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Sprouts of about 40 to 80 mm length were excised, surface sterilized with 70% Clorox
®
 and cultured on 

solid full-strength Murashige and Skoog (MS) medium. Shoot nodal segments (1.0 cm) from in vitro 
plantlets (2 to 4 weeks old) were multiplied through periodic subculturing on full-strength MS medium 
with 30 g/L sucrose, 100 ml/L myo-inositol and 0.5 ml/L silver thiosulfate. The shoots were rooted on the 
same medium. Microtubers were stimulated on MS medium supplemented with 80 g/L sucrose, 100 ml/L 
myo-inositol and 5 ml/L benzyl adenine. They generally originate on aerial etiolated shoots producing ≈ 
1.0 ± 0.5 microtuber/explant with diameter approx. 3 to 10 mm. Shoot regeneration was performed from 
tuber discs, internodes and leaf explants using 6 different media. Different regeneration capacities were 
observed by the explants along 60 days. The average number of shoots was highest from tuber discs 
(6.2) than from leaf explants (2.6) which exceeds about three times; no shoot from internode explants 
cultured on the various media. Regenerated plantlets produced from both tuber discs and leaf explants 
exhibited random amplification of polymorphic DNA (RAPD) analysis using five selected primers to 
detect somaclonal variation. All the morphological variants were excluded. One of the regenerated 
plantlet derived from leaf-explants was true-to-type to the main in vitro plantlet, so it will be used as a 
source of explants for transformation experiments. The other regenerated plantlets derived from leaf 
explants and tuber discs show the presence and/or absence of polymorphic bands. Results also 
showed that microtubers were initiated on the etiolated shoots of the regenerants at the first 10 days. 
The etiolated shoots induced about 2.6 ± 0.6 and 2.2 ± 0.5 microtuber/explants. 
 
Key words: Solanum tuberosum L., seed tuber, sprouting, micropropagation, microtubers, explants, 
regeneration, random amplification of polymorphic DNA (RAPD). 

 
 
INTRODUCTION 
 
Potato is one of the world's most important non-cereal 
food crops next to rice, wheat and corn in terms of total 
food production (Ross, 1986; Park et al., 1995). The 
tuber, the most important part of the plant, is an excellent 
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source of carbohydrates, free essential amino acids 
particularly lycine, good quality protein, minerals and 
vitamins (FAO, 1984; Bajaj, 1987). 

In vitro propagation of the potato by serial culture of 
axillary shoots (a leaf and its associated axillary bud) in 
separated nodes (Goodwin et al., 1980; Hussey and 
Stacey, 1981, 1984) is now becoming established as an 
effective means of rapidly multiplying new or existing 
cultivars in disease-free conditions. 

Regeneration from cultured explants of potato is 
simpler than from protoplast and is applicable to a range 
of commercially grown cultivars. Plant  regeneration  from 



 
 
 
 
explant cultures is quicker and easier than protoplast 
culture (Wheeler et al., 1985). Potato have been shown 
to be easily regenerated both directly from organ cultures 
and indirectly via a callus phase under appropriate 
conditions, but their responses to published regeneration 
regimes have shown cultivar specificity (Wheeler et al., 
1985; Hoekema et al., 1989). Although, many thousands 
of potato varieties are available around the world at the 
present time, cv. Desiree is considered to have high 
frequency regeneration on the greatest range of media 
than other cultivars tested (Wheeler et al., 1985; Yee et 
al., 2001). 

In vitro production of microtubers by serial culture of 
individual nodes with axillary buds involves very complex 
developmental processes that include physiological, 
biochemical and structural changes being routinely used 
for disease-free seed production in potato (Vreugdenhil 
and Struik, 1989; Zaki, 1997; Gopal et al., 1998; Zhang et 
al., 2005a). Microtuber formation was localized at the 
stem base, in the leaf axil or at the place of stem 
branching. This process was more frequent in the 
cultures with a long subculture interval (3 to 4 months) 
and was genotypically specific (Novak and Zadina, 1987). 
The developmental steps necessary for the formation of 
tubers on potato plant were described by Vreugdenhil 
and Struik (1989); where axillary buds of the node form 
stolons with diageotropic shoot growth and reduced leaf 
growth. 

It may be mentioned that environmental features 
implicated in microtuber induction are light and 
temperature, while medium components implicated in 
induction include sucrose, nitrogen, silver nitrate, growth 
regulators and natural products. Many substances have 
also been investigated including abscisic acid and the 
anti-gibberellin compounds or chemical growth retardants 
(alar, ancymidol, 2-chloroethyl trimethyl-ammonium 
chloride, coumarin, fluridone) or thidiazuron or antioxidant 
treatments (Hussey and Stacey, 1984; Tovar et al., 1985; 
Perl et al., 1991; Vreugdenhil et al., 1994; Kefi et al., 
2000; Galal et al., 2002). Tuberization in potato was 
controlled by tuberonic acid and its glucosides which 
have a close relation with jasmonic acid in structure 
(Koda and Okazawa, 1988; Koda et al., 1988; Yoshihara 
et al., 1989). In vitro microtuberization provided an 
effective experimental model for physiological and 
metabolic mechanisms due to the similar developmental 
and structural features between tubers grown in vivo and 
in vitro. There is very few information about the screening 
of potential potato genotypes for salt tolerance as well as 
the effect of salinity on microtuber development, 
physiological changes and quality characteristics 
(Veramendi et al., 1999; Silva et al., 2001; Zhang et al., 
2005b, 2006). 

The purpose of this work was to compare a range of 
media and explants to select highly efficient reliable and 
reproducible regeneration system to maximize the 
production  of  regenerants   for   transformation   of   new 
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genes to potato plant. 
 
 
MATERIALS AND METHODS 
 
Plant material 
 

Virus–free seed tubers of potato (Solanum tuberosum cv. Desirée) 
were kindly provided from the Central Administration for Seed 
Certification, Agricultural Research Centre, Ministry of Agriculture 
and Land Reclamation, Giza, Egypt. The tubers were used as initial 
plant material. 
 
