Full Length Research Paper

Characterization of *Salmonella enterica* Ituri isolated from diseased poultry in Nigeria

Ogunleye A. O.1*, Ajuwape A. T. P.1, Adetosoye A. I.1 and Carlson S. A.2

1Department of Veterinary Microbiology and Parasitology, University of Ibadan, Ibadan, Oyo State, Nigeria.
2Department of Biomedical Sciences, Iowa State University of Science and Technology, Ames, IA, USA.

Accepted 15 February, 2013

Salmonella enterica Ituri is an uncommon serotype associated with poultry disease. One of the serotype isolated from a poultry disease in Nigeria was characterized by serotyping and screening for the presence of *Salmonella* genomic island 1 (SGI1) as a possible factor responsible for its involvement in a poultry disease outbreak. Despite the similarities in the antibiotic sensitivities patterns of the *Salmonella* Ituri serotypes with some SGI1-bearing serotypes, it does not bear the SGI1. This is the first report of association of this *Salmonella* serotype with avian paratyphoidal disease.

Key words: *Salmonella enterica* Ituri, serotype, *Salmonella* genomic island 1 (SGI1).

INTRODUCTION

Salmonella is a member of the family *Enterobacteriaceae* (Wray and Davies, 2002). It is a facultative anaerobe, Gram-negative rod, 0.4 to 0.6 µm in size, most of which are motile by means of peritrichous flagella with the exception of the non motile serotypes: *S. Gallinarum* and *S. Pullorum* (Montville and Mattews, 2008). The genus consists of two species: *Salmonella enterica* and *Salmonella bongori* (Tindall et al., 2005). *S. enterica* contains six subspecies namely; “arizonae”, “diarizonae”, “enterica”, “houtenae”, “indica”, and “salame” (Tindall et al., 2005). *S. enterica* subspecies *enterica* is the one mostly found in the intestinal tract of man and warm blooded animals (Grimount et al., 2000). One other species, *S. subterranea*, was subsequently proposed by the Judicial commission of the International committee of systemic bacteriology (Shelobolina et al., 2004), but the proposed species was later reported not to belong to the genus *Salmonella* by other workers (Grimont and Weil, 2007).

Salmonella is known to be a major public health problem all over the world. For instance in the year 2000, it was reported to have caused 41 800 cases of human food borne diseases in England and Wales (Adak et al., 2002). In the USA, about one million human salmonellosis cases are recorded per year, with 94% associated with a food borne origin (Scallan et al., 2011).

Although, many *S.* serotypes have been associated with human salmonellosis, some are found more frequently in different regions of the world. For instance, in Belgium and most part of Europe, *S. Enteritidis* and *S. Typhimurium* are more frequently associated with human salmonellosis (Humphrey, 2000; Bertrand et al., 2007), where consumption of poultry meat is frequently identified as a source of human foodborne diseases (Humphrey, 2000; Adak et al., 2005). Apart from the known poultry-adapted non-motile *Salmonella* serotypes such as *Salmonella* Gallinarum and *Salmonella* Pullorum (Montville and Mattews, 2008), some other serotypes have been known to be commonly associated with poultry and poultry products. For example, according to the USDA *Salmonella* serotyping quarterly reports from January to June 2011, the following ten serotypes: Kentucky, Enteritidis, 4, 5, 12:i:-, Heidelberg, Brandenburg, Typhimurium, Berta, Montevideo, Thompson and *S. Worthington* predominated the list of
identified serotypes from broilers (USDA, 2011). *Salmonella* Ituri is one of the serotypes that are not usually associated with poultry and poultry products. This serotype was first discovered in 1953, when a group of scientists described three new *Salmonella* types from the Congo, where *Salmonella* Ituri was isolated from the feces of an apparently normal duck (Kaufman and Fain, 1953).

According to Boqvist et al. (2003), *Salmonella* Ituri was isolated for the first time in Sweden in 1997. It was one of the 165 serotypes attributed to snake/lizard from the total of 555 isolated from animals during 1993 to 1997 study periods in a study carried out to identify the *Salmonella* serotypes associated with animals and feed production in Sweden (Boqvist et al., 2003). One *Salmonella* Ituri was also reported to have been isolated from a total of 6562 *Salmonella*, as an isolate from the category of other domestic animals/environment, being part of the clinical *Salmonella* isolates from non-human sources to CDC and the National Veterinary Services Laboratories (NVSL) United States of America by serotype and sources in 2004 (Anonymous, 2004). This serotype is rarely associated with septicemia in poultry.

The *Salmonella* Ituri characterized in this study was one of the 41 *S. enterica* isolated from poultry diseases outbreaks between April 2005 and August 2007 in Nigeria (Ogunleye et al., 2010). Due to the similarities in the antibiotic resistance patterns of the *S. enterica* to a number of earlier reported SGI1-carrying *Salmonella* serotypes (Wall et al., 1994; Evans and Davies, 1996; Meunier et al., 2002; Doublet et al., 2004; Levings et al., 2005; Vo et al., 2006; Carlson et al., 2007; Ogunleye and Carlson, 2012), we characterized the isolate by screening for the presence of the SGI1 gene designated as SO13. This line of research was pursued since we recently reported an SGI1-bearing isolate of *S. Kentucky* as the etiologic agent of fowl paratyphoid (Ogunleye and Carlson, 2012).

