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Indigenous strains of Trichoderma viride (ITCC No. 6889), Pseudomonas fluorescens (ITCC No. B0034) 
and Purpureocillium lilacinum (ITCC No.6887) were isolated from undisturbed forest eco-system of 
Southern India. These three bio-mediators were evaluated for their antagonism towards root knot 
nematode, Meloidogyne incognita and Fusarium oxysporum f.sp. conglutinans in vitro. Cell free culture 
filtrate of these strains significantly inhibited the egg hatching and caused juvenile (J2) mortality of M. 
incognita at 25, 50, 75 and 100% concentrations. Maximum inhibition in egg hatching and juvenile 
mortality were recorded in P. lilacinum as 94.21 and 91.28%, respectively after 120 h. It was followed by 
T. viride and P. fluorescens which recorded 92.72 and 91.46% and 89.12 and 90.14% inhibition in egg 
hatching and juvenile mortality, respectively after 120 h. Antagonism of T. viride on F. oxysporum was 
recorded maximum on the 5th day as 45.82%. Similarly, the antagonism on the 5th day for both the bio-
agents of P. lilacinum and P. fluorescens were recorded as 45.26 and 44.19%, respectively.  
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INTRODUCTION  
 
Root-Knot nematodes are causing a notable damage to a 
wide range of vegetable crops causing significant yield 
loss in tropical and sub-tropical agriculture (Sikora and 
Fernandez, 2005). The symptoms of nematode disease 
are manifested by the formation of root galls 
accompanied by stunted growth, chlorosis and loss of 
viability of the plant (Babu et al., 1999). Fusarium wilt is 
soil borne fungal pathogen which can sustain many years 

in the soil without a host (Ignjatov et al., 2012). F. 
oxysporum has a worldwide distribution and causes 
severe root rot or vascular wilt in ample range of plant 
families (Enya et al., 2008; Lievens et al., 2008; Michielse 
and Rep, 2009). This fungal pathogen infects the seed 
and early stages of seedling growth, causing seed decay 
and damping-off (Punja et al., 2004).  

Trichoderma viride  is  an   effective   bio-control   agent 
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against numerous soil borne plant pathogens and can 
easily colonize plant rhizosphere and helps in the plant 
growth promotion (Verma et al., 2007; Savazzini et al., 
2009; John et al., 2010). T. viride proved to be effective 
against root knot nematode, Meloidogyne species and 
reduced its damage on several crops (Meyer et al., 2001; 
Abd et al., 2007). Various reports on nematophagous 
fungus Purpureocillium lilacinum prove its efficacy as 
effective bio-control agent on Meloidogyne spp. on 
various crops (Jatala, 1986; Rao and Reddy, 1994; Rao 
et al., 1999; Khan and Williams, 1998; Mohd et al., 2009; 
Brand et al., 2010). It has more rate of occurrence in 
tropical and subtropical areas (Morgan-Jones et al., 
1984; Chen et al., 1996). 

Pseudomonas fluorescens is a Plant Growth Promoting 
Rhizobacteria (PGPR) effective against soil borne 
pathogens including root-knot nematodes (Perveen et al., 
1998; Siddiqui et al., 1999; Rao et al., 2002; Rao, 2007; 
Otsu et al., 2004). The concept of PGPR has been 
documented with the isolation of many bacterial strains 
which exhibit the desirable characteristics of root 
colonization, disease suppression, plant growth 
stimulation and biocontrol (Molla et al., 2001; Beneduzi et 
al., 2008).  

Process of DNA extraction from fungal cultures 
eliminates many unknown interfering substances which 
allow to identify species specific organisms using 
ribosomal DNA by PCR (Don et al., 2000; Bryan et al., 
1995). Currently, many methods are available for the 
isolation of fungal genomic DNA (Plaza et al., 2004; Melo 
et al., 2006). Pseudomonas species were isolated from 
soil eco-system that was naturally suppressive to many 
plant diseases like Fusarium wilt and black rot of tobacco 
(Thomashow et al., 1990; Raaijmakers and Weller, 1998; 
De Boer et al., 1999; William et al., 1991). 

Culture filtrates of bio-control agents are reported to be 
antagonistic to a wide range of plant parasitic nematodes 
in in vitro (Reibinger, 1995; Hallaman and Sikora, 1994; 
Meyer et al., 2004; Vu, 2005; Abd et al., 2007). In the 
current investigation, efforts were made to isolate the bio-
agents and evaluate the effect of three bio-agents, 
namely, T. viride, P. fluorescens and P. lilacinum against 
M. incognita and Fusarium oxysporum f.sp. conglutinans 
in in vitro. 
 