 

Cultivation of seed-tuber 
 

Tubers were brushed dry to remove mud, mechanical impurities 
and microorganisms. They were cleaned with water and soap for 30 
min, washed thoroughly (5X) with running tap water for 15 min, then 
wrapped in dark paper bags and stored in a growth chamber at 18 ± 
2°C (Zhang et al., 2005a, b) and 70% relative humidity. Rapid 
development of etiolated strong sprouts was encouraged by 

transfering the tuber every week from dark to indirect light (James 
et al., 1981; Merja and Marko, 1988). Under these conditions, the 
tuber sprouted after four weeks. The number of active eyes and the 
number of sprouts per eye were recorded after 30 days. 
 
 

Sprouts culture 
 

Sprouts of about 4 to 8 cm length, were cut carefully from the 
mother tubers and surface sterilized by 70% Clorox

®
 (5.25% w/v 

sodium hypochlorite) for 20 min. Single node cuttings (with axillary 
bud) of the sterilized sprouts were implanted in 150 x 25 mm glass 
culture tubes (one node/tube) on multiplication medium, which 
consists of MS medium (Murashige and Skoog, 1962) containing 
vitamins, supplemented with additional B5 vitamins (Gamborg et al., 
1968), 3% sucrose, 100 ml/L myo-inositol and 0.7% agar. The pH 
of the medium was adjusted to 5.8 before autoclaving. After 
autoclaving, the medium was supplemented with 0.5 ml/L silver 

thiosulfate (STS) (Perl et al., 1988). All cultures were maintained in 
a temperature-controlled growth room at 18 ± 2°C with 16 h 
photoperiod and light intensity of 25 μmol/m²/s using white 
fluorescent lamps. After 4 weeks, the buds developed into plantlet 
having ~7 nodes. They were used as a source of nodal cuttings for 
micropropagation. 
 

 
Micropropagation 
 

Single node cuttings (with axillary bud and leaf), about 10 to 15 mm 
in length, of in vitro plantlets were routinely subcultured on 250 ml 
glass jars; each with 20 ml multiplication medium every 4 weeks. 
The pH of the medium was adjusted to 5.7 before autoclaving. The 
cultures were maintained in a temperature-controlled growth room 
at 18 ± 2°C with 16 h photoperiod and light intensity of 25 μmol/m²/s 
using white fluorescent lamps. The process was continued until 

complete plantlets were obtained in sufficient numbers (plantlets 
stock) and they were used as a source of different explants 
(internodes and leaves) for the regeneration experiment. The 
morphologically different plantlets (somaclones) were not used for 
subculturing. 
 
 
Microtuberization  
 

Single node cuttings (with axillary bud and leaf), about 10 to 15 mm 
in length, of in vitro micropropagated plantlets were cultured on 250
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Table 1. The additives on MS medium with vitamins for shoot regeneration. 
 

Chemical M1 M2 M3 M4 M5 M6 

Vitamins (ml/L)       

Glycine ― ― 2.0 ― ― ― 

Folic acid ― ― 0.5 ― ― ― 

D-Biotin ― ― 0.05 ― ― ― 

       

Growth regulators (ml/L)       

Indol-3- acetic acid (IAA) 1.0 0.4 ― 2.0 ― ― 

1-Naphthalene acetic acid (NAA) ― ― 0.03 ― 0.2 0.186 

Gibberellic acid (GA3) 10 0.4 0.5 1.0 0.02 5.0 / 5.0* 

N6-Benzyladenine (BA) 1.0 ― 3.0 3.0 1.0* 2.25/2.25* 

Zeatin (ZN) ― ― ― ― 2.0/1.0* ― 

Kinetin (KN) ― 0.8 ― ― ― ― 

       

Supplements (g/L)       

Casein hydrolysate ― 1.0 1.0 ― ― ― 

Sucrose 50.0 50.0 25.0 30.0 30.0 30.0 

Agar 7.0 7.0 7.0 7.0 7.0 7.0 
 

*The hormones are added to the successive medium. 

 
 
 
ml glass jars; each with 20 ml fresh liquid medium using the method 

of Islam et al. (1999). This medium consists of liquid MS salts with 
vitamins, 80 g/L sucrose, 100 ml/L myo-inositol and 5 ml/L benzyl 
adenine (BA). The pH was adjusted to 5.7 before autoclaving. Five 
nodal cuttings were cultured in each jar (10 replicates each). The 
cultures were maintained in a temperature-controlled growth room 
at 20 ± 2°C and complete darkness. The cultures were examined 
weekly and then harvested after one month. The uniform 
microtubers were selected and used to form a stock, which were 
used as source of tuber discs for the regeneration experiment. 
 
 

Regeneration 
 

Tuber discs (8 to 10 mm diameter, 2 to 3 mm thickness), internodes 
without axillary buds (~8 to 10 mm) and leaf explants with central 
midrib (10 mm

2
) were cultured in sterilized Petri-dishes (9 cm 

diameter) containing 6 different regeneration media to regenerate 
shoots. The media were developed by Tavazza et al. (1988) (M1), 

Alphonse et al. (1998) (M2), Jarret et al. (1980) (M3) and Yee et al. 
(2001) (M4) (as one step-procedure) as well as Moravčiková et al. 
(2003) (M5) and Wheeler et al. (1985) (M6) (as two-step procedure) 
(Table 1). The pH was adjusted to 5.7 before autoclaving. 

