Full Length Research Paper

Epidemiological studies of the incidence of pathogenic *Campylobacter* spp. amongst animals in Lagos metropolis

P. O. Uaboi-Egbenni¹*, P. N. Okolie², O. D. Adesanya³, E. Omonigbehin⁴, A.O. Sobande⁵

¹School of Science, Department of Biological Science, Yaba College of Technology, P. M. B. 2011, Yaba Lagos, Nigeria.
²School of Technology, Department of Food Technology, Yaba College of Technology, P. M. B. 2011, Yaba Lagos. P.O. Box 3724, Sabo, Yaba, Lagos, Nigeria.
³Faculty of Science, Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria.
⁴National Institute for Medical Research, Department of Genetic Engineering, Yaba Lagos, Nigeria.
⁵School of Science, Department of Biological Science, Yaba College of Technology, P. M. B. 2011, Yaba Lagos, Nigeria.

Accepted 15 July, 2008

Faecal specimens were collected from different animal species (puppies, Guinea fowl, chicken and pigs) at different farm locations in Lagos (Inner City - Central urban area; peripheral City – rural/farming houses; Rural - a farming and agricultural zone, where people raised their own domestic animals). In all, 200 animals were sampled out of which twenty (14%) were positive for *Campylobacter*, seventeen (17) of these (60.7) were positive for animals from peripheral zone, nine (9)(32.1%) were found positive for animals from the rural zone and two (2)(7.1%) were positive for animals obtained from the inner zone of Lagos metropolis. The trend of infection by *Campylobacter* as exemplified in this study was pig, two samples (7.1%); chicken, 7 samples (25%); sheep, two samples (7.1%); puppies, 0 (0.0%), and guinea fowl, 17 samples (60.7). The peripheral zone had more incidence of *Campylobacter* with an incidence rate in the order peripheral zone (8.5%)» rural zone (4.5%) > inner zone (1.0%). The results of biochemical tests reveal that three (3) samples were positive for *Campylobacter coli* biotype II, seventeen (17) samples were positive for *Campylobacter coli* biotype I and one (1) sample for *Campylobacter jejuni* biotype I. These results are indicative that the epidemic of *Campylobacter* infection is possible amongst handlers of these farm animals.

Key words: Faecal, peripheral, central, inner, puppies, campylobacter, coli, jejuni

INTRODUCTION

Many years ago there had been a marked change in the pattern of infectious diseases. Along with the disappearance or decline of some infections, new infections have been recognized. Some of these have been due to technical advances in laboratory methods for identification of causal pathogens e.g., for bacterial infections like *Campylobacter enteritis* (Skirrow, 1994; Blaser et al., 1983; Hindiyeh et al., 2000; Steinhauserova et al., 2000; Coker et al., 2002; Moore et al., 2005). *Campylobacter jejuni* is naturally found in wild birds, chicken, cattle and sheep, cats and puppies and have been noted to cause sporadic abortion in sheep (Petersen et al., 2001; Hald et al., 2004; Moser et al., 2001; Sandberg et al., 2002; Steinhauserova et al., 2000; Torre and Tello, 1993). Humphrey (1986b) have also argued that *C. jejuni* is sub-lethally damaged by exposure to low temperatures hence investigation that do not take into cognizance above phenomenon are likely to underestimate the incidence and number of *C. jejuni* in refrigerated milk or food.

Origin of outbreaks can be determined by haemagglutination method (Penner and Humphrey, 1980) and the slide agglutination method of Lior (1984), which are both widely used for serotyping strains of *Campylobacter* species. The importance of serotyping strains from out-
breaks has been documented (Jones et al., 1985). The biotyping scheme of Preston has been used for the epidemiological typing of strains from outbreaks (Bolton et al., 1984). The biotyping scheme has provided means of differentiating between C. jejuni, Campylobacter coli and Campylobacter lariis.

