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Insect pests cause significant damage to crops world-wide. This is despite integrated pest management 
strategies combining such control measures as chemical control, use of resistant varieties and other 
measures. Other control measures such as use of genetically modified crops are being adopted. 
Transgenic crops engineered for enhanced levels of resistance to insect pests have the potential to 
offer large benefits to agriculture not only through enhanced crop protection, but also from a reduction 
in the number of insecticide treatments required compared to conventional cropping methods. Insect 
resistant crops expressing Bacillus thuringiensis (Bt) delta-endotoxins are currently being grown in 
many regions of the world. B. thuringiensis is a gram positive, spore-forming bacterium that produces 
crystalline inclusion bodies during sporulation. These contain insecticidal delta endotoxins, also known 
as insecticidal crystal proteins. There are two groups of insecticidal crystal proteins (ICP): Cry (crystal 
delta endotoxins) and Cyt (cytolytic). The specificities of the different insecticidal crystal proteins 
determine their subsequent toxicity. Cry toxins are classified by their primary amino acid sequence and 
more than 500 different Cry gene sequences have been classified into 67 groups (Cry1 to Cry67). They 
are globular molecules composed of three distinct functional domains connected by a short conserved 
sequence. Two major types of receptors have been identified: transmembrane proteins, such as 
cadherins, and proteins anchored to the membrane such as the glycosylphosphatidylinisotol (GPI)-
anchored proteins that have been proposed to be involved in the action of Cry toxins. The continued 
use of transgenic crops is threatened by the evolution of resistance in insect populations. It is against 
this background that research work targeting other candidate genes such as proteinase inhibitors, 
lectins and secondary metabolites is gaining momentum. 
 
Key words: Transgenic crops, Bacillus thuringiensis, insecticidal crystal proteins, glycosylphosphatidylinisotol 
(GPI)-anchored. 

 
 
INTRODUCTION 
 
Losses due to insects have increased over the last two 
decades. This is despite integrated pest management 
strategies combining such control measures as chemical 
control, use of resistant varieties and other measures 
(Duck and Evola, 1997). Insects have also evolved 
resistance to almost all the pesticides in use today. It is 
against this background that other control measures such 
as use of genetically modified crops are being adopted. 

Transgenic crops engineered for enhanced levels of 
resistance to insect pests have the potential to offer large 
benefits to agriculture (Ferry et al, 2003), not only through 
enhanced crop protection, but also from a reduction in 
the number of insecticide treatments required compared 
to conventional cropping methods (James, 2005). 

However, despite the advantages that such crops offer, 
major concerns relating to their use are routinely voiced:
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potential toxicity to humans, effect on non-target orga-
nisms, and potential deleterious environmental effects. 
GM crops are subjected to a robust and rigorous safety 
assessment starting with a comparative analysis between 
the chemical composition and nutritional value of GM 
crops and conventional varieties (Phipps, 2009). To date, 
numerous studies have been carried out with dairy cows, 
pigs, poultry and fish, all of which have failed to detect 
the presence of ‘transgenic’ DNA fragments with genetic 
integrity or novel proteins in any animal derived food. 
Furthermore, no evidence has been found to suggest that 
food derived from animals fed GM feeds is anything other 
than as safe as that produced by conventional feed 
ingredients. Also, there has been no evidence to suggest 
that any commercial GM crops are deleterious to 
humans.  

To ensure that transgenic crops, including those 
expressing genes for enhanced resistance to pests, do 
not confer deleterious effects on non-target organisms, 
including beneficial insects, such crops undergo a tiered 
risk assessment (Romeis, 2009). Of the numerous 
studies carried out to date, including both lab-based and 
field trials, only one or two have suggested potential 
deleterious effects, with the vast majority demonstrating 
no toxic effects; interestingly there is evidence of 
increased biodiversity where GM crops are grown, this 
being a consequence of decreased pesticide usage. 