Thirty explants (for internodes and leaves) and 18 explants (for 
tuber discs) were cultured. No special care was taken to separate 
microtuber pith from cortex and perimedullary portions due to the 
small size of the microtubers, so all the tuber discs contained both 

tissues. Petri-dishes were sealed with parafilm and incubated at 22 
± 2°C for one week in darkness followed by 16 h photoperiod under 
light intensity of 25 μmol/m²/s using white fluorescent lamps for the 
remaining of incubation time. The Petri-dishes were examined after 
7, 20, 40 and 60 days. The following indices were used for the 
organ formations according to Kikuta and Okazawa (1984): 
 
Root formation index = (no. root formed × no. explant with 
roots)/(no. explant cultured)

2
 

 
Shoot-buds formation index = (no. shoot-buds formed × no. explant 
with shoot-buds)/(no. explants cultured)

2 

Random amplification of polymorphic DNA (RAPD) analysis 

 
DNA extraction 

 
DNA isolation was performed using cetyl trimethylammonium 
bromide (CTAB) method of Doyle and Doyle (1990). 0.5 g fresh 
tissue was ground in liquid nitrogen, then suspended in 1m l 
preheated CTAB buffer. The suspension was incubated at 65°C for 
60 min. The microfuge tube was inverted several times, then cooled 

to room temperature. The sample was then centrifuged at 1000 rpm 
for 10 min at -4°C and then the supernatant was transferred into a 
clean microfuge tube containing 0.5 ml chloroform:isoamyl (24:1). 
The sample was mixed by inverting gently the tube several times, 
and then centrifuged at 14000 rpm for 15 min at -4°C. The 
supernatant was transferred to a new tube and ice cold isopropanol 
(1000 µl) was added to precipitate the DNA. The tube was 
incubated at 20°C overnight, centrifugation was then carried out at 
14000 rpm for 20 min at -4°C. The supernatant was discard and the 

pellet was washed carefully twice with 70% ethanol. The tube was 
allowed to air dry. 100 µl of sterile deionized distilled water was 
added to resuspend the DNA and then stored at 4°C. 
 
 
DNA amplification and agarose gel electrophoresis  

 
RAPD were performed as described by Williams et al. (1990) with 

minor modifications. Polymerase chain reaction (PCR) was 
performed in 25 μl reaction mixture each containing 0.5 U (0.25 μl) 
Taq DNA polymerase, 0.2 mM (2.5 μl) dNTPs, 5 μl (10X) reaction 
buffer, 20.4 ng (3 μl) genomic DNA and 5 pmole (3 μl) for each 
primer, which were completed with 9.25 μl sterile distilled water. 
The selected random primers used for RAPD as illustrated in Table 
2. 

The DNA amplification was performed using Biometra Uno 
thermal cycler programmed as follows: one cycle at 95°C for 3 min, 

44 cycles at 92°C for 2 min, 37°C for 1 min and 72°C for 2 min and 
then one cycle at 72°C for 10 min for the last extension. The 
reaction  was  finally  incubated  at   4°C.   The   PCR   amplification 



 
 
 
 

Table 2. Selected random primers used in RAPD reaction. 
 

Primer Sequence (5'→3') TM (°C) 

B-01 GTTTCGCTCC 32 

B-02 TGATCCCTGG 32 

A-04 AATCGGGCTG 32 

Z-01 TCTGTGCCAC 32 

Z-04 AGGCTGTGCT 32 
 

 
 

 
 

Figure 1. 4-week-old propagated plantlet from a single node 

cuttings of the sterilized sprouts [A] and the first in vitro 
plantlets (four-weeks old) [B]. 

 
 

 

products were separated by electrophoresis on 2% agarose gel in 
(1X) TAE buffer. 

 
 

RESULTS 
 

The seed tubers had six active eyes, which develop 
rapidly about two etiolated sprouts/eye when wrapped in 
dark paper bags and stored in a growth chamber at 18 ± 
2°C with 70% relative humidity. After 4 weeks, sprouts of 
about 4-8 cm length were cut carefully from the mother 
seed tubers and surface sterilized by 70% Clorox

®
 for 20 

min. Single node cuttings were used as the main source 
of explants for the first in vitro plantlets (Figure 1A). The 
produced in vitro plantlets (7 to 8 cm in length) were used 
as a source of nodal cuttings for micropropagation 
(Figure 1B). These plantlets consisted of ~7 nodes, 
branched roots and trifoliate leaves as seen in Figure 2. 
All the morphologically variants were excluded from 
micropropagation. 
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The data presented in Table 3 and Figure 3 showed 
that the initiation of microtubers was asynchronous on 
etiolated shoots raised from the explants. Microtubers 
generally originate as aerial structures on the etiolated 
shoots, occasionally some microtubers were formed on 
emerged shoots in the media. Microtubers were initiated 
at the first 10 days. Microtubers were round-elliptical with 
pale yellow to reddish-brown in colour. The etiolated 
shoots induced about 1.32 average numbers of 
microtuber/explants with diameter ~3 to 10 mm at 
harvesting time (Figure 3). 

Generally, on all the regenerated media, during the first 
week of incubation, tuber discs enlarged and the tuber 
skin ruptured. Calli initiated at the lower side of the discs 
adjacent to medium, vary in biomass, color and texture 
(Figure 4). The obtained results showed that the Jarret et 
al. (1980) medium gave the best results; few shoots per 
explant were observed after 20 days, which continue to 
grow forming multiple shoots at the end of the 60 days of 
cultivation. The shoots generated from the perimedullary 
portion at the lower side of the discs. All the regenerated 
shoots consisted of few nodes and green leaves. No 
roots were observed from the discs along the cultivation 
time (Table 4 and Figure 5). It may also be mentioned 
that Jarret et al. (1980) medium took less time to initiate 
shoots from tuber discs compared with other tested 
media. No shoots or roots were proliferated on medium of 
Wheeler et al. (1985) but only large mass of green callus 
were formed during the cultivation time. Other media 
Tavazza et al. (1988), Alphonse et al. (1998), Yee et al. 
(2001) and Moravčiková et al. (2003) showed the 
formation of few shoot per explant, which continued to 
elongate until the 60 days of cultivation. Only the shoots 
produced on Yee et al. (2001) and Moravčiková et al. 
(2003) media carried green leaves but those produced on 
Tavazza et al. (1988) and Alphonse et al. (1998) were 
bared (Table 4 and Figure 5). 