Bolton et al. (1984) reported cases of Campylobacter enteritis from a litter of 11 puppies in which all but one died and most of the household, which received the puppies, had human cases. In their report nine (9) households were infected and sixteen (16) human cases diagnosed. Strains of cases associated with animals and the environment were diagnosed using the diagnostic scheme of Humphrey (1980), Lior (1984) and the Preston biotyping scheme (Bolton et al., 1984) and recently the PCR identification methods of identification using either the 16S rRNA (Giesendorf and Quint, 1995; Linton et al., 1996), the 23S rRNA (Eyers et al., 1993), flaA (flagellin)(Waegel and Nachamkin, 1996), GTPr-binding protein (van Doorn et al., 1997), cuE (iron transport protein)(Gonsales et al., 1997), 5' Taq nuclease assay (McMillen et al., 2006) and hip (hippuricase)(Linton et al., 1997) as well as genotyping of bovine and humans isolates by amplified-fragment length polymorphism (AFLP) (Johnsen et al., 2006).

C. jejuni have now been recognized as one of the leading bacterial agent of gastro-enteritis in humans whereas hitherto attention was focused on their pathogenicity among domesticated animals (Coker et al., 2002; Moore et al., 2005; Skirrow, 1982). Information from available data have shown few outbreaks in which an animal or animal product were ultimately incriminated or identified as source. Furthermore, some serotypes of Campylobacter that cause disease in humans have been isolated from animals. Blaser et al. (1983) also confirmed that there is Campylobacter infection in domestic animals and that most commercially raised poultry have Campylobacter in their intestinal flora. Infection may start early in life and that sources of entry into flock includes infection of new born chick from old birds, contaminated feed or contaminated water (Blaser et al., 1983). C. Jejuni and other Campylobacter species are often present in the stools of healthy dogs and those with diarrhoea. Reported isolated cases vary from herd to herd, but may be due to the use of different methods for isolation of Campylobacter (Blaser et al., 1983). Penner and Humphrey (1980) in his study observed that more than half of commercially raised pigs excrete the organism. Isolates of C. jejuni are usually susceptible to erythromycin and therapy shortens the duration of faecal shedding of bacteria (Cheesebrough, 1984).

Campylobacter are polarly flagellated. Somatic flagellum and capsular antigens all contribute to the numerous serotypes. Most Campylobacter are microaerophilic and members of the genus utilize a respiratory pathway; they do not ferment carbohydrates. Campylobacter infection can cause ulcerative, inflammatory lesions in jejunum, ileum or colon. It can cause bacteraemia as seen in children and adults (Strohl et al., 2001). Campylobacter because of their wide distribution can be transmitted to humans primarily via the faeco-oral route, through direct contact exposure to contaminated meat (especially poultry or contaminated water supplies (William et al., 2001). C. jejuni is a cause of Traveller’s diarrhoea and pseudo-appendicitis (Strohl et al., 2001). Complications may include septic abortion, reactive arthritis and Guillain-Barre Syndrome (Strohl et al., 2001. Other enteric Campylobacters cause similar clinical presentation. Campylobacters fetus causes infection of vascular sites, but may also infect CNS and other local sites. In compromised hosts, campylobacteriosis is more likely to result from infection with C. fetus than with C. jejuni. C. fetus causes spontaneous abortion in domestic animals (McMillen et al., 2006; Tortora et al., 1997).

Campylobacter can be isolated from faeces using special selective media and microaerophilic conditions. Because of their small size bacteriologic filters that hold back most other bacteria do not retain these organisms. Thus, filtration of the faecal suspension may enhance recovery rate. Presumptive diagnosis can be made on the basis of finding curved organisms with rapid, darting motility in wet mount of faeces (William et al., 2001). Diarrhoea caused by Campylobacter in United States has surpassed that of Shigella and few inoculum doses are necessary to establish infection (Tortora et al., 1997; William et al., 2001).