 
MATERIALS AND METHODS 
 
Isolation of bio-agents, collection of M. incognita egg mass 
and F. oxysporum 
 
Cultures of T. viride (ITCC No.6889), P. fluorescens (ITCC No. 
B0034) and P. lilacinum (ITCC No. 6887) were maintained on 
nutrient agar (NA) (Himedia chemicals, India) for bacterial cultures 
and Potato dextrose agar (PDA) (HIMEDIA chemicals, India) for 
fungi by cryopreservation method (Sudheer, 2010). The isolates 
were sub-cultured and used for further study. Root knot nematode 
culture was obtained from infected cauliflower plants grown in 
farmers field (Doddaballapur, Bengaluru rural district, Karnataka, 
India).  Identification  of  M. incognita  was  confirmed   by   perineal  
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cuticular pattern (PCP) under stereo microscope and used for 
further studies. F. oxysporum f. sp. conglutinans was isolated from 
fusarium infected cauliflower plants. Preparation of inoculum was 
made by culturing the F. oxysporum isolate in PDA amended with 
streptomycin sulphate for 7 days at 25 ± 2°C. 
 
 

DNA isolation from T. viride, P. lilacinum and P. fluorescens 
and PCR  
 

Genomic DNA was isolated from cultures of T. viride and P. 
lilacinus as per the protocol of Raeder and Broda (1985). Bacterial 
genomic DNA of P. fluorescens was isolated using Nucleospin 
tissue extraction kit (Macherey-Nagal, Germany). Polymerization 
Chain Reaction (PCR) of 25 µl PCR mixture was prepared for 
molecular identification of T. viride and P. lilacinum with the 
following protocol. Final PCR volume contained 19.7 μl of PCR 
grade water, 0.5 μl of each forward and reverse primers (0.2 pmol; 
Bio-serve Pvt. Ltd, India), 0.5 μl of dNTPs (10 mM; Fermentas Inc, 
Canada), 2.5 μl (10X) of Taq buffer (Bangalore Genei Pvt.Ltd, 
India), and 0.3 μl of Taq DNA polymerase (Bangalore Genei 
Pvt.Ltd, India) and 1 μl of template DNA (25 ng/μl). PCR 
amplifications were carried out in Eppendorf master cycler gradient 
(vapo.protect, Germany). Amplification reactions were performed in 
master cycler with heated lid. The primer pairs ITS F 
(TCCGTAGGTGAACCTGCGG) and ITSR (TCCTCCGCTTA-
TTGATATGC) were used for the amplification of region including 
the ITS 1, 5.8 S and ITS 2 (Hurtado et al., 2008). The initial 
denaturation for 5 min at 94°C was followed by 35 cycles of 45 s at 
94°C, 35 s at 43°C, 40 s at 72°C and a final extension of 10 min at 
72°C.  

16s rDNA amplification of P. fluorescens was carried out using 
universal primers 27F (AGAGTTTGATCMTGGCTCAG) and 1492R 
(GGTTACCTTGTTACGACTT) (Weisburg et al., 1991) in thermo 
cycler (Eppendorf vapo.protect, Germany) using the aforementioned 
components which followed for final PCR mixture of 25 µl except 
16s primers and DNA template (25 ng/μl). The PCR cycle of initial 
denaturation was done at 95°C for 5 min followed by 35 cycles of 
denaturation at 95°C for 45 s, primer annealing at 51°C for 35 s and 
elongation at 72°C for 40 s. Final extended elongation was done for 
10 min at 72°C. The obtained PCR products were gel electro-
phoresis on 1.5% agarose gel (Figures 1 and 2). 

The PCR products were sequenced at Bio-serve, Hyderabad, 
Telangana state, India. All the sequenced PCR products were 
confirmed using NCBI mega blast for its species identity of ITS 
region and 16s region. The molecular identified strains were 
submitted at NCBI. 
 
 

Effect of culture filtrate of P. fluorescens on egg hatching of M. 
incognita 
 

A single colony from pure culture of P. fluorescens taken from 24 h 
old culture plates was inoculated into 50 ml of sterilized King’s B 
broth (HIMEDIA chemicals, India) in 100 ml Erlenmeyer flasks. 
These flasks were incubated in a shaker incubator at 150 rpm 
speed and 37°C for 24 h. The bacterial growth after 24 h was tested 
for their luminosity under transilluminator at 250 to 260 nm.  P. 
fluorescens culture filtrate was obtained by centrifugation 
(Eppendorf refrigerated centrifuge 5415) at 10,000 rpm for 15 min 
at 4°C. The supernatant culture filtrate was collected and passed 
through syringe filter of 0.22 µm (Millipore PVDF Durapore 13 mm 
diameter). Consequently, collected culture filtrate was tested for the 
absence of any viable cell and used to study the effect on egg 
hatching and juvenile mortality of M. incognita. 