Enlargement of internodes was initiated during the first 
week and slight proliferation of calli was initiated at the 
wounded edges of internodes on all the regeneration 
media but with variations in color and biomass (Figure 4). 
Swellings or protuberances calli continue to grow over 
the entire explants especially at the lower side adjacent 
to medium. On the Tavazza et al. (1988) and Alphonse et 
al. (1998) media, only few white and green calli were 
formed on the wounded sides as well as along the 
explants. No shoots or roots were observed on both 
media, while on Wheeler et al. (1985) medium, no shoots 
were produced but only few roots covered with dense 
white hairs were observed after the 20

th
 day. Yellowish-

white callus was grown and spread until the 60
th
 day of 

cultivation. Shoots were regenerated on Jarret et al. 
(1980), Yee et al. (2001) and Moravčiková et al. (2003) 
media but with different regeneration capacities. Shoot 
primordium arose from the green calli at the side(s) of the 
explants. The Jarret et al. (1980) medium shows 
superiority by producing more shoot primordia per
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Figure 2. Two to four weeks old plantlets with trifoliate leaves obtained from nodal cutting on micropropagation medium. 

 
 
 

Table 3. Microtuberization of potato cv. Desirée on Islam et al. (1999) medium. 

 

Parameter Character 

Time of initiation after cultivation 10 days 

Average number of microtubers/explants 1.32 ± 0.4 

Average number of microtubers/jar 6.6 ± 2.1 

% tuberization/Jar  94% 

Diameter of tubers (Ө mm) 3 - 10 

Average weight of microtubers 0.2 - 0.5 g 

Skin color of tubers  Pale yellow, Reddish-brown 

Shape of tuber Round to elliptical 

Other observation Asynchronous 

 
 
 

 
 

Figure 3. Microtubers harvested from Islam et al. (1999) medium. 

 
 
 
explant than the two other media (Table 5 and Figure 6). 

During the first week on the different media, leaf 
explants were enlarged and upwardly rolled. Proliferation 
of calli (Figure 4), on all the regeneration media was 
performed at wounded edges of the explants during the 

first 20 days but with variations in color and biomass. 
Calli continue to grow till the 60 day of cultivation (Figure 
7). Leaf explants cultured on Yee et al. (2001), produced 
both green calli and shoot primordia from those calli at 
day 20. By time the calli continue to grow especially at
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Figure 4. Tuber disc (left), internodes (middle) and leaf (right) explant after 7 days on 

regeneration media. 
 
 
 

Table 4. Regeneration from tuber discs on six different media for 20, 40 and 60 days of cultivation.  
 

Media Day 
Total no. 
shoots 

Average no. of 
explant 

Average no. shoots/shooted 
explant 

Index of shoot-bud 
formation 

M1 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 5.0 ± 0.0 0.3 ± 0.6 1.3 ± 0.5 0.02 ± 0.0 

60 5.0 ± 0.0 0.3 ± 0.6 1.3 ± 0.5 0.02 ± 0.0 
      

M2 

20 6.0 ± 0.0 0.4 ± 0.6 1.2 ± 0.5 0.02 ± 0.0 

40 6.0 ± 0.0 0.4 ± 0.61 1.20 ± 0.5 0.02 ± 0.0 

60 6.0 ± 0.0 0.4 ± 0.6 1.20 ± 0.5 0.02 ± 0.0 
      

M3 

20 9.0 ± 0.0 0.5 ± 0.6 1.1 ± 0.4 0.1 ± 0.0 

40 22.0 ± 0.0 1.1 ± 1.2 2.2 ± 0.7 0.2 ± 0.0 

60 49.0 ± 0.0 2.7 ± 3.4 6.1 ± 1.9 0.30 ± 0.0 
      

M4 

20 6.0 ± 0.0 0.3 ± 0.6 1.2 ± 0.5 0.02 ± 0.0 

40 6.0 ± 0.0 0.3 ± 0.6 1.2 ± 0.5 0.02 ± 0.0 

60 6.0 ± 0.0 0.3 ± 0.6 1.20 ± 0.5 0.02 ± 0.0 
      

M5 

20 4.0 ± 0.0 0.2 ± 0.4 1.0 ± 0.0 0.01 ± 0.0 

40 4.0 ± 0.0 0.2 ± 0.4 1.0 ± 0.0 0.01 ± 0.0 

60 4.0 ± 0.0 0.2 ± 0.4 1.0 ± 0.0 0.01 ± 0.0 
      

M6 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
 

M1, Tavazza et al. (1988); M2, Alphonse et al. (1998); M3, Jarret et al. (1980); M4, Yee et al. (2001); M5, Moravčiková et al. 
(2003); M6, Wheeler et al. (1985). Data are the means of 18 tuber discs explants ±SD. 

 
 
 

 
 

Figure 5. The morphogenic responses of tuber discs when cultured on six different regeneration media.  M1, 

Tavazza et al. (1988); M2, Alphonse et al. (1998); M3, Jarret et al. (1980); M4, Yee et al. (2001); M5, Moravčiková 
et al. (2003); M6, Wheeler et al. (1985). 
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Table 5. Regeneration from internodes explants on six different media for 20, 40 and 60 days of cultivation.  
 

Media Days 
Total no. 
shoots 

Average no. 
explant with 

shoots 

Average no. 
shoots/shooted 

explant 

Index of shoot-
buds 

formation 

Total no. 
roots 

Average no. 
explant with 

roots 

Average no. 
roots/rooted 

explant 

Index of 
roots 

formation 

M1 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
          

M2 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
          

M3 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 18.0 ± 0.0 0.6 ± 1.0 1.8 ± 0.9 0.1 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 18.0 ± 0.0 0.6 ± 1.0 1.8 ± 0.9 0.1 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
          

M4 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 10.0 ± 0.0 0.4 ± 0.6 1.3 ± 0.5 0.02 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 10.0 ± 0.0 0.4 ± 0.6 1.3 ± 0.5 0.02 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
          

M5 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 7. 0 ± 0.0 0.2 ± 0.4 1.0 ± 0.0 0.01 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 7.0 ± 0.0 0.2 ± 0.4 1.0 ± 0.0 0.01 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
          

M6 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 24.0 ± 0.0 1.1 ± 1.1 1.6 ± 0.9 0.1 ± 0.02 

60 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 24.0 ± 0.0 1.1 ± 1.1 1.6 ± 0.9 0.1 ± 0.02 
 

M1, Tavazza et al. (1988); M2, Alphonse et al. (1998); M3, Jarret et al. (1980); M4, Yee et al. (2001); M5, Moravčiková et al. (2003); M6, 
Wheeler et al. (1985). Data are the means of 18 tuber discs explants ±SD. 

 

 
 

 
 
Figure 6. The morphogenic responses of internode explants when cultured on six different regeneration media. M1, Tavazza et 

al. (1988); M2, Alphonse et al. (1998); M3, Jarret et al. (1980); M4, Yee et al. (2001); M5, Moravčiková et al. (2003); M6, 
Wheeler et al. (1985). 
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Figure 7. The morphogenic responses of leaf explants when cultured on six different regeneration media. M1, Tavazza et al. 

(1988); M2, Alphonse et al. (1998); M3, Jarret et al. (1980); M4, Yee et al. (2001); M5, Moravčiková et al. (2003); M6, Wheeler 
et al. (1985). 

 

 
 

the lower side of the rolled leaf faced to the medium 
forming numerous swellings or protuberances calli. 
Multiple shoot primordia arose from those calli-structures, 
which elongate by time and carry numerous leaves at the 
end of the cultivation time. It may also be mentioned that 
medium of Yee et al. (2001) took less time to initi shoots 
from explants compared to the other tested media. On 
the other hand, on the medium of Moravčiková et al. 
(2003) and that of Wheeler et al. (1985), few shoots per 
explant arose from calli during the 40

th
 to 60

th
 days of 

cultivation; the shoots produced from the later carry 
green leaves as recorded (Table 6 and Figure 7). 

Based on the previously mentioned results, multiple 
shoot regeneration from tuber discs and internodes were 
better on Jarret et al. (1980) medium but Yee et al. 
(2001) medium was better in case of leaf explants; 
internodes explants cultured on the various media did not 
induced the profuse shoot formation seen from tuber 
discs and leaf explants. It could be concluded from 
(Tables 4 to 6 and Figures 4 to 7) that among all the 
previous regeneration media (M1→M6), the M3 medium 
(Jarret et al. (1980) medium) was found to be the best 
medium for multiple shoot regeneration from tuber discs 
(6.13 average number of shoots) and M4 medium [Yee et 
al. (2001) medium] was found to be the best medium for 
multiple shoot regeneration from leaf explants (2.6 
average number of shoots) so, both media were used in 
transformation experiments. 

Regenerated plantlets produced from both tuber discs 
and leaf explants exhibited RAPD analysis using 5 
selected primers to detect somaclonal variation (Figures 
8 to 12). All the morphological variants were excluded. 

Regenerated plantlet derived from leaf-explants (lane 3) 
was true-to-type to the main in vitro plantlet (lane 6), so 
could be used as a source of explants for transformation 
experiments. The other regenerated plantlets derived 
from leaf explants (lanes 1, 2, 4, 5) and those derived 
from tuber discs show the presence and/or absence of 
polymorphic bands. 

Results showed that the initiation of microtubers was 
asynchronous on etiolated shoots raised from the 
explants. Microtubers were initiated on the etiolated 
shoots of the regenerants at the first 10 days. 
Microtubers were round-elliptical with pale yellow colour. 
The etiolated shoots induced about 2.6 and 2.2 average 
numbers of microtuber/explants (Table 7 and Figure 13). 
 
 
DISCUSSION AND CONCLUSION 
 
Greater demand for plants especially for the purpose of 
food and medicine is one of the causes of their rapid 
depletion from primary habitats (Boro et al., 1998). 
Micropropagation has been proved to be very efficient 
technique to speed-up the production of high quality 
pathogen-free plantlets, in terms of genetic and 
physiological uniformities, with high photosynthetic 
potential (Sathish et al., 2011; Supaibulwattana et al., 
2011). 

This work focus on the in vitro propagation of potato cv. 
Desireé as a source of explants (nodal cuttings, leaves, 
internodes and tubers) for in vitro experiments. Well- 
developed propagated shoots in vitro were initiated from 
single-nodal cuttings, of in  vitro  plantlets  on  MS  media 
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Table 6. Regeneration from leaf explants on six different media for 20, 40 and 60 days of cultivation.  
 

Media Day 
Total no. 

shoot 
Average no. 

explant 
Average no. shoots/shooted 

explant 
Index of shoot-buds 

formation 

M1 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

      

M2 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

      

M3 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

      

M4 

20 10.0 ± 0.0 0.3 ± 0.7 1.4 ± 0.5 0.02 ± 0.001 

40 20.0 ± 0.0 1.2 ± 1.3 2.4 ± 0.5 0.1 ± 0.1 

60 36.0 ± 0.0 1.2 ± 1.5 2.6 ± 1.2 0.1 ± 0.01 

      

M5 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 8.0 ± 0.0 0.2 ± 0.6 1.5 ± 0.6 0.01 ± 0.003 

      

M6 

20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

40 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

60 7.0 ± 0.0 0.2 ± 0.6 1.8 ± 0.5 0.01 ± 0.002 
 

M1, Tavazza et al. (1988); M2, Alphonse et al. (1998); M3, Jarret et al. (1980); M4, Yee et al. (2001); M5, Moravčiková et al. 
(2003); M6, Wheeler et al. (1985). Data are the means of 18 tuber discs explants ±SD. 

 
 
 

 
 

Figure 8. RAPD profiles of in vitro plantlet and regenerated plantlets using preselected random primer (Z4). 

M1:3000 bp DNA ladder; lane 6 is the in vitro plantlet (control), the lanes 1 to 5 were the regenerated plantlets 
from leaf explants and the lanes 7 to 14 were the regenerated plantlets from tuber discs. 
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Figure 9. RAPD profiles of in vitro plantlet and regenerated plantlets using preselected random primer (B2). M1:3000 bp DNA ladder; 

lane 6 is the in vitro plantlet (control), the lanes 1 to 5 were the regenerated plantlets from leaf explants and the lanes 7 to 14 were the 
regenerated plantlets from tuber discs. 