Transgenic crops were grown on 160 million hectares 
of land in 2011 (Figure 1), with insect resistant crop varie-
ties representing approximately 15% of this area (James, 
2012). The global market value of biotech crops was esti-
mated at US$ 13.2 billion. Insect resistant crops expres-
sing Bacillus thuringiensis (Bt) delta-endotoxins are 
currently being grown in many regions of the world. 

 
 
Bacillus thuringiensis (Bt) toxins 

 
B. thuringiensis is a soil bacterium first discovered by 
Ishawata in Japan in 1901 and then in Germany in 1911 
by Berliner (Baum et al., 1999). It is a Gram positive, 
spore-forming bacterium that produces crystalline inclu-
sion bodies during sporulation (Ferré et al., 1991; 
Vadlamudi et al., 1993; Valaintis et al., 1997; Estela et 
al., 2004; Flannagan et al., 2005). These contain insecti-
cidal delta endotoxins, also known as insecticidal crystal 
proteins (Cry); they accumulate in the mother cell and 
can account for 20 to 30% of the dry weight (Schnepf et 
al., 1998). There are two groups of insecticidal crystal 
proteins (ICP): Cry (Crystal delta endotoxins) and Cyt 
(Cytolytic).  

The specificities of the different insecticidal crystal 
proteins determine their subsequent toxicity. Different 
strains of Bt produce different Cry proteins and these 
vary in their toxicity towards different insects: Cry1 are 
specific for Lepidoptera; CryII are specific for Lepidoptera 
and Diptera; Cry III are specific for Coleoptera and Cry IV  
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are specific for Diptera (Hofte and Whiteley, 1989). The 
Cry 1 subclass is in the range of 120-140kDa in size 
(Masson, 2002). 
 
 

Structure of Bt toxin 
 

The tertiary structure of seven different Cry proteins, Cry 
1Aa, Cry2Aa, Cry3AA, Cry3Bb, Cry4Aa and Cry8Ea have 
been determined by X-ray crystallography (Li et al., 1991; 
Grochulski et al., 1995; Galitsky et al., 2001; Morse et al., 
2001; Boonserm et al.,2005; Boonserm et al., 2006; Guo 
et al., 2009).-These structures display a high degree of 
similarity with a three-domain organisation (Figure 2) and 
this suggests a similar mode of action of the Cry protein 
family even though they show very low amino acid 
sequence similarity. 

Cry toxins are classified by their primary amino acid 
sequence and more than 500 different Cry gene sequen-
ces have been classified into 67 groups (Cry1-Cry67). 
They are globular molecules composed of three distinct 
functional domains connected by a short conserved 
sequence. 

The N-terminal domain (Domain I) is a bundle of seven 
α-helices in which the central helix α-5 is hydrophobic 
and is encircled by six other amphipathic helices (Pigott 
and Ellar, 2007). This helical domain is similar in struc-
ture to the pore-forming domain of colicin (Parker et al., 
1989) and is therefore thought to be involved in pore 
formation (Li et al., 1991). 

Domain II is made up of three anti-parallel beta sheets 
packed together to form a beta-prism (Li et al., 1991) with 
exposed loop regions. Domain II is thought to play a role 
in receptor binding and specificity because of the varia-
bility of its structure (Pigott and Ellar, 2007). Domain II 
shares structural similarity with several carbohydrate-
binding proteins such as vitelline and lectin jacalin (de 
Maagd et al., 2003).  

Domain III is a sandwich of two twisted anti-parallel 
beta sheets (Schnepf et al., 1998). These sheets are 
made up of five strands and the outer sheet faces the sol-
vent and the inner one packing against Domain II (Pigott 
and Ellar, 2007). It plays a role in insect specificity and 
receptor binding. The exposed regions in domains II and 
III are involved in receptor binding (Bravo et al, 2005). 

Domain III, shares structural similarities with other 
carbohydrate binding proteins such as cellulose binding 
domain of 1,4-β–glucanase C, galactose oxidase siali-
dase , β-glucoronidase, carbohydrate binding domain of 
xylanase U and β-galactosidase (de Maagd et al., 2003). 
 