P. fluorescens culture filtrate was made into four concentrations 
of 100, 75, 50 and 25% by adding sterile distilled water. Three 
millilters of each concentrations of culture filtrate was transferred to 
sterile  Petri-dishes  of  5 cm  diameter.  M. incognita   egg   masses 
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Figure 1. PCR amplified ITS region of T. viride and P. lilacinum. 

 
 
 

 
 

Figure 2. PCR amplified 16s region of P. fluorescens (1 to 3). 
 
 
 

were collected and surface sterilized using 0.1% sodium 
hypochlorite for 30 s and rinse the treated egg masses with sterile 
distilled water. Each petri dish was placed with five egg masses 
containing culture filtrate of each concentration and incubated at 
room temperature. M. incognita egg masses placed in King’ B and 
distilled water served as control. The number of juveniles (J2) 
hatched in all the four concentrations were recorded at 24, 48, 72, 
96 and 120 h of exposure. 

The percentage suppression in hatching of juveniles (J2) was 
calculated using the following formula: 
 

Percentage of hatching suppression = [1- (Ht/Hc)] ×100 
 

Where, Ht is the number of juveniles hatched in treatment and Hc is 
the number of juveniles hatched in control. 
 
 
Effect of culture filtrate of P. fluorescens on mortality of M. 
incognita juveniles 
 

Culture filtrate was made into  four  concentrations  of  100,  75,  50 

 
 
 
 
and 25% by adding sterile distilled water. Three millilters culture 
filtrate of each concentration was transferred to sterile Petri-dishes 
of 5 cm diameter. Freshly hatched 100 M. incognita juveniles (J2) 
were placed in each Petri dish and incubated at room temperature 
(25 to 30°C). Petri dishes containing sterile water and autoclaved 
King’s B broth placed with juveniles (J2) served as control and 
treatment.. Total number of dead nematodes were counted after 24, 
48, 72, 96 and 120 h of exposure and percentage mortality of 
juveniles was calculated. 

 
 
Effect of culture filtrate of T. viride and P. lilacinum on egg 
hatching of M. incognita 

 
Freshly sub-cultured T. viride and P. lilacinum of 5 mm disc were 
inoculated in 100 ml sterilized potato dextrose broth – PDB 
(HIMEDIA chemicals, India) in 250 ml Erlenmeyer flask. The flasks 
were incubated at 27 ± 1°C for 8 days. From each culture, 50 ml of 
broth containing 2.8 × 106 spores (CFU/ml) was centrifuged at 
13000 rpm at 4°C for 20 min (Eppendorf refrigerated centrifuge 
5415). The obtained pellet was discarded and supernatant was 
collected which passed through 0.45 µm syringe filter (Millipore 
PVDF Durapore 13 mm diameter). The culture filtrate thus obtained 
was tested for the absence of any fungal spores by plating it on 
PDA. T. viride and P. lilacinum culture filtrate was made into four 
concentrations of 100, 75, 50 and 25% by adding sterile distilled 
water. They were tested for hatching and J2 mortality as per the 
aforementioned procedure for P. fluorescens.  

 
 
Effect of T. viride and P. lilacinum antagonists against F. 
oxysporum f.sp. conglutinans in in vitro 

 
Five day old cultures of T. viride (TV-15), P. lilacinum (PL-29) and 
F. oxysporum discs (5 mm diameter) were grown on PDA and 
punched in the periphery in 90 mm petri plates. Each culture was 
inoculated separately on PDA plates as control. Cultures of T. viride 
with F. oxysporum and P. lilacinum with F. oxysporum were 
inoculated separately on PDA plates at 20 mm distance from 
periphery of the petriplate as per dual culture method. Each 
treatment was replicated thrice and incubated at 27±2°C for 
antagonistic study. Observations were recorded on growth of each 
fungal culture for 5 days. The percentage of inhibition of F. 
oxysporum was calculated (Vincent, 1927). 

 
PI =C-T/C×100 

 
Where, PI is the percentage inhibition over control, C is the control 
of F. oxysporum without T. viride (mm), and T is the growth of F. 
oxysporum with T. viride (mm). 

 
 
Effect of P. fluorescens antagonists against F. oxysporum f.sp. 
conglutinans in in vitro 

 
Both the cultures of 1 day old P. fluorescens and 5 days old F. 
oxysporum were inoculated on Nutrient Agar (NA) and PDA plates 
(90 mm), respectively. As per dual culture method, P. fluorescens 
was inoculated by spread plate method on PDA plate. F. 
oxysporum disc (5 mm) was inoculated in the centre of PDA plate. 
Half streak of P. fluorescens and 5 mm F. oxysporum disc 
inoculated 20 mm distance from periphery of the plate in the same 
PDA plates were also maintained for antagonistic study. The same 
procedure for T. viride and P. lilacinum antagonistic study was 
followed.  
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Table 1. Effects of the cell-free culture filtrate of T. viride on egg hatching and mortality of M. incognita in in vitro. 
 

