Full Length Research Paper

Eco-taxonomic distribution of plant species around motor mechanic workshops in Asaba and Benin City, Nigeria: Identification of oil tolerant plant species

Anoliefo, G. O.¹*, Ikhajiagbe, B.², Okonofhua, B. O.³ and Diafe, F. V.¹

¹Department of Botany, University of Benin, Benin City, Nigeria. ²Raw Materials Research and Development Council, Abuja, Nigeria. ³Department of Crop Science, University of Benin, Benin City, Nigeria.

Accepted 15 August, 2006

A survey of plant species and their families present in auto mechanic workshops in Benin City and Asaba was carried out. The frequency of occurrence of plants in the sites visited was used to determine prevalence. *Peperomia pellucida* occurred most in all the sites visited with a 55% frequency. The high rate of occurrence of a particular plant species in the frequency table, suggests that such plants are tolerant and may be introduced as a possible phytoremediating agent.

Key words: Tolerant plants, mechanic workshops, Peperomia pellucida, waste engine oil.

INTRODUCTION

The world wide demand for lubricating oils for industrial processes, passenger and heavy goods vehicles stands at about 38.5 million tons (Szramka, 1995). This gives an indication of high level production of spent oil from these sectors. Due to the epileptic nature of public power supply in Nigeria, the use of private electricity generating sets, in recent times, have increased the need for engine lubricants (Anoliefo et al., 2001). The disposal of this waste oil into gutters, open vacant plots and farms is a common practice mostly done by auto mechanics and allied artisans. Waste engine oil pollution is responsible for several environmental problems, risks to human health and plants, including decreased soil microbial activity and fertility (Mc Grath et al., 1995).

There are relatively large amounts of hydrocarbons in the spent engine oil including the highly toxic polycyclic aromatic hydrocarbon (PAH) (Wang et al., 2000). Spent engine oil in soil creates unsatisfactory conditions for plant growth ranging from heavy metal toxicity to insufficiency in aeration of the soil (Anoliefo and Vwioko, 1995). Edeberi and Nwanokwale (1981) observed that most heavy metals such as V, Pb, Al, Ni and Fe which were low in the unused engine oil gave higher concentrations in the spent engine oil. Heavy metals such

*Corresponding authors E-mail: obidimbu@yahoo.com.

as Cu and Zn are essential for normal plant growth, although elevated concentration of both essential and non-essential metals can result in growth inhibition and toxicity symptoms (Hall, 2002). However, Cunningham and Lee (1995) reported that plants and their roots can create a soil environment rich in microbial activity that can change the availability of organic contaminants or enhance the degradation of contaminants such as petroleum hydrocarbons. These plants include those that are found around mechanic workshops where the major soil pollutant is spent engine oil.

Identification of plants that is prevalent in such polluted sites needs to be done so that their capacity for tolerance and potential for phytoremediation of such polluted sites could be assessed. This study aims to documents the frequency of occurrence of plant species growing within some motor mechanic workshops at Asaba and Benin metropolis.

MATERIALS AND METHODS

Study areas

Twenty (20) different motor mechanic workshops were randomly selected for the present study, 10 at Asaba and 10 in Benin City, Nigeria. Those at Asaba were located at Okpanam Road, Gbenu Street, Anwai Road, West End Junction, Coker Junction, Onitsha-Benin Express Roads 1 and 2, Okpanam Road, Old Secretariat Road, Fumnanya Street, and Nnebisi Road. Sites selected in Benin

City were located at Technical road junction, Upper Forestry road, Ikpoba slope, Lower Uwasota road (Uwelu), Oteghekpen street (Siluko road), Uwasota road, Benin–Lagos road (Ugbowo), Benin – Lagos (Adolor junction), Federal Government Girls College road and Ogba road. These selections reflect representative spread of the mechanic workshops in Asaba and Benin City.

Collection and identification of plant samples

Higher plant species were collected around 5 metre radius of each motor mechanic workshop. The different plant species at the various workshops were separately kept in labeled polythene bags and then taken to the laboratory where they were pressed and identified. Frequency of occurrence was determined as the rate (%) at which a plant species appeared in the experimental sites sampled.