 

Receptors for Bt toxins 
 
Two major types of receptors have been identified: trans-
membrane proteins, such as cadherins, and proteins 
anchored to the membrane such as the Glycosyl phos-
phatidyl inisotol (GPI)-anchored proteins that have been
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Figure 1. Global map of biotech crop countries and mega-countries in 2011. Source: Clive James (2011). 
 
 
 

proposed to be involved in the action of Cry toxins 
(Gomez et al, 2007). 
 
 

Cadherins 
 

Cadherins are synthesised as a precursor polypeptide 
which requires post-translational modifications to form a 
protein of between 723 and 748 amino acid long. They 
are composed of an ectodomain formed by 11 to 12 
cadherin repeats, a transmembrane domain and an 
intracellular domain (Bel and Escriche, 2006). Cry 1A 

toxins bind to cadherin proteins of at least six 
lepidopteran species, Manduca sexta, Bombyx mori, 
Heliothis virescens, Heliocoverpa armigera, Pectinophora 
gossypiella and Ostrinia nubilalis (Pigott and Ellar 2007). 

They typically consist of five cadherin repeats (Angst et 
al., 2001) but as many as 34 may be present (Dunne et 
al., 1995). Three regions in CADR proteins have been 
shown to interact with three domain II loop regions. 
Cry1Ab loop 2 interacts with CADR residues 

865 

NITIHITDNN
875

 located in repeat 7, loops a-8 and 2 
interacts with CADR residues 

1331
 IPLPASILTVTV

1342
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Figure 2. Putative structure of the 3-domain Cry proteins. 
 
 
 

located in repeat 11. A third Cry1A binding region was 
located in CADR in the repeat 12 (Gomez et al., 2007). 
 
 
GPI-anchored receptors: Amino peptidase N (APN) 
and alkaline phosphatse (ALP)  
 
The APN and ALP in M. sexta and H. virescens have 
been shown to be located in lipid rafts. The interaction of 
pore-forming toxins with lipid rafts is said to result in toxin 
internalization, signal transduction and cellular response 
(Zhuang et al., 2002; Bravo et al., 2004). The first Cry 1A 
toxin binding protein that was described was an APN 
protein in Manduca sexta. Other GPI-anchored APNs 
have been recognised as Cry toxins receptors in different 
Lepidoptera such as Heliothis virescens, Spodoptera 
litura, Heliocoverpa armigera, Bombyx. mori, Lymantria 
dispar, Plutela xylostalla and in dipteral An 
quadrimaculatus and A. aegypti.- 

 Alkaline phosphatases are mainly localised in microvilli 
of the columnar cells and of insect epithelial cells 
(Eguchi, 1995). They are divided into two groups: soluble 
(s-ALP) and membrane bound (m-ALP) (Eguchi, 1995). 
The s-ALP is found exclusively in the cavity of goblet 
cells and in the apical region of the midgut, whereas, m-
ALP is localised in the brush border membrane of 
columnar cells. Alkaline phosphatase has been impli-
cated as a receptor for Cry toxins in some species such 
as M. sexta (Sangadala et al., 1994) and H. virescens 
(Jurat-Fuentes and Adang, 2004). 

Mode of action of Bt toxins 
 
Currently two main models have been proposed for the 
mode of action of Bt the Bravo model (pore formation 
model) and the Zhang model (signal transduction model). 