Concentration (h) 
% Suppression in hatching (T)  % J2 Mortality (T) 

24 h 48 h 72 h 96 h 120 h  24 h 48 h 72 h 96 h 120 h 

25% 51.25 (45.71) 52.41 (46.37) 53.28 (46.88) 54.72 (47.71) 55.18 (47.97)  56 (48.45) 65.13 (53.81) 67.41 (55.20) 68.23 (55.71) 69.72 (56.62) 

50% 62.21 (52.09) 63.54 (52.87) 64.11 (53.20) 64.98 (53.74) 65.72 (54.16)  68.51 (55.95) 70.28 (56.96) 71.37 (57.66) 73.25 (58.86) 75.12 (60.09) 

75% 69.18 (56.29) 70.35 (57.00) 71.83 (57.94) 72.64 (58.48) 73.84 (59.24)  76.23 (60.84) 78.52 (62.52) 79.25 (62.97) 81 (64.23) 82.51 (65.34) 

100% 81.24 (64.34) 82.16 (66.37) 83.08 (65.98) 84.31 (66.84) 92.72 (74.83)  83.15 (65.80) 85.48 (67.64) 86.41 (68.58) 88.27 (70.12) 91.46 (73.05) 

Media alone (PDB) 11.02 (19.29) 12.27 (20.30) 13.48 (21.51) 14.13 (22.00) 15.09 (22.80)  10.46 (18.79) 11.35 (19.63) 12.51 (20.66) 13.18 (21.26) 14.64 (22.42) 

Control (Distilled water) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52)  0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 
            

 
CD (0.01) SED  CD (0.01) SED 

C 2.24 0.85  2.19 0.83 

T 2.05 0.78  2.00 0.76 

CxT 5.02 1.91  4.91 1.87 
 

Figures in parentheses are arc sine transformed values. 
 
 
 

RESULTS 
 

Molecular identification of bio-agents using 
gene specific primers 
 

Ribosomal DNA internal transcribed spacers region 
was amplified using fungal genus specific ITS-1 
and ITS-4 primers (Figure 1). Bacterial strain was 
amplified using 16s primers (Figure 2). Molecular 
identification of these PCR amplified strains were 
confirmed using NCBI mega blast. T. viride and P. 
lilacinum matching to National Centre for Biotech-
nology Information (NCBI) were 94 and 96%, 
respectively and P. fluorescens was 97%. These 
strains were submitted at NCBI with the following 
accession numbers T. viride - KP271026, P. 
lilacinum - KP271028 and P. fluorescens - KP27102. 
 
 

Effect of culture filtrates of three bio-agents on 
M. incognita  
 

Results of studies on culture filtrates showed that 
the efficacy of the isolates of T. viride, P. lilacinum  

and P. fluorescens on hatching of M. incognita 
eggs and J2 mortality increased with the increase 
in concentration of the culture filtrates. These 
investigations clearly indicated that as the duration 
of exposure to culture filtrate of the bacterium and 
fungal cultures increased, suppression in hatching 
and mortality of juveniles (J2) also increased. The 
maximum suppression in egg hatching was 
recorded in P. lilacinum as 94.21% and juvenile 
mortality as 91.28% after 120 h at 100% 
concentration (Table 1). It was followed by T. viride 
which recorded the inhibition in egg hatching as 
92.72%, and juvenile mortality as 89.12% after 
120 h (Table 2). In P. fluorescens, suppression in 
egg hatching and juvenile mortality was recorded 
as 91.46 and 90.14%, respectively after 120 h 
(Table 3). 
 
 

Effect of bio-agents antagonism on F. 
oxysporum 
 
T.   viride   showed   antagonistic   activity   on   F. 

oxysporum on the 5th day which was recorded as 
45.82%. It was followed by P. lilacinum and P. 
fluorescens, for which the antagonism was 
recorded on the 5th day as 45.26 and 44.19% 
(Figure 3).  
 
 

DISCUSSION 
 

During the experimental investigations, native 
strains of T. viride, P. lilacinum and P. fluorescens 
were isolated from different regions of South 
India. The identity of these isolates were confirmed 
through molecular techniques and evaluated for 
their antinemic and antifungal activity in vitro. The 
culture filtrate studies revealed that all the bio-
control agents were effective in suppressing the 
egg hatching of M. incognita and causing J2 

mortality which increased with increase in time of 
exposure of eggs to cell free culture filtrate as well 
with increase in concentration. 

Deformation of juveniles was observed in most 
of  the  eggs  in  the  present  study.   The   results 
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Table 2. Effects of cell-free culture filtrate of P. lilacinum on egg hatching and mortality of M. incognita in in vitro. 
 