MATERIALS AND METHODS

Materials and reagents

Materials and reagents used were Campylobacter Agar base, 10% blood, disposable, ethanol, selective supplement (SR 85), oxidase strips, hydrogen peroxide, tryptone Soy broth, glycerol, swab stick, membrane filters, 1% sodium hippurate, 3.5% ninhydrin, butanol, DNA test Agar, Brucella broth, Na2HPO4, KH2PO4, Agar-Agar, ferrous sulphate, sodium metabisulphite and sodium pyruvate.

Preparation of Campylobacter media

About 19.5 g of Campylobacter agar base powder was dissolved in 500 ml of distilled water. This was mixed gently, melted to dissolve in a water bath and sterilized by autoclaving at 121°C for 15 min. The medium was allowed to cool to 50°C after which 10% blood was added and mixed gently. The selective supplement was reconstituted with a prepared mixture of 50% methanol and distilled water and allowed to mix thoroughly. This was dispensed aseptically in 20 ml portion into sterile petridishes. The surface of the prepared agar, which were to be used immediately were dried in an incubator.

Culture method

Samples from freshly voided stool were collected in sterile container. Each sample after collection was inoculated into Butzler medium, care being taken to avoid contamination after faeces collection. In addition, where it was not possible to collect faeces (in cases of pigs, puppies and sheep) rectal swabs were collected. Such rectal swabs were collected by inserting sterile cotton swabs into the rectum for about 10 s, care being taken to avoid contamina-
Table 1. Result of all tests performed for the identification of the various Campylobacter spp. and biotypes in animal faeces.

<table>
<thead>
<tr>
<th>Test</th>
<th>Biotype</th>
<th>C. jejuni</th>
<th>C. coli</th>
<th>C. laridis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
</tr>
<tr>
<td>Chicken</td>
<td>+</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Guinea Pig</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Sheep</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Pig</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Nil = None of the biotypes was found; + = positive for the biotype.

The number of + shows the number of faeces samples that were positive for each of the animals.

Table 2. Occurrence and distribution of Campylobacter in faeces samples collected from different zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>No. of samples collected</th>
<th>% of samples collected</th>
<th>No. of positive samples</th>
<th>% of positive samples over total samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner</td>
<td>66</td>
<td>33.0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>Peripheral</td>
<td>71</td>
<td>35.5</td>
<td>17</td>
<td>8.5</td>
</tr>
<tr>
<td>Rural</td>
<td>63</td>
<td>31.5</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100</td>
<td>28</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Storage of Campylobacter

Into prepared sterile tryptone soya broth supplemented with 20% glycerol was inoculated pure colonies of Campylobacter. The inoculated broth was frozen or kept below 4°C.

Biochemical test

Since Campylobacter are not carbohydrate fermenting, suspected colonies were subjected to catalase, motility and oxidase test as described by Olutola et al. (1991). Identification of the various biotypes was done using the schemes of Lior (1984) and Bolton et al., (1984) as well as Nachamkin (1995).

RESULTS AND DISCUSSION

From the faeces of domestic animals analyzed, one (4.8%) from Guinea fowl was positive out of twenty-one samples and was identified as C. jejuni biotype I and three (14.2%) from chicken/guinea fowl were identified as C. coli biotype II, while seventeen (81%) of all the species of animals understudy except puppies were positive and were found to be C. coli biotype I. No C. laridis was isolated (see Table 1).

Of the total number of animals sampled during the period of study, twenty-eight (14%) were positive for Campylobacter (Table 2), of which, seventeen (8.5%) were found in the peripheral zone, nine (4.5%) were found in the rural zone and two (1.0%) in the inner zone. Only animals that had Campylobacter infections alone were included in the analysis.

Table 3 shows the degree of occurrence of Campylobacter in the samples of faeces analysed. Seventeen samples (60.7%) were positive for guinea fowl, two (7.1%) were positive for sheep; seven (25%) were positive for chicken and two (7.1%) were positive for pigs. All faecal samples for puppies were negative for Campylobacter.