RESULTS AND DISCUSSION

A combination of all the plant species resulted to a total number of seventy (70) different plant species that were identified in the 20 randomly sampled mechanic workshops at Asaba and Benin City (Table 1). Thirty five (35) of these plant species were identified in Benin City while 55 were identified at Asaba. Peperomia pellucida occurred most in all the sites visited with a 55% frequency. The plant occurred in all the sites in Benin City, but were found in only one site at Asaba. Fluerya aestuans and *Eleusine indica* were moderately distributed in all the sites. The distribution of Ageratum conyzoides and Tridax procubens could also be described as moderate. Similarly, Acanthospermum hispidum was well distributed in sites at Asaba but was not found in Benin City (Table 1). Plant species that were least distributed in all the sites sampled include Aneilemia aequinoctiale, Aspillia africana, Ananas comosus, Euphorbia hyssopifolia. Setaria pallide-fusca. Setaria longiseta, Spigelia anthelmia and Euphorbia heterophyllia (Table 1). In all the sites visited, plant species of the family Poaceae were most prevalent (Figure 1). This was followed by the families Asteraceae > Euphobiaceae > Amaranthaceae = Caesalpiniaceae > Cyparaceae in that order. Plants of the family Bromeliaceae, Lamiaceae, Asystasiae, Ficeae and Musaceae were among the least prevalent plant.

The prevalence of some plant species such as *Peperomia pellucida* and *Acanthospermum hispidum* in one metropolis but not in the other (Table 1) can be attributed to environmental factors. The topography of the land, soil type, drainage characteristics, climatic factors and the level of oil present in the environment include the environmental factors that affect growth of plants (Imevbore and Adeyemi, 1981).

Spent engine oil in soil contains relatively large amounts of hydrocarbons, including the highly toxic polycyclic aromatic hydrocarbon (PAH) (Wang et al., 2000) and toxic heavy metals (Edeberi and Nwanokwale, 1981). Plants growing in metal-contaminated soil must have developed some degree of tolerance to metal toxicity in order to survive. Metal tolerance may result from two basic strategies: metal exclusion and metal detoxification (Baker, 1981). The excluders prevent metal uptake into roots avoiding translocation and accumulation in shoots (De Voss et al., 1991). These plants have a low potential for metal extraction, but they can be used to stabilize the soil, and avoid further contamination spread due to erosion (Dahmani-Muller et al., 2000). In contrast, hyperaccumulators absorb high levels of metals in cells.

Peperomia pellucida could be termed the most spent engine oil-tolerant plant species in Benin City because it was found in all the sites visited in this city. Similarly, Acanthospermum hispidum could be described as the most tolerant species in Asaba where it occurred in most of the sites. Among the moderately distributed plant species found in the experimental sites are those that have been shown in previous studies to survive in crude oil (Merkl et al., 2005) and heavy metal contaminated soils (Wong and Lau, 1985; Chukwuma, 1995,). Accordingly, Eleusine indica has been shown to survive in crude oil and Pb contaminated soils, and Panicum maximum in Ni, Zn, and Mn contaminated soil. These plants have developed heavy metal tolerant strategies (Dahmani-Muller et al., 2000) as well as a range of potential cellular mechanisms (Hall, 2002) which enable them detoxify heavy metals as well as PAH so as to survive and reproduce in highly contaminated soils.

The present study suggests that plants found on spent engine oil polluted sites are tolerant to heavy metal constituents of spent engine oil. This is because spent engine oil contains heavy metals such as V, Pb, Al, Ni, and Fe (Edeberi and Nwanokwale, 1981). Earlier studies (Adeniyi, 1996; Yusuf et al., 2003) reported that *Talinum triangulare, Vernonia amagdylina* and *Telferia occidenttalis* were tolerant to Cd, Cu and Ni in the soils on which they were grown. *Commelina communis* survived in Cd polluted soils by metal exclusion (Wei et al., 2005). *Euphorbia hirta* has also been considered a phytoremediant as it is able to take up considerable amount of Cu and Ni in its tissues (NedelKoska and Doran, 2000).

Some of the plants that were observed to be less prevalent in occurrence in the present study have been found in previous studies to exhibit tolerance to petroleum hydrocarbons and heavy metals. For example, *Amaranthus spinosus* was earlier reported by Chen et al. (1996) to accumulate Cu in its root tissues. Similarly, Odjegba and Sadiq (2002) also showed that *Amaranthus hybridus* is tolerant to soil pollution by spent engine oil. Salvador et al. (2004) reported that some elements like Fe, Cu, Zn, Sr, Pb, Cr, Co, Ni, Cd, and Ba were detected in some species of Amaranthaceae. Merkl et al. (2005) also reported that roots of *Cyperus aggregatus* were unaffected by petroleum hydrocarbons.

