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Based on the work of Hynne et al. (2001), in an in silico model of glycolysis, Saccharomyces cerevisiae 

is established by introducing an enzyme amount multiple factor (ǡǡǡǡ) into the kinetic equations. The 

model is aimed to predict the metabolic response to the change of enzyme amount. With the help of ǡǡǡǡ, 
the amounts of twelve enzymes were altered by different multiples from their initial values. Then twenty 
metabolite concentrations were monitored and analyzed. The prediction of metabolite levels accord 
with the experimental result and understanding of bioprocess. It also suggested that the metabolic 
response to dropping enzyme amounts was stronger than the increasing concentrations. Besides, two 
different trends of change in the metabolite levels appeared apparently, which are correspond with the 
network structure. Therefore, for regulating the metabolite levels through changing enzyme amount, 
not only biochemical characteristic but also location of enzymes in the network should be considered. 
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INTRODUCTION 
 
In order to enhance the yield and productivity of metabolite 
production, researchers have, over the years, focused on 
enzyme amplification

 
or other modifications of the product 

pathway (Hauf et al., 2000). However, the result of 
genetic operation is not as good as expected if it could 
only identify the targets simply by experience. For 
instance, over expression of some or  all  the  enzymes  
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involved in glycolysis yielded only limited increases in its 
fluxes because of metabolic rigidity and globe  regulation 
of system. Although, the control mechanisms of regulating 
glycolysis  at  the  metabolic  level-such as  products, 
substrates and allosteric effectors-have been extensively 
studied (Druvefors et al., 2005; Elbing et al., 2004; Jurica 
et al., 1998; Kaplan and Kupiec, 2007; Reibstein et al., 
1986; Yoshino and Murakami, 1982), its regulation at the 
protein level is, so far, poorly understood. It is necessary 
to develop a model which could predict directly the 
metabolic response to enzyme amplification or attenuation 
in theory. Accordingly, the selection of object for genetic 
modification would be more rational while the outcome 
would satisfy the research more easily. 

Here we present a novelty kinetic model based on the 
work of Hynne et al. (2001), in which enzyme amount 

multiple factor (ǡ), an enzyme amount parameter, was 
particularly introduced into the kinetic equations to 
formulate an in silico model system which is presented as 
a steady state. It is employed to transmit  the  enzymatic  



 
 
 
 
quantitative properties into a mathematical context capable 
of predicting metabolic response to enzymatic amplifi- 
cation or attenuation. Traditionally, that genetic mani- 
pulation of a metabolic network is considered to be the 
impetus for shifts in network functionality, that is, in 
enzyme levels as well as activity. Thus, this development 
provides a method to show straight-forwardly, how the 
enzyme alternation  affects metabolite levels. In fact, the 
simulation result alleviates the difficulties of in vivo 
metabolome determination which restrict the exploration 
of their biochemical properties and domain metabolic 
process. Otherwise, it is also a useful approach to assess 
the rigidity through investigating metabolic response, 
without the disturbance by low molecular weight effectors 
triggered by enzyme alternation. 
 
 
METHODS 
 
Model establishment 

 
To accomplish the connection between enzymes and metabolites, a 
parameter was introduced into the kinetic equation, which is repre- 

sented by ǡ (Equation 1). Therefore, the value of ǡis the changed 
multiple of enzymes from their original concentrations. The framework 
of metabolites, reactions and rate expressions are obtained from 
the work of F. Hynne’s, as well as the experimental data set. 
 

...),,( kKVfV ⋅= α
                                       

(1)
  

The new kinetic equation after importing the ǡ.  
 
 
Simulation and analysis  
 
The simulation was executed by CellDesigner

TM 
v3.2 (Kitano et al., 

2005) (http://www.celldesigner.org/), SBW (Systems Biology Work- 
bench) (Sauro et al., 2003; http://sbw.kgi.edu/) and SBML ODE 
Solver Library (SOSlib) (Machne et al., 2006; http://www.tbi.univie. 
ac.at/%7Eraim/odeSolver/). The simulation data were analyzed with 
Statistical 6.0. 

 
 
RESULTS  
 
Model establishment 
 

In this work, we first introduced the enzyme parameter (ǡ) 
into the kinetic equations and consequently established 
an in silico glycolysis model of Saccharomyces cerevisiae 
in XML format (Figure 1), based on the work of Hynn et al. 

(2001). Equation 1 shows how the ǡis introduced into the 
kinetic equation. After introducing it, enzyme amounts 

can be changed by regulating ǡ. Here we changed ǡ 
from 0 to 1 and then changed it from 1 to 100, which 
denotes that enzyme amount was separately decreased 
and increased 100 times from initial concentration. The 
model was run until all the metabolites arrived at the 
steady state. All the metabolites concentrations  in  the  
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steady state were summarized and analyzed by statistical 
6.0. 
 
 

Model predictions of metabolic response to different 
enzyme with different concentrations  
 

The simulation result of our model which involved twenty 
metabolites, twenty four reactions, and twelve enzymes, 
including cofactor and energy factor, are shown in Figure 
1 and Table 1. The initial metabolome data and kinetic 
parameter like the maximum velocities of enzymes come 
from the full-scale model established by Hynn et al. 
(2001). Certainly, they presented the initial metabolites 
levels as being in a steady state, as well as lumping 
some reactions together and ignoring some metabolites 
in their model. Using the modeling tool CellDesigner 
developed by Kitano et al. (2005), we successfully built 
up our graphical model and executed the simulation after 
employing all kinds of parameters, experiment data and 
mathematical expressions of kinetics. In order to observe 
the response of metabolite levels to enzyme amounts, we 

set the corresponding ǡvalue of twelve enzymes at eight 
different levels, including 100, 10, 5, 1, 0.5, 0.1, 0.01 and 
0. Accordingly, the increasing or decreasing corres- 
ponding amount of enzyme was realized. 

The qualitative state of twenty species over 10,000 
virtual minutes was simulated by in silico modeling. Ten 
thousand steps were computed during the period being 
simulated, while 10,000 data points. For each metabolite, 
the mean value was computed using data from 2,000 to 
10,000 steps, which is considered the final concentration 
of this metabolite. Thus, eight final concentrations of each 

metabolite in the steady state were produced while the ǡ 
was varied from 0 to 100. At the end, twenty metabolites’ 
concentrations, corresponding to enzyme amount change 
in eight levels, were simulated and illustrated (Figures 1 
and 2), which represented the relationship between meta- 
bolite levels and enzyme amounts.  
 
 

DISCUSSION  
 

Metabolite levels respond to the changes in single enzyme 
amounts differently. Actually, the metabolic response to 
decreasing enzyme amounts was more dramatic than to 
increasing concentrations, which is consistent with 
experimental results found in the literature (Flikweert et 
al., 1999; Pearce et al., 2001; Piper et al., 1986; Schaaff 
et al., 1989).

 
For instance, Flikweert et al. (1999) showed 

that the formation of ethanol and acetate was reduced by 
60 to 70 percent when pyruvate decarboxylase (PDC) 
activity was decreased three to four fold. In fact, similar 
results showed up when PDC was down regulated in the 
present work (Figure 2G). Redundancy was one possible 
reason for these phenomena. Therefore, it is inefficient to 
improve the yield of production by over expressing a 
single enzyme’s concentration. 
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Figure 1. Schematic representation of saccharomyces cerevisiae glycolysis pathway in silico model. a) Glycolysis pathway in silico model was established by 

CellDesignerTM v3.2. Kinetic equations with ǡ were available for simulation. b) Reaction network of the model (reproduced from Hynne.et al, 2001). The special triangle 
structure in the network which envelop by dashed line was emphasized in later discussion. 

 
 
 

The predicted metabolite levels changed in 
accordance with the classic understanding of 
biochemical reaction and flux analysis. For 
instance, ethanol (EtOH), a very important 
industrial product which many researchers and 

environmentalists are concerned with, will be 
increased if Glutrans, hexokinase (HK), 
glyceraldehyde-3- phosphate dehydrogenase. 
(GAPDH), triose phosphate  isomerase (TIM), 
and alcohol dehydrogenase (ADH) were up 

regulated. Obviously, ADH has a deep impact to 
EtOH level, compared to other enzymes. As for 
another significant product Glycerol, increasing 
Glutrans, HK, PFK, lpGLyc (lumped glycerol 
formation reaction) and decreasing PDC (pyruvate 
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Table 1. List of enzymes and metabolites abbreviations. 
 

