg), nifedipine (5 mg/kg), imipramine (10 mg/kg) and sertraline (5 mg/kg) reduced the period of immobility of mice to 132.65 ± 2.38, 130.81 ± 4.89, 101.10 ± 4.89 and 110.10 ± 4.89 s, respectively; and the values were significant (P < 0.01) when compared with the controls. At day 15, duration of immobility was 211.72 ± 4.39 s for control, 117.18 ± 2.45 s for the furosemide group, 105.58 ± 3.11 s for nifedipine, 88.25 ± 4.34 s for imipramine and 103.28 ± 3.20 s for sertraline. At day 31, this became 220.25 ± 1.52, 93.48 ± 1.44, 85.05 ± 0.73, 79.40 ± 1.00, 81.67 ± 1.02 s, respectively (Figure 2).

In the acute condition of the TST (Figure 2), the furosemide (10 mg/kg) + nifedipine (5 mg/kg) combination reduced the period of immobility in the TST to 108.62 ± 5.40 s, and this became 101.11 ± 5.79 and 100.46 ± 0.42 s at 15 and 31 days, respectively. The furosemide (10 mg/kg) + imipramine (10 mg/kg) combination gave 207.83 ± 6.92 s acutely, 83.42 ± 1.01 s

Figure 1. Effect of acute, 15 and 30-days administration of furosemide + nifedipine, furosemide + imipramine, furosemide + sertraline on onset of immobility period in the FST. Furosemide (10 mg/kg) + nifedipine (5 mg/kg); furosemide (10 mg/kg) + imipramine (10 mg/kg); Furosemide (10 mg/kg) + sertraline (5 mg/kg) were administered to mice for 30 days. Experiments were done on days 1, 15 and 31 in the FST; drug doses remained unchanged except for furosemide which was increased to 100 mg/kg. The drug combinations enhanced responses significantly when 15-day values were compared with acute values (F(3, 20) = 15.47; P < 0.05; < 0.01); and when 30-day values were compared with 15-day values (F(3, 20) = 10, 53, (P< 0.05; <0.01). Post-hoc DMR tests showed the furosemide + sertraline response as the most significant.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Acute</th>
<th>Day 15</th>
<th>Day 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>63.78 ± 1.08 s</td>
<td>101.14 ± 3.68 s</td>
<td>114.10 ± 0.63 s</td>
</tr>
<tr>
<td>Furosemide (10 mg/kg)</td>
<td>39.40 ± 1.35 s</td>
<td>105.50 ± 4.36 s</td>
<td>150.00 ± 2.00 s</td>
</tr>
<tr>
<td>Imipramine (10 mg/kg)</td>
<td>117.18 ± 2.45 s</td>
<td>88.25 ± 4.34 s</td>
<td>85.05 ± 0.73 s</td>
</tr>
<tr>
<td>Sertraline (5 mg/kg)</td>
<td>132.65 ± 2.38 s</td>
<td>103.28 ± 3.20 s</td>
<td>81.67 ± 1.02 s</td>
</tr>
</tbody>
</table>

Figure 2. Duration of immobility in the TST after chronic administration of furosemide + nifedipine, furosemide + imipramine, furosemide + sertraline. The drug combinations enhanced responses significantly when 15-day values were compared with acute values (F(3, 20) = 15.47; P < 0.05; < 0.01); and when 30-day values were compared with 15-day values (F(3, 20) = 10, 53, (P< 0.05; <0.01). Post-hoc DMR tests showed the furosemide + sertraline response as the most significant.
Figure 2. Effect of acute, 15 and 30-dayss administration of furosemide + nifedipine, furosemide + imipramine, furosemide + sertraline on duration of immobility in the TST. Furosemide (10 mg/kg) + nifedipine (5 mg/kg); furosemide (10 mg/kg) + imipramine (10 mg/kg); Furosemide (10 mg/kg) + sertraline (5 mg/kg) were administered to mice for 30 days. Experiments were done on days 1, 15 and 31 in the TST; drug doses remained unchanged except for furosemide which was increased to 100 mg/kg. Values were expressed in seconds ± SEM (vertical bars). The drug combinations (furosemide + imipramine) and (furosemide + sertraline) reduced the duration of immobility significantly when 15-day values were compared with acute values (F(3, 20) = 9.70; P<0.05, <0.01); and when 30-day values were compared with 15-day values (F(3, 20) = 16.42; P<0.05, <0.01). Post-hoc DMR tests showed that the furosemide + sertraline (F+S) combination produced the most significant response.

at day 15 and 77.90 ± 0.73 s at day 31. The furosemide (10 mg/kg) + sertraline (5 mg/kg) combination gave 79.39 ± 7.50 s acutely, 77.80 ± 1.31 s at day 15 and 61.01 ± 0.88 s at day 31. The drug combinations significantly enhanced responses when the subchronic values were compared with the acute values (F(3, 20) = 9.70, P < 0.05, < 0.01), and when chronic values were compared with subchronic values (F(3, 20) = 16.42, P < 0.05, < 0.01). Post-hoc DMR test showed that the furosemide + sertraline combination gave the most significant response. In the acute condition, the furosemide + imipramine combination did not significantly reduce the duration of immobility when compared with the control values.