Almost all the plant families that are most prevalent in this present study have been reported to accumulate heavy metals. Prasad and Feitas (2003) stated that about Table 1. Distribution of Plant Species in Mechanic Workshops Located in Asaba and Benin City. Values show the frequency of occurrence (%) of plant species in respective locations.

s/n	Plant species	Family	Asaba (%)	Benin City (%)	Ave. (%)	s/n	Plant species	Family	Asaba (%)	Benin City (%)	Ave. (%)
1	Amaranthus spinosus	Amaranthaceae	0	40	20	36	Euphorbia hyssopifolia	Euphorbiacea	20	10	15
2	Gomphrena celosiodes	Amaranthaceae	40	10	25	37	Euphorbia heterophyllia	Euphorbiacea	10	0	5
3	Aneilemia beniniens	Amarantheceae	0	10	5	38	Euphorbia hirta	Euphorbiacea	40	0	20
4	Aneilemia aequinoctiale	Amarantheceae	30	0	15	39	Mallotus oppositifolius	Euphorbiacea	0	10	5
5	Colocasia esculentum	Araceae	10	10	10	40	Mimosa pudica	Fabaceae	0	10	5
6	Acanthospermum hispidum	Asteraceae	70	0	35	41	Ficus exasperate	Ficeae(Moraceae)	0	10	5
7	Ageratum conyzoides	Asteraceae	20	60	40	42	Hyptis suaveolens	Lamiaceae	20	0	10
8	Aspillia africana	Asteraceae	30	0	15	43	Spigelia anthelmia	Loganiceae	10	0	5
9	Chromolaena odorata	Asteraceae	10	0	5	44	Malvastrum coromandelianum	Malvaceae	0	30	15
10	Melanthera scandens	Asteraceae	0	20	10	45	Sida rhombifolia	Malvaceae	20	0	10
11	Synedrella nodiflora	Asteraceae	20	0	10	46	Musa paradisiaca	Musaceae	10	10	10
12	Tridax procumbens	Asteraceae	60	20	40	47	Boerhavia coccinea	Nyctaginacea	10	0	5
13	Vernonia cinerea	Asteraceae	30	20	25	48	Peperomia pellucida	Piperaceae	10	100	55
14	Asystasia gomstretis	Asystasieae	20	0	10	49	Plastostoma africanum	Piperaceae	20	0	10
15	Newbouldia laevis	Bignoniaceae	10	0	5	50	Cenchrus biflorus	Poaceae	10	0	5
16	Ananas comosus	Bromeliaceae	20	10	15	51	Echinochloa colona	Poaceae	0	10	5
17	Cassia hirsuta	Caesalpiniacea	30	0	15	52	Eleusine indica	Poaceae	40	50	45
18	Cassia mimosoides	Caesalpiniacea	0	10	5	53	Eragrostis tenelia	Poaceae	40	20	30
19	Cassia obtusifolia	Caesalpiniacea	10	10	10	54	Panicum maximum	Poaceae	30	40	35
20	Cassia occidentalis	Caesalpiniacea	0	10	5	55	Panicum rapens	Poaceae	10	0	5

Table 1. Contd.

21	Carica papaya	Caricaceae	10	20	15	56	Phyllantus amarus	Poaceae	50	0	25
22	Cleomae rutidosperma	Capparaceae	0	10	5	57	Rottboellia cochinchinensis	Poaceae	10	0	5
23	Chloris pilosa	Chlorideae	30	0	15	58	Setaria barbata	Poaceae	10	40	25
24	Solenospermum monostrachyrus	Celastrineae	30	0	15	59	Setaria longiseta	Poaceae	10	0	5
25	Commelina diffusa	Commelinacea	10	0	5	60	Setaria pallide-fusca	Poaceae	10	0	5
26	C. benghalensis	Commelinaceae	30	30	30	61	Portulaca oleracea	Portulaceae	20	10	15
27	Commelina erecta	Commelinaceae	0	10	5	62	Talinum triangulare	Portulaceae	30	10	20
28	lpomoea mauritiana	Convulvulacea	10	0	5	63	Mitracarpas villosus	Rubiaceae	10	0	5
29	Ipomoea tribola	Convulvulacea	30	20	25	64	Oldenlandia corymbosa	Rubiaceae	10	0	5
30	Bryophyllum pinatum	Crassulaceae	0	10	5	65	Physalis angulata	Solanaceae	10	10	10
31	Cyperus rotundus	Cyperaceae	10	0	5	66	Solanum nigrum	Solanaceae	0	10	5
32	Cyperus tuberosus	Cyperaceae	40	0	20	67	Spermacoce verticillata	Spermacoceae	30	0	15
33	Mariscus alternifolius	Cyperaceae	20	0	10	68	Fluerya aestuans	Urtinaceae	30	70	50
34	Mariscus flabelliformis	Cyperaceae	0	20	10	69	Fluerya ovalifolium	Urtinaceae	30	0	15
35	Alchornea laxiflora	Euphorbiacea	10	0	5	70	Vernonia ambigua	Vernonieae	10	0	5

Figure 1. Number of plant species present by families in locations sampled.