 
 
 

 
 
Figure 10. RAPD profiles of in vitro plantlet and regenerated plantlets using preselected random primer (Z1). M1:3000 bp DNA ladder; 

lane 6 is the in vitro plantlet (control), the lanes 1 to 5 were the regenerated plantlets from leaf explants and the lanes 7 to 14 were the 
regenerated plantlets from tuber discs. 
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Figure 11. RAPD profiles of in vitro plantlet and regenerated plantlets using preselected random primer (A4). M1:3000 bp 

DNA ladder; lane 6 is the in vitro plantlet (control), the lanes 1 to 5 were the regenerated plantlets from leaf explants and 
the lanes 7 to 14 were the regenerated plantlets from tuber discs. 

 
 

 

 
 
Figure 12. RAPD profiles of in vitro plantlet and regenerated plantlets using preselected random primer (B1). M1:3000 

bp DNA ladder; lane 6 is the in vitro plantlet (control), the lanes 1 to 5 were the regenerated plantlets from leaf explants 
and the lanes 7 to 14 were the regenerated plantlets from tuber discs. 

 

 
 

containing vitamins, supplemented with 3% sucrose, 100 
ml/L myo-inositol, 0.5 ml/L silver thiosulfate (STS). Roots 
were developed at the base of the explant on the same 
medium. The use of single-node cuttings excised from 
tissue cultured plantlets is more common and avoids the 
influence of tuber tissue from which sprout sections 

originate (Hussey and Stacey, 1981; Levy et al., 1993; 
Seabrook et al., 1993; Leclerc et al., 1994; Mohamed and 
Alsadon, 2010). It was also used for long-term storage of 
plant materials in isolation as an important part of 
breeding as well as germplasm conservation (Novak and 
Zadina,  1987).   Following   surface   sterilization,   nodal

plantlets from leaf explants and the lanes 7 -14 were the regenerated plantlets from tuber discs.  
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Figure 12. RAPD profiles of in vitro plantlet and regenerated plantlets using preselected random 

primer (B1). M1:3000 bp DNA ladder; lane 6 is the in vitro plantlet (control), the lanes 1 -5 were 

the regenerated 
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Table 7. Microtuberization of true-to-type regenerants derived from tuber discs and leaf explants on Islam et al. (1999) medium. 
 

Parameter Regenerant from tuber disc Regenerant from leaf explant 

Average number of microtubers (per explant) 2.6 ± 0.6 2.2 ± 0.5 

Average number of microtubers (per jar) 13.7 ± 1.5 11.7 ± 1.5 

Skin color of tubers  Pale yellow Pale yellow 

Shape of tuber Round to elliptical Round to elliptical 

Other observation Asynchronous Asynchronous 
 

 
 

 
 
Figure 13. Microtubers from regenerated shoots derived from tuber discs (A) and leaf explants 

(B) harvested from Islam et al. (1999) medium. 
 

 
 

cuttings are grown intensively on standard agar or in 
liquid propagation medium, in the absence of growth 
regulators, or with low levels of cytokinin then the 
cultured shoots rapidly develop strong branched roots at 
the plantlet base (Hussey and Stacey, 1981; Novak and 
Zadina, 1987). 

Murashige and Skoog medium (MS) is the mostly used 
medium for rapid growth of cell, tissues and organ of 
plants. Macro- and micro-nutrient constituents employed 
in tissue culture media may exercise a profound effect on 
metabolism (Narayanaswamy, 1994). Myo-inositol is 
routinely added to the culture medium in small amounts 
(100 ml/L). It plays a role in many biosynthetic pathways, 
and improves cell growth (Narayanaswamy, 1994). The 
medium .requires to be supplemented by vitamins of the 
B-complex [Thiamine HCl (B1), Nicotinic acid (B3), 
Pyridoxin-HCl (B6)] to enhance healthy growth of tissues 
in culture. Vitamins, either individually or as a mixture, 
play a catalytic role in cell metabolism apart from being a 
factor in accessory food supply, but their requirements 
vary from species to species (Narayanaswamy, 1994). 

Sugars are added to the growing media as a source of 
carbon (Murashige and Skoog, 1962; Jones, 1988). 
Potato tissues in vitro are generally not autonomous for 

photosynthesis and frequently depend on a source of 
organic carbon such as sucrose (George, 1986). Sucrose 
levels 2 to 3% were commonly used for micropropagation 
(Forti et al., 1991). 

Many reporters routinely use silver thiosulphate (STS) 
during plant growth and maintenance of in vitro potato 
plants to promotes growth and provides significantly 
larger leaves than would otherwise be the case (Perl et 
al., 1988; Chang and Chan, 1991; Hulme et al., 1992), 
which might imply either that these cultivars produce a lot 
of ethylene or that they are particularly susceptible to it 
(Hulme et al., 1992). 

Temperatures of 20 to 25°C promote micropropagated 
plantlet growth (Akita and Takayama, 1994a, b; Leclerc 
et al., 1994). Photoperiod, irradiance, and light spectral 
quality can be used to control the growth of potato 
plantlets in vitro, thereby in some instances, avoiding the 
use of growth regulators, which could possibly cause off-
types (Seabrook et al., 1993; Wilson et al., 1993; 
Seabrook and Douglass, 1998). Spectral quality of light is 
the relative intensity and quantity of the different 
wavelengths emitted by a light source and perceived by 
photoreceptors within the plant. Cool-white or Grolux 
fluorescent lamps are commonly  used  for  potato  tissue  
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culture (Schilde-Rentschler and Schmiediche, 1984; 
Lindsay, 1987; Tao et al., 1987). 16-h light period were 
recommended for optimal growth and the maintenance of 
vegetative growth of potato plantlets in vitro (Dodds et al., 
1992; Jao and Fang, 2004a, b). Seabrook (2005) 
reported that in a medium lacking growth regulator, roots 
form readily on potato plantlets in vitro which was similar 
to our results. 

In this work, well-defined tuberization were performed 
in vitro by culturing nodal cuttings from the stock of in 
vitro plantlets, in vitro selected and transformed lines, 
when cultured on liquid MS medium (pH 5.8) 
supplemented with 5 ml/L BA and 8% sucrose. The 
culture was incubated at 20 ± 2°C for 4 weeks in 
complete darkness. 