The Bravo Model is an updated version of the model 
originally proposed by Knowles and Ellar (Pigott and 
Ellar, 2007) (Figure 3). According to this model, both 
cadherin and APN are required for Cry1A toxicity towards 
M. sexta (Bravo et al., 2004). The model proposes that 
the activated toxin binds to cadherin, BT-R1 and the toxin 
undergoes a conformational change resulting in cleavage 
of helix alpha-1 by membrane–bound proteases (Pigott 
and Ellar, 2007). The toxin oligomerises and binds to 
APN. The toxin oligomer inserts into lipid membranes 
where it forms pores and this leads to the death of the 
larva (Bravo et al., 2007). Studies show that insecticidal 
proteins cause histopathological symptoms on the midgut 
(George et al., 2012). These include vacuolation of the 
cytoplasm and unzipping of the septate junctions binding 
columnar cells (George et al., 2012). The Zhang model 
proposes that binding of Cry1 to cadherin triggers a 
signal that involves the stimulation of a guanine 
nucleotide binding protein (G protein) and adenylate 
cyclase to increase cAMP. This results in the activation of 
protein kinase A leading ultimately to cell death (Zhang et 
al., 2006). 

A direct correlation between toxicity and receptor 
binding has been observed in most studies (Hofmann et 
al., 1988; Lu et al., 1994; Bravo et al., 1992). However,
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Figure 3. Mechanism of action of Bt toxin (Courtesy of J.A.Gatehouse). 
 
 
 

there have been some reported exceptions (Garczynski 
et al., 1991; Wolfersbeger et al., 1990) but no insecticidal 
crystal protein has been found to be toxic without prior 
binding to the brush border membrane of the midgut 
epithelial cells (Bravo, 1992). 
 
 
POSSIBLE MECHANISMS OF RESISTANCE TO Bt 
 
The continued use of transgenic crops is threatened by 
the evolution of resistance in insect populations (Bravo 
and Soberon, 2008).The molecular basis of resistance to 
the Bt in insects is not well understood. However, this 
information is important for developing strategies to cope 
with the evolution of pest resistance (Merroquin et al., 
2000). Mode 1 is the most common type of resistance in 
insects. It is characterised by reduced binding of Bt toxins 
to target sites of the insect midgut membrane (Tabashnik 
et al., 1998). In H. virescens and Pectinophora 
gossypiella mutations affecting Cry1A binding to the 
midgut, cadherin protein was linked to laboratory selected 
Mode 1 resistance in these species. It has been reported 
that Cry1Ac resistance in tobacco budworm, H. virescens 
is linked to cadherin encoding genes but not to genes 
encoding aminopeptidases (Gahan et al., 2001). Loss of 
a proteinase in Indian meal moth was said to confer 
resistance to Cry1Ab (Herero et al., 2001) in this insect. 
In susceptible insects, this proteinase enzyme cleaves 

the Cry1Ab protoxin to form an active toxin. It has been 
reported that mutations in five different genes conferred 
resistance to Cry 5B in Caenorhabditis elegans (Merroquin 
et al., 2000). In all these genes, none resembled genes 
for aminopeptidase or cadherins.  

In field conditions, three lepidopteran insects have 
evolved resistance to formulated Bt products, Plodia 
interpunctella, Plutella xylostella and Trichoplusia ni 
[McGaughey, 1985; Tabashnik, 1994; Janmaat and 
Myers, 2003). It was reported that Helicoverpa zea has 
evolved resistance to Bt expressing cotton in United 
States (Tabashnik et al., 2008). This was the first 
reported case of resistance to transgenic crops in the 
field. Other cases of resistance to Bt crops have also 
been documented; S. Frugiperda to Bt–corn expressing 
Cry1F in Puerto Rico, Busseola fusca to Bt-corn expres-
sing Cry1Ab in South Africa and P. gossypiella to Bt-
cotton expressing Cry1ac in India (Gill et al., 2011).-Thus, 
resistance management is a key component of any 
strategy that utilizes transgenic crops. 
 
 

RESISTANCE MANAGEMENT 
 

Gene stacking/pyramiding 
 

Gene stacking is when two or more toxins with different 
modes of action are produced in the same plant (Bravo 
and Soberon, 2008). This strategy has been successful in  



 

 
 
 
 
a number of crops such as cotton and maize. Expressing 
more than one Bt cry gene in plants affords the plant more 
protection against a wider range of pests (Gatehouse, 
2008). Cotton plants expressing Cry1Ac and Cry2Ab 
were found to be more toxic to bollworms (H. zea) and 
armyworms (Spodoptera frugiperda and Spodoptera 
exigua) than cotton expressing Cry1Ac alone in labora-
tory trials (Stewart et al., 2001).  

Gene stacking is also beneficial in preventing evolution 
of resistance to toxin activity in the target pest(s) 
(Gatehouse, 2008). However, it has recently been shown 
that pests can acquire resistance to multiple toxins. 
Gahan et al. (2005) reported that H. virescens evolved 
resistance to Cry1Ac and Cry2Aa. To counter evolution of 
resistance in insects, crops expressing multiple trans-
genes are being developed. Transgenic maize expres-
sing six insect resistant genes has been developed 
(Gatehouse, 2008). The genes afford resistance against 
corn rootworm (Cry34Ab1+Cry35Ab1, modified Cry3Bb1) 
and lepidopteran (Cry1F, Cry1A.105, Cry2Ab2) pests. 
The plant also expresses two genes giving tolerance to 
glyphosate and glufosinate ammonium herbicides. 
 
 

Use of Refugia 
 

The use of refugia is another strategy that is used to 
manage or delay resistance to Bt crops. Under this stra-
tegy, a non-Bt crop is planted in areas of land adjacent to 
the Bt crop and this serves as a reservoir for susceptible 
insects. The few resistant individuals from Bt crops will 
mate with susceptible insects and this results in a low 
rate of resistance. The success of this strategy depends 
on a number of factors: the resistant trait must be reces-
sive, there must be random mating, and there must be no 
insecticidal action in the refugia. 
 
 
OTHER CANDIDATES GENES 
 
Proteinase inhibitors 
 
Protease inhibitors are categorised on the basis of their 
specificity. Four mechanistic classes have been iden-
tified: inhibitors of serine, aspartyl, cysteine and metallo 
proteases. Serine proteinase inhibitors have anti-nutri-
tional effects against several lepidopteran insect species 
since they inhibit protease activity and consequently 
reduce protein digestion (Shulke and Murdock, 1983; 
Applebaum, 1985). This results in nitrogen deficiency, 
and in an attempt to compensate, the insect over-pro-
duces digestive proteases (themselves proteins) leading 
to further loss of amino acids (Shulke and Murdock, 
1983). Characterisation of the proteolytic activity in the 
larval midgut of the sub-Saharan African pest B. fusca 
demonstrated that this lepidopteran stem borer utilises 
serine proteases for protein digestion (George et al., 
2008). 
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Alpha amylase inhibitors 
 
Alpha-amylases (α-1,4-glucan-4-glucanohydrolases, EC 
3.2.1.1) constitute a family of endo-amylases that 
catalyse the-hydrolysis of α-D-(1 → 4)-glucan linkages in 
starch components, glycogen and other carbohydrates. 
The enzymes play a key role in carbohydrate metabolism 
of microorganisms, plants and animals (Franco et al., 
2002). Several insects, especially those similar to the 
seed weevils that feed on starchy seeds during larval 
and/or adult stages, depend on their a-amylases for 
survival (Franco et al., 2002). Alpha-Amylase inhibitors 
are therefore, attractive candidates for the control of seed 
weevils because they are highly dependent on starch as 
an energy source (Franco et al., 2002). 

The first practical demonstration involving α–amylase 
inhibitors used α-A11, which specifically inhibits the α-
amylases of the three bruchis; the pea weevil, Bruchus 
pisorum, the cowpea weevil and the azuki bean weevil 
(Franco et al., 2002). Azuki bean plants expressing α-A11 
were found to be completely resistant to azuki bean 
weevil (Ishimoto et al, 1996).  
 