DISCUSSION

The present results are in line with previous reports (Mogilnicka et al., 1987) that nifedipine possess antidepressant actions in rodents. Results also demonstrate that furosemide has antidepressant-like effects in mice and that the combinations of furosemide + nifedipine, furosemide + imipramine and furosemide + sertraline enhanced the antidepressant-like effects of furosemide in the FST and TST models of depression in mice on days 15 and 31 significantly different from acute values (P < 0.01). The furosemide + sertraline combination displayed synergy on days 15 and 31. While acute combination of furosemide + imipramine displayed antagonism, 15-day administration of furosemide + imipramine showed enhancement of response over acute values and 30-day administration showed synergy. Furosemide + nifedipine combination displayed only enhancement of response over acute values in the FST. Furosemide could enhance its acute antidepressant-like actions by enhancing cAMP-CREB-BDNF signaling. It could enhance this downstream signalling by its effect on angiotensin (Charron et al., 2002), its anti-oxidant effects (Lahet et al, 2003), its effect on adenosine (O’Connor et al., 1991), phosphodiesterase (Marcus et al., 1978) and cytokines (Yuengsrigul et al., 1999). Its effect in down-regulating
the dopamine transporter (Lucas et al., 2007) and norepinephrine transporter (Habecker et al, 2003) could also enhance cAMP-CREB-BDNF signalling. Furosemide antagonizes GABAergic transmission (Mantovani et al., 2011) and chronic furosemide administration upregulates BDNF mRNA (Szekeres et al., 2010) and these mechanisms could explain the antidepressant-like effects of furosemide demonstrated in these experiments.

Additionally, furosemide’s anti-apoptotic effect as a Bax blocker (Lin et al., 2005), its antioxidant status and overlapping role with Bcl-2 (Wang et al., 2007), could enhance BDNF-ERK1/2-CREB-MAP kinase-Bcl-2 signalling, the dysregulation of which is a key mechanism by which prolonged stress induces atrophy of select vulnerable neuronal subpopulations (Trentani et al., 2002).

With its effect as a KCC2 down-regulator (Wang et al., 2006), an attribute it shares with BDNF (Wardle and Poo, 2003), furosemide may enhance CREB-BDNF signaling, enhance LTP and induce neurogenesis (Roitman et al., 2002), important biomarkers of antidepressant effect.

The synergistic effect (furosemide + sertraline) displayed from our experiments over the furosemide + imipramine combination may be explained at a downstream level involving BDNF since furosemide upregulates BDNF production which can synergise with serotonergic agents (Deltheil et al., 2009) and secondly, the serotonergic system has been found (Kozisek et al., 2004) to mature earlier than the noradrenergic system and disipramine, the metabolite of imipramine has been observed not to increase BDNF and TrkB levels in juvenile rats which were used in this study.

The present results show that while acute furosemide administration antagonizes imipramine, implicating a significant cholinergic signalling for the acute effects of imipramine, 15-day imipramine administration is not antagonized by furosemide, while 30-day furosemide and imipramine administration have a synergistic effect in reducing immobility in the FST and TST in mice. It has been reported, however (Vaillant, 1969) that discrete cholinergic mechanisms do not play an important role in endogenous depression.

Results show that nifedipine enhances the effect of furosemide in reducing immobility of mice in the FST and TST models of depression in mice, while the effect of acute administration of imipramine in the reduction of immobility is antagonized by acute administration of furosemide.

ACKNOWLEDGEMENTS

The help and advice of Dr. Ray Ozolua before the proposals of the work were submitted is hereby acknowledged. We also thank Prof. O. Ukponnwa who helped with the earliest references on FST and TST. We also thank Dr. Nick Oriaifo, who helped with the treatments. Finally, we use this medium to extend our appreciation and gratitude for the work Mrs. C. Etamaso and Mrs. M. Oruwari are doing at the Animal Houses at the University of Benin and the Ambrose Alli University, Ekpoma, respectively.

Abbreviations

SEM, Standard error of mean; SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant; CCB, calcium channel blocker; SERT, serotonin transporter; NET, nor-epinephrine transporter; DAT, dopamine transporter; NKCC1, isoform 1 of the sodium-potassium-chloride co-transporter; KCC2, isoform 2 of the potassium-chloride co-transporter; GABA, gamma-aminobutric acid; cAMP, cyclic adenosine monophosphate; CREB, cAMP-response element binding protein; BDNF, brain-derived neurotrophic factor; ERK 1/2 (Classical MAP Kinases), extracellular signal-regulated kinase, isoform ½; MAP, mitogen activated protein kinase; FST, forced swim test; TST, tail suspension test.