Concentration (h) 
Suppression in hatching (%)  J2 Mortality (%) 

24 h 48 h 72 h 96 h 120 h  24 h 48 h 72 h 96 h 120 h 

25% 53.17 (46.81) 54.38 (47.51) 55.09 (47.92) 57.34 (49.26) 58.71 (50.04)  58.24 (49.74) 69.31 (56.37) 71.33 (57.63) 73.48 (59.00) 75.08 (60.05) 

50% 65.08 (53.78) 66.41 (54.58) 67.26 (55.10) 68.43 (43.83) 69.12 (56.25)  72.24 (58.21) 74.04 (59.38) 74.81 (59.89) 76.15 (60.83) 77.34 (61.57) 

75% 71.27 (57.59) 72.41 (58.32) 73.81 (59.23) 74.08 (59.40) 75.38 (60.27)  78.13 (62.28) 79.14 (63.12) 80.24 (65.01) 82.40 (65.23) 84.52 (66.86) 

100% 83.07 (65.78) 85.24 (67.97) 86.18 (68.25) 87.92 (69.95) 94.21 (76.16)  82.04 (64.93) 84.25 (66.64) 85.13 (67.33) 89.14 (70.83) 91.28 (72.92) 

Media alone (PDB) 10.42 (18.78) 11.07 (19.38) 12.46 (20.60) 13.51 (21.49) 13.05 (21.11)  11.14 (19.19) 12.21 (20.42) 13.06 (21.15) 13.68 (21.69) 14.04 (21.99) 

Control (Sterile water) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52)  0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 

            

 
CD (0.01) SED  CD (0.01) SED 

C 1.99 0.76  3.45 1.31 

T 1.82 0.69  3.15 1.20 

C×T 4.46 1.70  7.72 2.95 
 

Figures in parentheses are arc sine transformed values. 

 
 
 
Table 3. Effects of the cell-free culture filtrate of P. fluorescens on egg hatching and mortality of M. incognita in in vitro. 
 

Concentration (h) 
% of Hatching suppression % J2 Mortality 

24 h 48 h 72 h 96 h 120 h 24 h 48 h 72 h 96 h 120 h 

25% 52.08 (46.18) 53.49 (46.99) 53.94 (47.26) 55.04 (47.89) 55.78 (48.31) 52.64 (46.51) 63.05 (52.64) 64.22 (53.26) 65.18 (53.84) 66.52 (54.67) 

50% 61.04 (51.37) 62.13 (52.03) 63.46 (52.81) 63.91 (53.08) 64.76 (53.59) 64.04 (53.15) 65.17 (53.85) 66.54 (54.66) 67.25 (55.10) 68.84 (56.19) 

75% 65.24 (53.90) 66.37 (54.65) 67.19 (55.10) 68.46 (55.86) 69.81 (56.84) 72.64 (58.49) 73.42 (58.97) 74.49 (59.67) 76.21 (60.68) 78.55 (62.51) 

100% 79.28 (63.05) 81.44 (64.51) 82.06 (64.98) 83.05 (65.76) 89.12 (70.83) 80.28 (63.68) 81.27 (64.37) 83.22 (65.84) 84.76 (67.05) 90.14 (71.76) 

Media alone (NB) 10.18 (18.37) 11.64 (19.91) 12.08 (20.28) 13.34 (21.39) 14.24 (22.12) 11.52 (19.80) 12.41 (20.58) 13.08 (21.08) 14.64 (22.44) 15.16 (22.89) 

Control (Sterile water) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 0 (0.52) 

           

 
CD (0.01) SED CD (0.01) SED 

C 1.95 0.74 2.09 0.80 

T 1.78 0.68 1.91 0.73 

C×T 4.37 1.67 4.69 1.79 
 

Figures in parentheses are arc sine transformed values. 
 
 
 

indicated the production of nematicidal compounds 
in the culture filtrates. These nematicidal 
compounds produced by  T. viride,  P. fluorescens 

and P. lilacinum seemed to play an important role 
in causing nematode mortality. Many soil borne 
nematode   trapping   fungi,   endoparasitic   fungi, 

parasites of nematode eggs and cysts were 
reported to produce toxic metabolites against 
nematodes  (Li  et  al.,  2007).  In  earlier   reports,
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Figure 3. Effect of T. viride, P. fluorescens and P. lilacinum antagonism on 
growth inhibition of F. oxysporum in in vitro. 

 
 
 
isolates of P. lilacinum, an egg parasite of root knot and 
cyst nematode, showed potential nematoxic activity 
(Shamim et al., 2012).  

These observations also fall in line with experimental 
evidence as indicated by Regina et al. (1998) and Hanna 
et al. (1999) who reported that mortality of M. incognita 
increased with increase in exposure time as well as the 
concentration of culture filtrate. Bin et al. (2005) showed 
that culture filtrates of rhizobacterium are heat stable and 
resistant to extreme pH values, which suggested that the 
antibiotic rather than protein might be responsible for the 
nematicidal activity. 

Antagonism was observed in 3 bio-control agents, 
namely, T. viride, P. lilacinum and P. fluorescens against 
F. oxysporum in vitro. Trichoderma species are widely 
used as biocontrol agents to reduce the disease 
incidence caused by plant pathogenic fungi and many 
soil borne pathogens (Papavizas, 1985; Sivan and Chet, 
1986). Pau et al. (2012) investigated the effect of 
antagonism on P. lilacinum in in vitro. The culture filtrates 
and their antagonism proved the biocontrol efficiency of 
these microbes. Results on antagonism clearly indicated 
the effect of bio-agents in in vitro on                   F. 
oxysporum. More antagonism was recorded with T. viride 
followed by P. lilacinum and                    P. fluorescens. 
Hence, it can be exploited further in development of 
formulations and evaluation under field conditions. 
 
 

Conclusion 
 
The findings on the effect of culture filtrates of three bio-
agents, namely, T. viride, P. fluorescens and P. lilacinum  

showed on root-knot nematode M. incognita in in vitro. 
The experiments also proved the antagonism of these 
bio-control agents on suppression of F. oxysporum f.sp. 
conglutinans. For the resultant data, the effect on M. 
incognita and on F. oxysporum was an apparent 
indication to control the nematode induced disease 
complex in in vivo in cauliflower (Rajinikanth et al., 2013) 
by application of eco-friendly bio-control agents of bio-
nematicide (P. lilacinum), bio-fungicide (T. viride) and bio-
bactericide (P. fluorescens).  
 
 
Conflict of Interests 
 
The authors have not declared any conflict of interests. 
 
 

ACKNOWLEDGEMENTS 
 

The authors are thankful to the Director, Indian Institute 
of Horticultural Research (IIHR), Bengaluru, India, for 
providing necessary facilities to conduct the experiments 
and the financial support from the National Bank for 
Agriculture and Rural Development (NABARD), 
Bengaluru, India, project is greatly acknowledged. 
 
 
REFERENCES 
 
Abd Al-Fattah A, Dababat, Sikora RA (2007). Ueseof 

Trichodermaharzianum and Trichoderma viride for the Biological 
Control of Meloidogyne incognita on Tomato. Jordan J. Agric. Sci. 
3(3):297-309.  

Babu AM, Kumar V, Philip P (1999). Root Knot Nematodes. Indian Silk. 
38:11-12. 

 

 

 
 

T. viride P. fluorescens P. lilacinum 

 



804          Afr. J. Biotechnol. 
 
 
 
Beneduzi A, Peres D, Beschoren da Costa P, Helena M, Maria Pereira 

L (2008). Genetic and phenotypic diversity of plant-growth-promoting 
bacilli isolated from wheat fields in southern Brazil. Res. Microbiol. 
159(4):244-250. 

Brand D, Soccol CR, Sabu A, Roussos S (2010). Production of fungal 
biological control agents through solid state fermentation: A case 
study on Paecilopmyces lilacinus against root-knot nematodes. Micol. 
Aplicada Int. 22:31-48. 

Bryan GT, Daniels MJ, Osbourn AE (1995). Comparison of fungi within 
the Gaeumannomyces-Phialophora complex by analysis of ribosomal 
DNA sequences. Appl. Environ. Microbiol. 61(2):681-689. 

Chen ZX, Dickson DW, McSorley R, Mitchell DJ, Hewlett TE (1996). 
Suppression of Meloidogynearenaria race 1 by soil application of 
endospores of Pasteuriapenetrans. J. Nematol. 28(2):159-168. 

De Boer CJ, Van Krieken JH, Janssen-van Rhijn CM, Litvinov SV 
(1999). Expression of Ep-CAM in normal, regenerating, metaplastic, 
and neoplastic liver. J. Pathol. 188(2):201-206. 

Don Liu, Sue Coloe, Rob Baird, John Pedersen (2000). Rapid Mini-
Preparation of Fungal DNA for PCR. J. Clin. Microbiol. 38(1):471. 

Enya J, Togawa M, Takeuchi T, Yoshida S, Tsushima S, Arie T (2008). 
Biological and phylogenetic characterization of Fusarium oxysporum 
complex, which causes yellows on Brassica spp., and proposal of F. 
oxysporum f. sp. rapae, a novel forma specialis pathogenic on B. 
rapa in Japan. Phytopathology 98(4):475-483. 

Hallaman J, Sikora RA (1994). Toxicity of Fungal Endophyte Secondary 
Metabolites to Plant Parasitic Nematodes and Soil-borne Plant 
Pathogenic Fingi. Eur. J. Plant Pathol. 102(2):155-162.  

Hurtado MA, Ansaloni T, Cros-Arteil S, Jacas JA, Navaja M (2008). 
Sequence analysis of the ribosomal internal transcribed spacers 
region in spider mites (Prostigmata: Tetranychidae) occurring in citrus 
orchards in Eastern Spain: use for species discrimination. Ann. Appl. 
Biol. 153(2):167-174. 

Ignjatov M, Miloševic D, Nikolic Z, Gvozdanovic-Varga J, Jovicic D, 
Zdjelar G (2012). Fusarium oxysporum as causal agent of tomato wilt 
and fruit rot. Pestic. Fitomed. 27(1):25-31. 

Jatala P (1986). Biological control of plant parasitic nematodes. Annu. 
Rev. Phytopathol. 24(1):453-489. 

John CD, Suthin RT, Usha R, Udayakumar R (2010). Role of defence 
enzymes activity in tomato as induced by Trichoderma virens against 
Fusarium wilt caused by Fusarium oxysporum f sp. Lycopersici. J. 
Biopesticides 3 (1): 158-162. 

Khan A, Williams KL (1998). Recent studies on Paecilomyceslilacinus 
as bionematicide. Nematologica 44:519-520.  

Lievens B, Rep M, Thomma BP (2008). Mini-review recent 
developments in the molecular discrimination of formae speciales of 
Fusarium oxysporum. Pest Manage. Sci. 64(8):781-788. 

Melo SC, Pungartnik C, Cascardo JC, Brendel M (2006). Rapid and 
efficient protocol for DNA extraction and molecular identification of 
the basidiomycete Crinipellisperniciosa. Genet. Mol. Res. 5(4):851-
855. 

Meyer S LF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao W 
(2001). Application of Burkholderiacepacia and Trichoderma virens, 
alone and in combinations, against Meloidogyne incognita on bell 
pepper. Nematropica 31(1):75-86. 

Meyer SLF, Huettel RN, Liu XZ, Humber RA, Juba J, Nitao K (2004). 
Activity of Fungal Culture Filtrates against Soybean Cyst Nematode 
and Root-knot Nematode Egg hatch and Juvenile mortality. 
Nematology 6(1):23-32. 

Michielse CB, Rep M (2009). Pathogen profile update: Fusarium 
oxysporum. Mol. Plant Pathol. 10(3):311-324. 

Mohd Y B, Hissa M, Nazir AB (2009). Histological interactions of 
Paecilomyceslilacinusand Meloidogyne incognita on bitter gourd. J. 
Am. Sci. 5:8-12. 

Molla AH, Shamsuddin ZD, Halimi MS, Morziah M, Puteh AB (2001). 
Potential for enhancement of root growth and nodulation of soybean 
coinoculated with Azospirillum and Bradyrhizobium in laboratory 
systems. Soil Biol. Biochem. 33(4):457-463. 

Morgan-Jones G, White JF, Rodriguez-kabana R (1984). 
Phytonematode pathology: Ultrastructural studies II. Parasitism of  
Meloidogynearenaria eggs and larvae by Paecilomyceslilacnus. 
Nematropica 14(1):57-71. 

Otsu Y, Matsuda Y, Mori H, Ueki H, Nakajima T, Fujiwara K, Matsumoto  

 
 
 
 

M, Azuma N,  Kakutani  K,  Nonomura  T,  Sakuratani  Y,  Shinogi  T, 
Tosa Y, Mayama S, Toyoda H (2004). Stable phylloplane 
colonization by entomopathogenic bacterium Pseudomonas 
fluorescens KPM-018P and biological control of phytophagous 
ladybird beetles Epilacnavigitioctopunctata (Coleoptera: 
Coccinellidae). Biocontrol Sci. Technol. 14(5):427-439. 

Papavizas GC (1985). Trichoderma and Gliocladium: Biology, Ecology 
and potential for biocontrol. Annu. Rev. Phytopathol. 23(1):23-54.  

 Pau CG, Leong CTS, Wong S K, Eng L, Jiwan M, kundat FR, Aziz 
ZFBA, Ahmed OH, Majid NM (2012). Isolation of Indegenous strains 
of Paecilomyceslilacinus with Antagonistic Activity against 
Meloidogyne incognita. I J. Agric. Biol. 14(2):197-203. 

Perveen S, EhteshamulHaque S, Ghaffar A (1998). Efficacy of 
Pseudomonas aeruginosa and Paecilomycislilacinusin the control of 
root rot-root knot disease complex on some vegetables. Nematol. 
Mediterr. 26:209-212. 