 

Lectins 
 

Lectins are a group of non-immunogenic proteins 
possessing at least one non-catalytic domain that binds 
reversibly to specific mono-or oligosaccharide (Peumans 
and Van Damme, 1996). Mannaose-binding lectins are 
widely distributed in the higher plants and are believed to 
play a role in recognition of high-mannose type glycans of 
foreign micro-organisms or plant predators (Barre et al., 
2001). A gene encoding the mannose specific lectin from 
snowdrop (Galanthus nivalis; GNA) expressed in tobacco 
has shown enhanced resistance to peach potato aphid 
(M. persicae) and a pea lectin in tobacco has shown 
enhanced resistance to H. virescens (Boulter et al., 
1990). Greater insecticidal activity has also been obser-
ved in chitin-binding lectins and the lectin gene of wheat 
germ and the common bean (Sarma et al., 2004). 

Transgenic rice shoots with GNA have shown resis-
tance to brown plant hopper (BPH) (Nilaparvara lugens) 
and the green plant hopper (GLH) (Nephotettix virescens) 
(Yang et al., 1998) and potato leafhopper (Empoasca 
fabae). Partial resistance to hemipterans has also been 
obtained by expression of Man-specific lectin from garlic 
(Allium sativum) leaves in transgenic rice (Saha et al, 
2006). However, concerns about the possible con-
sequences to higher plants of ingesting snowdrop lectin 
have limited further progress (Gatehouse, 2008).  
 
 

Secondary metabolites 
 

Plants use a number of defence strategies against biotic 
attackers (Walling, 2000; Kessler and Baldwin, 2001). 
These defence strategies can be direct or indirect defen-
ces  (Lawrance  and  Novak,  2004).  Direct defences are 
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compounds that interfere with insect feeding and nutrition 
(Kessler and Baldwin, 2002). These include proteinase 
inhibitors that inactivate digestive enzymes. Maize lines 
with resistance to several lepidopteran insects have been 
shown to mobilize a 33kDa cysteine protease when 
attacked by Spodoptera frugiperda (Pechan et al., 2000). 
Indirect defences include the release of plant volatile 
organic compounds that attract natural enemies of 
herbivorous insects (Roda et al., 2004). 

Mattiacci et al. (1995) showed that an enzymatic 
elicitor, β-glucosidase, isolated from Pieris brassicae 
regurgitant, elicits the release of parasitoid-attacking 
volatiles from cabbage leaves. The regurgitant of 
Spodoptera exigua was shown to elicit the release of 
parasitoid attracting volatile organic compounds from 
corn (Alborn et al., 1997). The elicitor was shown to be N- 
(17-hydroxylinolenoyl)-L-gutamine, a non-enzymatic elici-
tor. Most of these elicitors are from the insect and are 
fatty acids amino acid conjugates (FAC) and they arise 
from the insect’s alimentary canal (Spiteller et al., 2000; 
Lait et al., 2003). Variation in the amount of FACs in the 
insect regurgitant has been reported from different spe-
cies, different larval stages and individual collections of 
regurgitant from the same species (Pohnert et al., 1999; 
Mori et al., 2001, Alborn et al., 2003). There are other 
elicitors that originate from the insect salivary glands 
(Roda et al, 2004). 

The plant’s response to attack from different insects 
can also differ. It has been shown that volatile organic 
compounds VOCs elicited by attack from H. zea and H. 
virescens larvae differed (De Moraes et al., 1998).  

Genes encoding two Cyt P450 oxidases and a UDP- 
glycosyl transferase from sorghum have been transferred 
to Arapidopsis (Tattersall et al., 2001), resulting in the 
production of the cyanogenic glycoside dhurrin from Tyr 
(Kristensen et al., 2005). The plant produced hydrogen 
cynide on tissue damage and showed enhanced resis-
tance to attack by flea beetle (Phyllotreta nemorum) 
(Gatehouse, 2008). Alkaloid caffeine has been produced 
in tobacco plants by the introduction of three genes 
encoding N-methyl transferase (Kim et al., 2006). 
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