MATERIALS AND METHODS

The *Salmonella enterica* isolate

The *Salmonella* isolate characterized in this study was recovered from one of the pooled organs of a septic poultry submitted for bacteriological examination in the Department of Veterinary Microbiology and Parasitology, University of Ibadan. The isolate was identified as *S. enterica* based on morphological, biochemical and serological typing with Polyclonal *Salmonella* Antiserum (Difco™ *Salmonella O Antiserum Poly A-I and V1) using standard methods (Edwards and Ewings, 1972; Barrow and Feltham, 1993; Ogunleye et al., 2010).

Serotyping of the isolate

The *S. enterica* isolates was sub-cultured into TSA agar and submitted to National Service Laboratories in Ames, Iowa, USA for serotyping. Serotyping was performed as per the Kauffman-White Scheme.

Determination of the ampicillin, chloramphenicol, streptomycin, sulfamethoxazole and tetracycline MIC values

The isolate was grown aerobically in breakpoint concentrations of ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, or tetracycline (all obtained from SIGMA-ALDRICH). Resistance was ascribed if flocculent growth was observed after 16 h of aerobic growth at 37°C. *S. enterica* serovar Typhimurium definitive phage type DT104 and an SGI1 / SO13-carrying *S. enterica* Kentucky were used as positive controls (Ogunleye and Carlson, 2012).

SGI1 screening of the isolate

Since this *Salmonella* Ituri isolated caused avian disease in a manner similar to that recently reported for an SGI1-bearing isolate of *S. Kentucky* (Ogunleye and Carlson, 2012), we performed PCR-based studies to assess the presence of SGI1 elements such as SO13, floR (chloramphenicol/florfenicol resistance), tetR (regulator of tetracycline resistance), and aadA2 (streptomycin/spectinomycin resistance) (Carlson et al., 2007). We used forward primer specific to floR and a reverse primer specific to tetR for the antibiotic resistance genes floR (chloramphenicol/florfenicol resistance), tetR (regulator of tetracycline resistance), and aadA2 (streptomycin/spectinomycin resistance) in a PCR assay as earlier described (Carlson et al., 1999, 2007). *S. enterica* serovar Typhimurium definitive phage type DT104 and an SGI1 and SO13 bearing *S. enterica* Kentucky associated with hypervirulence due to hyperinvasion from septic poultry in Nigeria (Ogunleye and Carlson, 2012) were used as positive controls.

RESULTS AND DISCUSSION

Serotyping analysis revealed that the isolate is *S. enterica* serotype Ituri. As shown in Table 1, antibiotic susceptibility tests demonstrated that the strain is resistant to chloramphenicol, sulfamethoxazole, and tetracycline yet sensitive to ampicillin and streptomycin. PCR studies indicate that the *S. enterica* serotype Ituri does not bear any of the elements associated with SGI1 (Figures 1 and 2).

This study describes the characterization of *S. enterica* Ituri isolated from a poultry disease outbreak in Nigeria. Due to the similarities of the antibiotic resistance patterns of this serotype with the positive controls (DT104 and an SGI1-bearing *S. enterica* Kentucky), the isolate was screened for the presence of SGI1 elements. *Salmonella* Ituri was resistant to chloramphenicol, sulfamethoxazole, and tetracycline yet was sensitive to ampicillin and streptomycin. *S. enterica* Kentucky exhibited the same antibiogram plus resistance to ampicillin while DT104 was resistance to all five antimicrobial agents. The *S. enterica* Ituri lacked the SGI1 elements.

SGI1-bearing *Salmonella* such as *S. Typhimurium, Agona*, and *Infantis* have been noted to be more virulent than other *Salmonella* strains in cattle (Rasmussen et al., 2005). We identified an SGI1-bearing *S. enterica* Kentucky isolated from a septicemic poultry disease in Nigeria, although we cannot conclude that this isolate
Table 1. Antibiotic sensitivity patterns of the *S. Ituri* isolate, compared with the two positive controls.

<table>
<thead>
<tr>
<th>Salmonella</th>
<th>Ampicillin</th>
<th>Chloramphenicol</th>
<th>Streptomycin</th>
<th>Sulfamethoxazole</th>
<th>Tetracycline</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. ituri</td>
<td>Sensitive</td>
<td>Resistance</td>
<td>Sensitive</td>
<td>Resistance</td>
<td>Resistance</td>
</tr>
<tr>
<td>S. Kentucky</td>
<td>Resistance</td>
<td>Resistance</td>
<td>Sensitive</td>
<td>Resistance</td>
<td>Resistance</td>
</tr>
<tr>
<td>DT104</td>
<td>Resistance</td>
<td>Resistance</td>
<td>Resistance</td>
<td>Resistance</td>
<td>Resistance</td>
</tr>
</tbody>
</table>

Figure 1. Presence of *aadA2* in *Salmonella* Kentucky (lane 2), DT104 (lane 3) and its absence in the *Salmonella* Ituri (lane 4). Lane 1 contains the 100 bp DNA ladder. Expected amplicon size is 200 bp.

Figure 2. Presence of SO13 in *Salmonella* Kentucky (lane 2), DT104 (lane 3) and its absence in the *Salmonella* Ituri (lane 4). Lane 1 contains the 100 bp DNA ladder. Expected amplicon size is ~900 bp.

was hypervirulent because of the SGI1 (Ogunleye and Carlson, 2012). Nonetheless, we examined the possibility of a link between poultry disease and unusual *Salmonella* serotypes bearing SGI1. Our results indicate
that there is no link between the virulence attributes of the S. Ituri and the SGI1-bearing S. Kentucky. However, to the best of our knowledge, this is the first time this uncommon serotype has been associated with poultry disease.

REFERENCES