Abbreviation Name 

Enzyme  

GlcTrans Glucose transport reaction 

HK Hextose kinase 

PGI Phosphoglucose isomerase 

PFK Phosphofructokinase-1 

ALD Aldolase 

TIM Triose phosphate isomerase 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

lpPEP Lumped Phospho-glycerate kinase reaction, Phospho-glycerate mutase reaction, Enolase reaction 

PK Pyruvate kinase 

PDC Pyruvate decarboxylase 

ADH alcohol dehydrogenase 

lpGlyc Lumped glycerol 3-phosphate dehydrogenase reaction, glycerol phosphatase reaction 

Metabolite  

GlcX Extracellular glucose 

Glc Intracellular glucose 

G6P Glucose-6-phosphate 

F6P Fructose-6-phosphate 

FBP Fructose-1,6-bisphosphate 

DHAP Dihydroxyacetone phosphate 

GAP Glyceraldehyde-3-phosphate 

BPG Glycerate-1,3-diphosphate 

PEP Phosphoenolpyruvate 

Pyr Pyruvate 

ACA Intracellular acetic acid 

ACAX Extracellular acetic acid 

EtOH Intracellular ethanol 

EtOHX Extracellular ethanol 

Glyc Intracellular glycerol 

GlycX Extracellular glycerol 
 
 
 

decarboxylase), TIM, and GAPDH help to enhance the 
yield. Although, the effect is limited, it reinforces glucose 
transport and branch pathway or weaken competitive 
pathway that is apparently beneficial for increasing target 
metabolite level. Besides, glucose   accumulates   when   
mostenzymes are down-regulated because of the reduction 
of fluxes. Some enzymes exhibit little influence to 
metabolite concentration like aldolase (ALD). In contrast, 
the change of phosphofructokinase (PFK) impacts the 
metabolite remarkably, as a rate limiting enzyme. 

Two types of trends of metabolite levels were presented. 
In the first type, when the enzyme amount was 
down-regulated, most metabolite concentrations showed 
a continual decrease (Figures 2A, B, C, and E). In the 
second type (Figures 2F, G, K, H, I, J, K, and L), they 
accumulated to the maximum and then descended 
rapidly. Interestingly, the two group of enzymes triggered 

different trends of metabolic response, which happen to 
distribute upstream and downstream of triangle structure 
(Figure 1) separately. That is, HK, Glutrans, phosphor- 
glucose isomerase (PGI, and PFK, which are located 
before the triangle structure (Figure 1) in the network, 
influence the system similarly. Also, the second group of 
enzymes which are located after the triangle structure in 
the network (Figure 1), including PK, PDC, ADH, lpGlyc, 
GAPDH and lpPEP, affected the system metabolism 
similarly either. An implication of metabolic response to 
enzyme change exists between biochemical properties 
and network structure. 
 
 
Conclusions  
 
In the present work, in silico model  with  an  importing  
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Figure 2. Metabolite levels corresponding to changes in the enzymes concentrations in glycolysis model. 20 metabolites concentration corresponding to changes 
in 12 enzyme amount were showed. Every single enzyme was set at 8 different concentrations, including 0, 0.01, 0.1, 0.5, 1, 5, 10 and 100. Metabolites are 
represented by different shapes and colors, which are listed on the right-hand side of the figure. Metabolite levels corresponding to the changes in (A) Glutrans, (B) 
Hk, (C) PGI, (D) PFK, (E) ALD, (F) TIM , (G) GAPDH, (H) lpPEP, (I) PK, (G) PDC, (K) ADH and (L) LpGlyc. 

 
 
 

enzyme amount multiple factor (ǡ) is established. 
The dynamic model aims at making a direct 
connection between metabolite levels and 
enzyme levels, which enables the study to predict 
steady state metabolites concentration, as a 
function of enzyme concentration.The results 
showed that the response of metabolite levels to 
down-regulation of enzyme amounts were 
stronger than their up-regulation. Basically, 
metabolite levels remained stable when they were  

set higher than some certain levels. Moreover, the 
prediction of metabolic response is consistent with 
the results of the experiment and basic 
understanding of biochemistry. Besides, most  of 
the metabolite concentrations decreased 
continually during the regulation of some enzyme 
amounts, while they accumulated until a peak was 
shown and then descended rapidly during the 
changes in other enzyme amounts. Considering 
those enzymes’ location in the network, the 

metabolic response relates not  only  biochemical 
characteristics but also the structure of network. 
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