Plaza GA, Upchurch R, Brigmon RL, Whitman WB (2004). Rapid DNA 
extraction for screening soil filamentous fungi using PCR 
amplification. Pol. J. Environ. Stud.13(3):315-318. 

Punja ZK, Utkhede RS (2004). Biological control of fungal diseases on 
vegetable crops with fungi and yeasts. Mycol. Ser. 21:157-172. 

Raaijmakers JM, Weller DM (1998). Natural Plant Protection by 
2,4Diacetylphloroglucinol– Producing Pseudomonas spp. in Take-All 
Decline Soils.Mol Plant-Microbe Interact. 11(2):144-152. 

Raeder U, Broda P (1985). Rapid preparation of DNA from filamentous 
fungi. Lett. Appl. Microbiol. 1(1):17-20. 

Rajinikanth R, Rao MS, Pavani KV, Manojkumar R, Chaya MK, 
Rathnamma K, ShivanandaT N (2013). Management of nematode 
induced disease complex in seedlings of cauliflower 
(Brsassicaoleraceae var. botrytis) using bio-pesticides. Pest Manag 
Hortic Ecosystems. 19(2):203-210. 

Rao MS (2007). Papaya seedlings colonized by the bio-agents 
Trichoderma harzianumand Pseudomonas fluorescensto control root-
knot nematodes. Nematol. Mediterr. 35(2):199-203. 

Rao MS, DhananjayNaik, Shylaja M, Reddy PP (2002). Prospects for 
the management of disease complex in vegetable crops using 
biological control agents. Proceedings of International Conference on 
vegetables. 11-14 November, 2002, Bangalore, India. pp. 347-351. 

Rao MS, Reddy PP (1994). Amethod for conveying 
Paecilomyceslilacinus to soil for the management of root-knot 
nematodes on eggplant. Nematol. Mediterr. 22(2):265-267. 

Rao MS, Reddy PP, Nagesh M (1999). Bare root dip treatment of 
Tomato seedlings in Calotropis or Castor leaf extracts mixed with 
Paecilomyceslilacinus spores for the management of Meloidogyne 
incognita. Nematol. Mediterr. 27:323-326. 

Reibinger A (1995). Untersuchung zur wirkung endophytischer Pilze 
aus Bananenwurzeln auf Radopholussimilis. Diploma Thesis, 
University of Bonn, Germany. 77 p.  

Savazzini F, Longa CMO, Pertot I (2009). Impact of biocontrol agent 
Trichoderma atroviride SC1 on soil microbial communities of a 
vineyard in northern Italy. Soil Biol. Biochem. 41(7):1457-1465. 

Siddiqui IA, Ehteshamul S, Ghaffer A (1999). Root dip treatment with 
Pseudomonas aeruginosa and Trichoderma spp., root rot-root knot 
disease complex in chilli (Capsicum annum L.). Pak. J. Nematol. 
17:67-75. 

Sikora RA, Fernandez E (2005). Nematode parasites of vegetables, In: 
Luc M, Sikora RA, Bridge J (eds), Plant-Parasitic nematodes in 
subtropical and tropical agriculture, CABI Pub. UK: Wallingford, pp. 
319-392. 

Sivan A, Chet I (1986). Biological control of Fusarium spp in cotton, 
wheat and muskmelon by Trichoderma harzianum. J. Phytopathol. 
116(1):39-47. 

Sudheer K (2010). Cryopreservation. Short and long term storage of 
fungal cultures. Chowdappa P. (eds.), Indian Institute of Horticultural 
Research, Bangalore, 13:4-6. 

Thomashow LS, Weller DM, Bonsall RF, Pierson LS III (1990). 
Production of the antibiotic phenazine-1-carboxylic acid by 
fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. 
Environ. Microbiol. 56(4):908-912. 

Verma M, Brar SK, Tyagi RD, Sahai V, Prevost D, Valero JR, 
Surampalli RY (2007). Bench-scale fermentation of Trichoderma 
viride on waste water sludge: rheology, lytic enzymes and biocontrol  



 
 
 
 

activity. Enzyme Microb. Technol. 41(6):764-771. 
Vincent JM (1927). Distribution of fungal hyphae in the presence of 

certain inhibition. Nature 159(4051):850. 
Vu TT (2005). Mode of Action of Non-pathogenic Fusarium oxysporum 

endophyted for bio-enhancement of Banana toward Radopholus 
similis. Ph.D Thesis, University of Bonn, Germany. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rompalli et al.          805 
 
 
 
William GW, Susan MB, Dale AP, David JL (1991). Gene-Trak 

Systems. 16S Ribosomal DNA Amplification for Phylogenetic Study. 
J. Bacteriol. 173(2):697-703. 

 
 