In vitro tuberization in potato is influenced by many 
factors including carbohydrate supply, light, photoperiod, 
temperature, gibberellins (GA), nutrition, genotype and 
but hormone played a dominant role in this process 
(Arteca, 1996; Momoh et al., 2002; Zhang et al., 2005a, 
b; Banerjee et al., 2006; Agud et al., 2010; Altindal and 
Karadogan, 2010; Hoque, 2010). Much attention has so 
far been focused on the use of cytokinins such as BA 
(Rosell et al., 1987; Lentini and Earle, 1991). 

Wan et al. (1994) induce tuberization in hydroponically 
cultured potato plants by lowering the pH from 5.8 to 5.2 
when the tuber started to develop, and that the MS 
medium pH drifts to acidity with time to 3.5 to 4.0, the 
possibility of pH itself being directly related to tuberization 
was considered. 

As a general rule, photoperiod is a major 
morphogenetic control of in vitro tuberization in potato 
(Seabrook et al., 1993; Coleman and Coleman, 2000). It 
should be mentioned that microtuberization efficiency 
increased when micropropagated source plants were 
grown under long day (16/8 h day/night) followed by 
continuous darkness (Seabrook et al., 1993). This 
encourage Jackson (1999) to suggest that it is actually 
the length of the dark period rather than the light period 
that is important for tuberization and so, potato plantlets 
in vitro can be used to produce microtubers by promoting 
effect of complete darkness either as continuous (Nowak 
and Asiedu, 1992; Dobranszki and Mandis, 1993) or 
periodical regime (Garner and Blake, 1989; Lentini and 
Earle, 1991; Seabrook et al., 1993; Struik and Wiersema, 
1999). 

In the present study, the produced microtubers were 
round-elliptical with pale yellow to reddish-brown in 
colour. In this context, it may be mentioned that the 
microtubers induced in continuous darkness are white or 
yellow or even brown, whereas those induced under light-
dark photoperiod are green (Gopal and Minocha, 1997). 
Temperature is generally lowered (15 to 20°C) for 
microtuber induction and affected both microtuber 
number and fresh weights (Leclerc et al., 1994; Akita and 
Takayama, 1994a, b). 

Carbohydrates,    especially    sucrose,    appeared    to 

 
 
 
 
influence tuberization, not only as substrates for the 
biosynthesis of starch, but also as factors controlling 
morphogenesis (Hussey and Stacey, 1984; Vreugdenhil 
et al., 1998; Xu et al., 1998). The major flux in potato 
tuber carbon metabolism was the conversion of sucrose 
through hexose phosphates to starch (Fernie et al., 
2002). The use of a higher concentration of sucrose is 
recommended as it promotes microtuberization (Hussey 
and Stacey, 1984; Garner and Blake, 1989; Vreugdenhil 
and Helder, 1992; Gopal et al., 1998), and thus would 
produce more microtubers of bigger size. In this respect, 
the use of 8% sucrose induced the initiation of tubers, 
gave more and large microtubers, compared to lower 
concentrations (Garner and Blake, 1989; Khuri and 
Moorby, 1996). 

Exogenous cytokinins supplementation, especially BA, 
to the standard MS medium containing high 
concentration of sucrose promote potato tuberization and 
are considered to be tuber-inducing factors (Gopal et al., 
1998; Pelacho et al., 1999; Rodrigues-otubo et al., 1999; 
Teisson and Alvard, 1999). Cytokinin causes stolon 
formation in vitro followed by tuberization (Forsline and 
Langille, 1976; Mauk and Langille, 1978). Starch 
accumulation required for tuber initiation and 
development is strengthened by the finding that 
cytokinins influence starch formation by their inhibitory 
effect on amylase activity (Sanz et al., 1996). 

In this work, six different media from previous studies 
and 3 types of explants (internode, tuber disc and leaf) 
obtained from in vitro plantlets were used for this 
investigation. The explants were incubated at 22 ± 2°C 
for a week in darkness followed by 16 h photoperiod for 
the rest of the incubation time. 

In this context, many investigations have been 
published on the de novo organ formation and 
regeneration of plantlets or shoots from explants of 
different origins (root, hypocotyl, stem and leaf) of 
Solanum tuberosum (Wheeler et al., 1985; Visser et al., 
1989; Hulme et al., 1992; Park et al., 1995; Cearley and 
Bolyard, 1997; Khatun et al., 2003). 

Depending upon the genotype, the origin and type of 
the explant and the culture conditions, it is often 
necessary to alter the composition and /or concentration 
of growth regulators in the culture medium (Kut et al., 
1984). Generally, a low ratio of auxin to cytokinin is 
required for adventitious shoot development. 

In this work, All the regenerated media consisted 
mainly of basal MS medium with addition of 100 mgl

-1
 

myo-inositol, 30 gl
-1

 sucrose, auxin, cytokinins, GA3 and 
0.5 ml/L STS. The explants were incubated at 22 ± 2°C 
for a week in darkness followed by 16 h photoperiod 
under light intensity of 25 μmol/m²/s using white 
fluorescent lamps for the remain incubation time. 

Webb et al. (1983) stated that MS media was suitable 
for 6 cultivars of potato and the shoot formation was 
shown to depend on the hormonal composition of the 
medium employed as well as  genotype  used.  De  Block 



 
 
 
 
(1988) noticed that the callus formation on B5 medium 
was similar to that on MS medium, but calli on MS 
medium regenerated faster and poduced more shoots 
than those on B5 medium. 

The regeneration protocol involving an auxin and 
cytokinin pulse (Hovenkamp-Hermelink et al., 1988) 
combined with the use of silver ions is a superior method 
to those published for a number of potato cultivars. Silver 
thiosulphate (STS) has been showed to increase 
regeneration rates of a number of cultivars (Perl et al., 
1988; Hulme et al., 1992). Other researchers do not 
require the addition of STS either in the regeneration or 
transformation systems (Park et al., 1995). Tuber discs 
regenerated into shoots needed to grow on a medium 
containing different growth regulators in addition to 
casein hydrolyate, which has a sterols and amino acids 
contents (Jarret et al., 1980; Indrayanto et al., 1995). 

The success of organ induction was influenced by 
various factors including the interaction between 
endogenous and externally applied growth regulators 
added to the culture medium (Taylor and Veilleux, 1992). 
The differentiation of culture tissue depends on the ratio 
of auxin to cytokinin in the culture medium whereas low 
auxin: cytokinin ratios stimulate the formation of shoots 
(Akiyoshi et al., 1983). Incorporation of cytokinin affected 
the level of endogenous auxin by inhibiting the oxidation 
of additional IAA, maintaining the optimum level of this 
auxin for shoot morphogenetic response (Antis and 
Northcote, 1973; Manjula and Nair, 2002). 
Benzylaminopurine (BAP), zeatin or kinetin added 
individually to the nutrient medium might stimulate shoot 
formation. In terms of effectiveness in promoting shoot 
initiation, reports were contradictory; showing zeatin to be 
less, equal, or often superior to BA as the cytokinin 
component (Webb et al., 1983; Iapichino et al., 1991; 
Anjum and Ali, 2004a, b), while kinetin, although 
stimulating some shoot development (Padmanabhan et 
al., 1974) is usually the least effective. 

Auxins and cytokinins also mediated the 
morphogenetic effects of light on potato in vitro 
(Sergeeva et al., 1994). Morphogenesis of potato tissue 
cultures can be manipulated by light regimes as 
photoperiod, irradiance, and light spectral quality 
(Seabrook et al., 1993; Wilson et al., 1993; Seabrook and 
Douglass, 1998). 

GA3 activates the cell division cycle by regulating the 
transition from G1 to S phase, and G2 to M phase by the 
expression of several cyclin-dependent protein kinases 
(CDKs), which lead to an increase in mitotic activity in the 
intercalary meristem (Fabian et al., 2000). 

In the present investigation, swellings or 
protuberanches calli (node-like-structure) were produced 
at or near the wound site of all the explants within a week 
after incubating in complete darkness then continue to 
grow over the entire explants especially at the lower side 
adjacent to medium. Initial dark treatment has been found 
to be  beneficial  for  plant  regeneration  of  potato  (Park 
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et al., 1995). 

As previously mentioned in our results, M3 medium 
(Jarret et al., 1980) was found to be the best medium for 
multiple shoot regeneration from tuber discs (6.1 average 
number of shoots) and M4 medium (Yee et al., 2001) 
medium was found to be the best medium for multiple 
shoot regeneration from leaf explants (2.6 average 
number of shoots). This may be due to their nutritional 
and/or their hormonal compositions and ratios. 

In the present study, the shoots or roots generate 
mainly from the callus that appear at the lower side of the 
explants after 20 days of cultivation in case of tuber 
explants and 40 days in case of leaf and internodes 
explants. Localized areas of rapid cell division leads to 
the formation of external parenchymatous tissues 
(meristemoids) on the explants, either from the epidermal 
cells, the sub-epidermal cells (Handro et al., 1972) or the 
epidermal cells only (Bigot, 1971), which gives rise to 
shoot primordials. This process required about 35 days in 
potato tuber explants. The expression of morphogenetic 
competence from tuber explants is dependent on the 
explant source, nutrient medium, and environmental 
growth conditions (Jarret et al., 1980). Regeneration from 
leaf explants of potato cv. Desireé can be divided into 3 
phases; the initiation of callus, the initiation of shoots on 
this callus and shoot development (Wheeler et al., 1985). 
Internodes from the in vitro shoots (like that of sprouts) 
give rise either to roots or to shoots, but never both. The 
internodes of the in vitro shoots show a low percentage of 
regenerated shoots. The percentage of regenerated 
roots, on the contrary, is quite high (Quraishi et al., 1987). 
It has also been observed that best results concerning 
rhizogenesis are shown by internodes placed in inverse 
polarity, and on the medium in which the concentration of 
BA is the lowest (Quraishi et al., 1987). A relatively low 
concentration of auxin in the medium is required for root 
formation on the culture. Indole-3-acetic acid (IAA) is 
markedly superior to any other auxin in root forming 
activity. 1-Naphthaleneacetic acid (NAA) is somewhat 
less effective than IAA, and 2,4-dichlorophenoxyacetic 
acid (2,4-D) shows no stimulation on root formation 
(Okazawa et al., 1967). 

In this study, it was noticed that the single-step 
protocols of M3 and M4 media yielded the highest 
regeneration frequency over the other single-step 
protocols of M1 and M2 media as well as the two-step 
protocols of M5 and M6 media. In addition, our results 
revealed that multiple shoot regeneration from tuber discs 
were better on M3 medium but M4 medium was better in 
case of leaf explants. Internodes explants cultured on the 
various media did not induced the profuse shoot 
formation seen from tuber discs and leaf explants, but 
only calli and/or roots were observed. Evidence indicated 
that it is very difficult to generalize the method of inducing 
adventitious shoots and regeneration in vitro because the 
process of organogenesis of potato may vary among 
species, cultivars (clones) and especially the donor tissue  



16402        Afr. J. Biotechnol. 
 
 
 
(Webb et al., 1983; Hulme et al., 1992; Dale and 
Hampson, 1995; Anjum and Ali, 2004a, b). The cultivar 
Desireé was used in the present study since it 
displayed a high capacity for regeneration (Wheeler et 
al., 1985) and for transformation, and so it has been used 
extensively for potato transformation (Dale and 
McPartlan, 1992). Genotypic differences for regeneration 
ability from explant cultures of potato clones have also 
been reported by Wheeler et al. (1985), Cardi et al. 
(1992) and M'Ribu and Veilleux (1990). Due to their 
morphological differences, the explants do not represent 
identical tissues and therefore a direct comparison of 
explants (tuber and stem) may not be appropriate (Anjum 
and Ali, 2004b). The potato tuber can not be treated as a 
homogeneous mass of tissue when cultured in vitro. 
Consideration must be given to the diversity of tissue 
types which exist in potato tuber (Reeve et al., 1970). It 
is, however, important that in potato, various tissues can 
be used as explants for shoot generation directly (Anjum 
and Ali, 2004b). 
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