REFERENCES

Habecker BA, Klein MG, Cox BC, Packard BA (2003). Ganglionic
tyrosine hydroxylase and norepinephrine transporter are decreased
by increased sodium in vivo and in vitro. Autonomic Neurosci.
107(2): 85-98.
Hesdorffer D, Stables JP, Hauser H, Annegers J, Cascino G,
Sergievsky GH (2001). Are certain diuretics also anticonvulsants?
and/or dilution of 2-deoxy-2-(18F) fluoro-D-glucose (FDG) activity
Kozierek ME, Midlemas D, Bylund DB (2008). The differential
regulation of BDNF and TrkB levels in juvenile rats after four days of
escitalopram and desipramine treatment. Neuropsychopharmacol.
54(2): 251-257.
Kreydiyyeh SI (2000). Cyclic AMP and furosemide stimulate the Na-K-
In vivo and in vitro antioxidant properties of furosemide. Life Sci.
73(8): 1075-1082.
regulated mitochondrial translocation is responsible for the in vitro
ischaemia-induced neuronal cell death of Sprague-Dawley rats.
Lucas LR, Grillo CA, McEwen BS (2007). Salt appetite in sodium-
deppleted or sodium-replete conditions. Possible role of opioid
receptors. Neuroendocrinology, 85: 139-149.
Furosemide potentiates the anticonvulsant action of valproate in
the mouse maximal electroshock seizure model. Epilepsia Res.
autoreceptors enhance GABA release from human neocortex: a
mechanism for high-frequency stimulation (HFS) in brain? Naunyn-
Copper-induced formation of ROS causes cell death and disruption of
calcium homeostasis in trout hepatocytes. Toxicol. 196(1-2): 57-64.
do not potentiate cAMP response to parathyroid hormone.
Metabolism 27(6): 701-10.
Mogilnicka E, Czyrak A, Maj J (1987). Dihydropyridine calcium channel
antagonists reduce immobility in the mouse behavioural despair
138: 413-416.
Moore JB, Fuller BL, Falotico R, Tolman EL (1985). Inhibition of rabbit
platelet phosphodiesterase activity and aggregation by calcium
O’Connor BJ, Chung KF, Chen-Worsdell YM, Fuller RW, Barnes PJ
5’monophosphate and sodium metabisulphite-induced
143(6): 1329-1333.
28(10): 2017-2027.
Human Psychopharmacol.: Clin. Exp. 16(1): 71-80
Peizhong M (2011). Review Article: Potential antidepressant role of
neurotransmitter CART: Implications for mental disorders. Hindawi
Publishing Corporation Depression Research and Treatment. 2011,
Pittenger C, Duman RS (2008). Stress, depression and neuroplasticity:
a convergence of mechanisms. Neuropsychopharmacology, 33: 88-
109.
Ther. 229: 327-336.
molecular mechanisms in the long-term action of antidepressants.
Induction of a salt appetite alters dendritic morphology in nucleus
22,RC225 (1-5).
Sanchez-Gomez MV, Alberdi E, Perez-Navaro E, Alberch J, Matute C
(2011). Bax and calpain mediate excitotoxic oligodendrocyte death
induced by activation of both AMPA and Kainate receptors. J.
Neurosci. 31(8): 2996-3006.
Activation of cAMP-CREB signaling by phosphodiesterase inhibitors.
Stroke, 38: 1597-1605.
test: A new method for screening antidepressants in mice.
Szekeres M, Nadasdy GL, Turu G, Supeki K, Svidonya L, Buday L,
expression of BDNF in human and rat adrenocortical cells.
Endocrinology, 151(4): 1695-1703.
stress –induced in vivo ERK1/2 hyperphosphorylation in medial
prefronto-cortical dendrites: implication for stress-related cortical
Vaillant GE (1969). Clinical significance of anticholinergic effects of
apoptosis in human hepatoma Huh-7 cells through a calcium/reactive
oxygen species-dependent mitochondrial pathway. Planta Medica,
LTP contributes to EPSP-spike potentiation in rat hippocampus.
Wardle RA, Poo MM (2003). Brain-derived neurofactor modulation
of Gabaergic synapses by post-synaptic regulation of chloride
Wright JW, Reichert JR, Davis CJ, Harding J (2002). Neural plasticity
26(5): 529-552.
Yuengsrigul A, Chin TW, Nussbaum E (1999). Immunosuppressive and
cytotoxic effects of furosemide on human peripheral blood