400 plants that hyperaccumulate metals have been reported. They listed the families dominating these members to include Asteraceae, Brassicaceae, Caryophyllaceae, Cyperaceae, Cunouniaceae, Fabaceae, Flacourtiaceae, Lamiaceae, Poaceae, Violaceae, and Euphobiaceae. Plant families differed in their tolerance to spent engine oil based on the number of plant species present on the sites (Figure 1). The predominance of Poaceae over other families (Figure 1) in all the sites visited indicates that they are the most tolerant to spent engine oil and its heavy metal contents. Accordingly, Gibson and Pollard (1988) reported earlier that heavy metal tolerance was common in the family Poaceae. This phenomenon demonstrates that the family has the highest genetic potential to clean up spent engine oil-contaminated soil.

The present study thus identifies plant species and their families that were tolerant to spent engine oil polluted soils. This observation therefore presents a list of plants that are likely candidates for remediation strategies and management for spent engine oil contaminated soils.

REFERENCES

- Adeniyi AA (1996). Determination of cadmium, copper, iron, lead, manganese, and zinc in water leaf (*Talinum triangulare*) in dumpsites. Environ. Int. 259:259-262.
- Anoliefo GO, Edegbai BO (2001). Effect of spent engine oil as a soil contaminant on the growth of two egg plant species, *Solanum melongen* L and *S. incanum*. J. Agric. Forestry Fisheries.1:21–25.
- Anoliefo GO, Vwioko DE (1995). Effects of spent lubricating oil on growth of *Capsicum annum* L. and *Lycopersicon esculentum*, Mill. Environ. Pollut. 88:361–364.
- Baker AJM (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr. 3:643–654.
- Chen J, Chen W, Hsu R (1996). Biosorption of copper from aqueous solutions by plant root tissues. J. Ferment. Bioeng. 81:458–463.
- Chukwuma C (1995). Evaluating baseline data for copper, manganese, nickel and zinc in rice, yam, cassava and guinea grass from cultivated soils in Nigeria. Agric., Ecosystem Environ. 53:47–61.
- Cunningham SD, Lee CR (1995). Phytoremediation:Plant-based remediation of contaminated soils and sediments.Bioremediation: Science, Application Regulation and Technology. Soil Science Society of America Special Publication, Madison. Pp.145-156
- Dahmani-Muller H, Van Oort F, Gelie B, Balabane M. (2000). Environ. Pollut. 109:231-238.
- De Vos CHR, Schat H, De Waal MAM, Voojs R, Ernst WHO (1991). Inc-

- reased resistance to copper-induced damage of root cell plasmalemma in copper tolerant *Silene cucubalus*. Physiol. Planta-rum. 82:523– 528.
- Edebiri RAO, Nwanokwale E (1981). Control of pollution from internal combustion engine used lubricant. Proc. Int. Seminar Petroleum Industry and the Nigeria Environment. 9-12.
- Gibson JP, Pollard ÅJ (1988). Zn tolerance in *Panicum virgatum* L. (Switch grass) from the pitcher mine area. Proc. Okhahoma Academy Sci. 68:45-48.
- Hall JL (2002). Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53:1- 11.
- Imevbore AAA, Adeyemi SA (1981). Environmental monitoring in relation to pollution and control of oil pollution. In: Proc. Seminar on the petroleum industry and the Nigerian environment. 6:135 142
- McGrath S, Chaudri AM, Griller KE (1995). Long term effects of metals in sewage sludge on soils, micro organiams and plants. J. Ind. Microbiol. 14:94–104.
- Merkl N, Schultze-Kraft R, Infante C (2005). Phytoremediation in the tropics-influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut. 138:86-91.
- Nedelkoska TV, Doran PM (2000). Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Min. Eng. 13:549–561.

- Prasad MNV, Freitas H (2003). Metal hyperaccumulation in plants Biodiversity prospecting for phytoremediation technology. Electron J. Biotechnol. 6(3)
- Salvador MJ, Moreira S, Dias DA, Zucchi OLAD (2004). Determination of Trace Elements in Alternanthera brasiliana and Pfaffia glabrata by SRTXRF: Application in Environmental Pollution Control. Instrum. Sci. Technol. 32:321-333.
- Szramka W (1995). Waste oil collecting, analysis and recycling oil manufacture. Nat. Resources Dev. 41:22-35.
- Wei S, Zhou Q, Wang X (2005). Identification of weed plants excluding the uptake of heavy metals. Environ. Int. 31:829-834
- Wong MH, Lau WM (1985). Root growth of *Cynodon dactylon* and *Eleusine indica* collected from motorways at different concentrations of lead. Environ. Res. 36:257-267.
- Yusuf AA, Arowolo TA, Bamgbose O (2003). Cadmium, copper and nickel levels in vegetables from industrial and residential areas in Lagos City, Nigeira. Food Chem. Toxicol. 41:375–378.