Most epidemiological studies in different parts of the world have indicated that domesticated animals constitute a major natural reservoir for Campylobacter species (Blaser et al., 1980; Annan-Prah and Janc (1988); Adetosowy and Adeniran (1987). This study has noted that Campylobacter coli biotype I is more preponderant amongst chicken and guinea fowl from this study (17; 60.7%) of the total samples analyzed were positive) (Table 3). This observation suggests C. coli biotype I was mostly responsible for enteritis in chicken and guinea fowl observed during the field study. This result agrees with the findings of Annan-Prah and Janc (1988) where they observed a high incident rate of spread of C. jejuni and C. coli among broiler flocks. Blaser et al. (1980) in their own findings observed that most commercially raised poultry
Table 3. Occurrence and distribution of *Campylobacter* in faeces samples collected from different animals

<table>
<thead>
<tr>
<th>Animal</th>
<th>No. of samples collected</th>
<th>% of samples collected</th>
<th>No. of positive samples</th>
<th>% of positive samples over total samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig</td>
<td>20</td>
<td>10</td>
<td>2</td>
<td>7.1</td>
</tr>
<tr>
<td>Chicken</td>
<td>76</td>
<td>38</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>Sheep</td>
<td>13</td>
<td>6.5</td>
<td>2</td>
<td>7.1</td>
</tr>
<tr>
<td>Puppies</td>
<td>20</td>
<td>10</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Guinea fowl</td>
<td>71</td>
<td>35.5</td>
<td>17</td>
<td>60.7</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>100</td>
<td>28</td>
<td>99.9</td>
</tr>
</tbody>
</table>

have *Campylobacter* in their intestinal flora and said that contamination may be nearly universal and may start early in life although some flocks escape infection completely. This may have been responsible for negative results obtained for faeces obtained from some guinea fowl and chicken. The preponderance of *Campylobacter* infection amongst the guinea fowl samples cannot be explained by an epidemic report; however, it is not inconceivable that the large numbers of these birds, which are kept together in the same cage, could have been responsible for the observed phenomenon. Only three (3) isolates had *C. coli* biotype II (Table 1) and were associated with chicken/guinea fowl. Similar results were obtained on the epidemiology of *Campylobacter* by Lior (1984), Penner and Humphrey (1980) on their work on 11 puppies. Surprisingly, none of the puppies used in this study showed incidence of *Campylobacter* in their stool. Blaser (1980), Moser et al. (2001), Sandberg et al. (2002) have all observed *Campylobacter* infections in domestic animals. In this study only two samples (7.1%) were positive each for sheep and pigs. This finding also agrees with the observation of Penner and Humphrey (1980) that more than half of commercially raised pigs excrete the organisms.

On the basis of zonal occurrence of *Campylobacter* organisms among animals, the peripheral zone had more positive samples for *Campylobacter* (8.5%) (Table 2) compared to rural zone with nine (4.5%) and inner zone two (1.0%). The low degree of positive samples observed in the inner zone correlates with the hygienic nature of central Lagos. The observed differences in the distributional pattern of *Campylobacter* in the different zones could be attributable to the nature of animals that were sampled, their degree of maturity and the presence of mature animals that could discharge faeces and hence enhance spread.

The occurrence of *Campylobacter* species in these animals serves as a potential danger to animal farmers since *Campylobacter* species are contacted faeco-orally. Bolton et al. (1984) observed an outbreak of *Campylobacter* enteritis among humans who had puppies infected with enteritis associated with untreated milk. It is therefore necessary that an epidemiological survey on the distribution of this *Campylobacter* organisms is effected and a database created for the types of *Campylobacter* species in human and animal population not only in Lagos and its surroundings but in the country in general due to the potential nature of the diseases originating from *Campylobacter* infections.

ACKNOWLEDGEMENT

Special thanks go to Dr. (Mrs) S.I. Smith of NIMR and the Laboratory Staff for making their laboratory and materials available for this research.

REFERENCES

Humphrey TJ (1986b). Techniques for the optimum recovery of cold injured *Campylobacter jejuni* from milk or water. J. Appl. Bacter. 61:

