Full Length Research Paper

SSR markers reveal diversity in Guinea yam (Dioscorea cayenensis/D. rotundata) core set

1International Institute of Tropical Agriculture, Carolyn House, 26 Dingwall Road, Croydon CR9 3EE, UK.
2National Root Crops Research Institute, Umudike, PMB 7006, Umuahia, Abia State, Nigeria.
3Department of Agronomy, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.
4Biotechnology Unit, Tun Abdul Razak Research Centre Brickendonbury Hertford, UK SG13 8NL.

Accepted 23 February, 2009

The genetic diversity of 219 accessions of Guinea yam germplasm from Benin, Congo, Côte d’ Ivoire, Equatorial Guinea, Gabon, Ghana, Nigeria, Sierra Leone and Togo was accessed using 15 microsatellite loci. High diversity of 0.677 was found among the accessions. An allelic average of 8.06 and polymorphic information content (PIC) value of 0.65 was observed for the markers. The observed heterozygosity value of 0.563 suggests that spontaneous hybridization must have contributed to the ancestry of some of the accessions and improvement by farmers must have been far more often by selection of somatic mutants. The twenty distinct cluster groups generated by the radial phylogram shows that Dioscorea cayenensis and D. rotundata are distinct species with intermediate hybrid forms. There was no relationship between relatedness of the accessions and their geographical area of origin. This study contributes to an increased understanding of the genetic organisation of the core germplasm.

Key words: Core germplasm, Dioscorea cayenensis/D. rotundata, genetic diversity, microsatellite.

INTRODUCTION

Dioscorea cayenensis and D. rotundata (also known as Guinea yams) are the most popular and economically important yams in West and Central Africa where they are indigenous and represent the largest depository of biodiversity, as a result of centuries of large domestication, production, trade and consumption (Degras, 1993). The name Guinea yam does not only signify their intensive cultivation and great importance in the socio-cultural life of the people of this region, but also suggests similarities in various aspects of their botany and agriculture (Akoroda and Chheda, 1983). The diversity in Guinea yam provides plant breeders with the necessary options to develop, through selection and breeding, new and more productive crops that are resistant to virulent pests and diseases, and adapted to changing environments. The International Institute of Tropical Agriculture (IITA) has established a core set of Dioscorea germplasm based on morphological descriptors (Mahalakshmi et al., 2007). This core set offers a good starting point when searching for new traits (Vaughan, 1991).

The extent of genetic diversity and relationship in the established Guinea yam core set in the IITA germplasm has not been investigated using DNA based markers. Molecular marker information can help monitor the level of genetic diversity in breeding materials and assist breeders to more efficiently choose genetically diverse parents for breeding scheme. Such diversity assessment could provide a means for identifying potential gaps in the species collection and further guiding target collecting missions. Molecular markers such as restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) have been applied in yams for taxonomic, phylogenetic, diversity and mapping studies (Terauchi et al., 1992; Terauchi and Kanoma, 1994; Asemota et al., 1996; Ramser et al. 1996, 1997; Mignouna et al. 1998, 2002a, 2002b).
In this study we used SSR markers to assess the diversity of the core collection of Guinea yams held in trust by IITA.

MATERIALS AND METHODS

Plant materials

The 219 accessions of Guinea yams collected from 10 countries of West and Central Africa are listed in Table 1. These are part of the core collection of Dioscorea germplasm held in trust by the IITA genebank. The accessions were planted in 30 cm size pots filled with sterilized loamy soil and maintained in a screen-house at the IITA, Ibadan Nigeria.

DNA extraction and quantification

Genomic DNA was extracted from fresh leaf apex of young leaves using modified CTAB procedure (Mignouna et al., 1998). The quality and concentration of DNA was assessed by gel electrophoresis using 1% agarose with known concentrations of undigested lambda DNA (Sigma, St. Louis, MO, USA). Quantification of DNA was done using a spectrophotometer (Beckman Coulter DU530) at 260 nm. Extracts were diluted in water to obtain DNA concentrations of 25 ng/µl.

Polymerase chain reaction and fragment analysis

A total of fifteen SSR primer pairs were used in the study (Table 2). PCR reaction was conducted in a 20 µl volume in a 96-well microtiter plate using an automated thermal cycler (model: Peltier Thermal Cycler 200). The reaction volume contained 25 ng of template DNA, 100 µM each of dNTP, 2.5 mM MgCl₂, 0.5 µM each of fluorescently labelled forward primer and unlabelled reverse primer, 1X reaction buffer and 2 units of Taq DNA polymerase (Invitrogen). The forward primer was 5’- labeled with one of the four fluorochromes PET, 6-FAM, NED and VIC. The PCR programme consisted denaturation at 94°C for 4 min, followed by 34 cycles of 94°C for 30 s, 51 or 58°C for 1 min and 72°C for 1 min, with a final extension step at 72°C for 7 min. Capillary electrophoresis with a semi-automated system ABI PRISM 3100 Genetic Analyser was used to separate amplified PCR products. Samples for amplified product separation were prepared by adding 1 µl of diluted PCR products to 9.4 µl formamide and 0.1 µl GenSize-500 LIZ. This was dispensed in ABI 96-well plates and were denatured at 94°C for 5 min and allowed to cool down on ice.

Data analyses

Observed allelic data were binned into discrete units and SSR fragment sizes were called using Genemapper v. 3.7 software (Figure 1). The fragment sizes in base pairs for each genotype across SSR markers were converted to binary data where alleles were transformed into presence (1) or absence (0) of an SSR band. Missing data accounted for less than 5% (that is, marker x genotype) of the entire data set. The genetic diversity parameters (Table 2) such as number of alleles per locus, percent of polymorphic loci, observed heterozygosity and gene diversity were estimated with FSTAT v. 2.9.3 software (Goudet, 2002). The tree structure (Figure 2) of the genetic diversity was constructed using DARwin 5.0 software.

RESULTS AND DISCUSSION

A total of 121 alleles were amplified with 15 SSR loci analyzed in 219 accessions, with the number of alleles observed per locus varying from 6 to 9 alleles (Table 2). The observed heterozygosity of 0.563 on average, varied from 0.276 (Dpr3F12) to 0.750 (Dab2D06). A total gene diversity of 0.677 was observed according to Nei diversity indices (Nei, 1973) for the accessions. Polymorphism was observed in all fifteen microsatellite loci analysed (Table 2). Polymorphic information content (PIC) ranged from 0.37 (Da1A01) to 0.80 (Dpr3D06). Average PIC value was 0.65. The UPGMA-derived radial phylogram constructed for the studied accessions provides an overview of the diversity structure (Figure 2) resulting into twenty distinct clusters groups. Accessions from different countries were fairly represented within each cluster.

In our study genetic diversity was detected in accessions with an average of 8.06 alleles per locus. Gene diversity of 0.677 on average was also found. The results demonstrate a genetic polymorphism in the studied germplasm from Benin, Congo, Côte d’Ivoire, Equatorial Guinea, Gabon, Ghana, Nigeria, Sierra Leone and Togo and high potential for genetic improvement. These findings suggest that morphological descriptors earlier used to develop this core set were discriminatory enough to capture as much diversity. Polymorphism was observed at all fifteen microsatellite loci analysed (Table 2). Polymorphic information content (PIC) ranged from 0.37 (Da1A01) to 0.80 (Dpr3D06) with an average value of 0.65. Tostain et al. (2007) also found SSR markers as discriminatory enough in diversity studies of yam. The 0.563 value for observed heterozygosity in this vegetative propagated crop is expected due to the fact that yams are dioecious and implies that spontaneous hybridization must have contributed to the ancestry of some of the accessions and improvement by farmers must have been far more often by selection of somatic mutants. Accessions from different countries were grouped together in the thirteen clusters (Figure 2). There was no relationship between relatedness of the accessions and their geographical area of collection. This could be due to the fact that cultivars must have been distributed over great distances as clones in the course of human migration. D. cayenensis accessions clustered specifically in group 11 and 13 with overlapping mixtures with D. rotundata in group 10. This trend seems to uphold the view that Guinea yams are two distinct but related species and perhaps share a common secondary gene pool as proposed by Akoroda and Chheda (1983). Mignouna et al. (1998) showed that the varietal groups of D. cayenensis were genetically distant from those of D. rotundata. The overlapping D. cayenensis and D. rotundata in cluster group 10 could be regarded as hybrid derivatives as a result of natural hybridization. This view
<table>
<thead>
<tr>
<th>Genebank accession number</th>
<th>Local/cultivar name</th>
<th>Country of origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDr 3964</td>
<td>Tantoumani</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3780</td>
<td>Noukpassi</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3873</td>
<td>Bebeterou</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3956</td>
<td>Gbera</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3995</td>
<td>Gouroko</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3886</td>
<td>Ouroutanai</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 1974</td>
<td>Be 110</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3800</td>
<td>Unknown</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3866</td>
<td>Kee</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3953</td>
<td>Gomin</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3854</td>
<td>Dourokonou</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3994</td>
<td>Asnan</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 1935</td>
<td>BE 116</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 3875</td>
<td>Soagona</td>
<td>Benin</td>
</tr>
<tr>
<td>TDr 4087</td>
<td>Unknown</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>TDr 3698</td>
<td>Mboru</td>
<td>Congo</td>
</tr>
<tr>
<td>TDr 2246</td>
<td>C.V 1784</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>TDr 2159</td>
<td>C.V 204</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>TDr 1888</td>
<td>IC 42</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>TDr 2010</td>
<td>IC 35</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>TDr 1983</td>
<td>IC 4</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>TDr 1915</td>
<td>IC 16</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>TDr 1913</td>
<td>IC 22</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>TDr 1873</td>
<td>IC 11</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>TDr 3496</td>
<td>C.V.1149</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>TDr 1877</td>
<td>IC 23</td>
<td>Cote d’Ivoire</td>
</tr>
<tr>
<td>TDr 2235</td>
<td>C.V 1746</td>
<td>Cote d’Ivoire</td>
</tr>
<tr>
<td>TDr 2650</td>
<td>EQ-89 - 23</td>
<td>Equatorial Guinea</td>
</tr>
<tr>
<td>TDr 2656</td>
<td>EQ-89 - 23</td>
<td>Equatorial Guinea</td>
</tr>
<tr>
<td>TDr 3311</td>
<td>Pasandjo</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 1907</td>
<td>GH 57</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 2877</td>
<td>Kokoaseasobayere</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 2008</td>
<td>GH 73</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 3419</td>
<td>Butugu</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 1966</td>
<td>Gh 66</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 3402</td>
<td>Sakawa</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 3426</td>
<td>Duobara</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 2769</td>
<td>Kangba</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 3323</td>
<td>SO/89/055</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 3373</td>
<td>Aso Bayere</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 3413</td>
<td>Nananto</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 1986</td>
<td>GH 69</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 1957</td>
<td>GH 72</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 1892</td>
<td>GH 75</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 3334</td>
<td>Jatiba</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDr 4178</td>
<td>35 Dembatikou</td>
<td>Guinea</td>
</tr>
<tr>
<td>TDr 4159</td>
<td>60 Wakourouba</td>
<td>Guinea</td>
</tr>
<tr>
<td>TDr 4176</td>
<td>90 Waaman</td>
<td>Guinea</td>
</tr>
<tr>
<td>TDr 4181</td>
<td>61 Wakoula</td>
<td>Guinea</td>
</tr>
</tbody>
</table>
Table 1. contd.

<table>
<thead>
<tr>
<th>TDr</th>
<th>Code</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>4188</td>
<td>91 Ketikou</td>
<td>Guinea</td>
<td></td>
</tr>
<tr>
<td>2205</td>
<td>85/0016</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2206</td>
<td>Gbongi</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2766</td>
<td>Zania 87/0020</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3683</td>
<td>P.Y.T. TDr 89/00613</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>4065</td>
<td>Unknown</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2611</td>
<td>BN 218</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3983</td>
<td>Asuikwu</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2352</td>
<td>Verilly (129)</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2127</td>
<td>Kwiadu</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2439</td>
<td>HVTD 87/0245</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2374</td>
<td>Agatu</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>4072</td>
<td>Unknown</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2079</td>
<td>Eochojah</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3681</td>
<td>P.Y.T. TDr 89/01161</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3312</td>
<td>A.Y.T. II TDr 87/00203</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>4156</td>
<td>Ayin</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3578</td>
<td>P.Y.T. TDr 89/00183</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2228</td>
<td>Sagbe egbor</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2077</td>
<td>PYT (1986) 85/00410</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2256</td>
<td>614</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2613</td>
<td>Ht 86/0178</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2435</td>
<td>Kaba-ex-arigadi 87/0123</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3669</td>
<td>P.Y.T. TDr 89/00518</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2424</td>
<td>I.Y.T 1986.26</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3631</td>
<td>P.Y.T. TDr 89/01442</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2347</td>
<td>R.10-102-21</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2427</td>
<td>Dokara</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2724</td>
<td>87/0/66 PYT 1986</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2251</td>
<td>Iroko</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2121</td>
<td>IYT 388</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2084</td>
<td>PYT 121</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2312</td>
<td>Ede ojah</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2694</td>
<td>86/0094</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2144</td>
<td>Unknown</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2107</td>
<td>IYT 470</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2217</td>
<td>HT-188</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2126</td>
<td>Zmabor</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>152(85)0109</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2155</td>
<td>Okunmodu</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2480</td>
<td>U.M.Y.P./8403</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2031</td>
<td>PYT (1986)89/019</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2178</td>
<td>Lasinrin</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2049</td>
<td>PYT (1986)85-006</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3675</td>
<td>P.Y.T. TDr 89/00765</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3673</td>
<td>P.Y.T. TDr 89/01105</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2083</td>
<td>Sotinrin alapa</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2332</td>
<td>87/0066/29</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>2681</td>
<td>Alebu</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3682</td>
<td>P.Y.T. TDr 89/00101</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3654</td>
<td>P.Y.T. TDr 89/00572</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>3658</td>
<td>P.Y.T. TDr 89/00779</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2060</td>
<td>Agumnoka</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2103</td>
<td>PYT-531</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2119</td>
<td>87/0175</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2205</td>
<td>85/0016</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2276</td>
<td>Unknown</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2386</td>
<td>86/00094</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2434</td>
<td>HRTD 6</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2455</td>
<td>ODO 87/0088</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2557</td>
<td>Uregbe 87/0147</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2752</td>
<td>Rosm 8458</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 3001</td>
<td>Dan anacha</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 3303</td>
<td>A.Y.T II 87/00102</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 3589</td>
<td>P.Y.T 89/00034</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 3603</td>
<td>P.Y.T 89/00790</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 3857</td>
<td>Amara</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2259</td>
<td>IVT Bulk 158 (1986)</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2077</td>
<td>PYT 85/00410</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 2177</td>
<td>Orin 338</td>
<td>Nigeria</td>
<td></td>
</tr>
<tr>
<td>TDr 1946</td>
<td>466</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>TDr 4166</td>
<td>Hekpebulie</td>
<td>Sierra Leone</td>
<td></td>
</tr>
<tr>
<td>TDr 4187</td>
<td>Ngaobue</td>
<td>Sierra Leone</td>
<td></td>
</tr>
<tr>
<td>TDr 1529</td>
<td>Kjetiba KN 46</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1787</td>
<td>Koukou (0-5)</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 2537</td>
<td>AOO-011</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1706</td>
<td>Kratsi A22</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1762</td>
<td>Kpena KN 35</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 2923</td>
<td>Kpayere KN-50 1280</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1862</td>
<td>Alassorakoukou</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1714</td>
<td>Aroukpe</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 3546</td>
<td>Tchabisot-125 585</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1637</td>
<td>Kalamofo BL9</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1521</td>
<td>Abononojawite</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 2992</td>
<td>Tila 2B-52 - 1034</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1808</td>
<td>Allassora T-84</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1709</td>
<td>Kpandov 2R 13</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1747</td>
<td>Lili 2B9</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1847</td>
<td>Naka BH 49</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1577</td>
<td>Gnidou 25</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 3437</td>
<td>Tinougdat 1350</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 2903</td>
<td>Tifiou A-83-969</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 2023</td>
<td>29</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 2910</td>
<td>Sousou KN-98 1128</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 3471</td>
<td>Atan-A-44 - 885</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 2774</td>
<td>Tila 2B 52</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1591</td>
<td>Craysi</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 2949</td>
<td>Kplindjo IIB-78-1061</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 3508</td>
<td>Kplingjo IIB-63 - 1045</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1721</td>
<td>Sakoro S-75</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1753</td>
<td>AOO 589 B</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1615</td>
<td>Lotossou 63</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 1492</td>
<td>Duo Wetanom</td>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>TDr 3517</td>
<td>Djigbi A-59 -948</td>
<td>Togo</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. contd.

<table>
<thead>
<tr>
<th>TDr</th>
<th>Code</th>
<th>Location</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>2489</td>
<td>PDM 110</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1483</td>
<td>Oko-fasse</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1611</td>
<td>Toukla</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2914</td>
<td>Alassora 606</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1574</td>
<td>Keke KN 42</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1491</td>
<td>Edja</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2492</td>
<td>BN 47</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1612</td>
<td>Kpagnina A87</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1849</td>
<td>Bakpanatene T-98</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1733</td>
<td>Kotokolsot 113</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1622</td>
<td>Kplo 146</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2534</td>
<td>33</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1860</td>
<td>Data 820</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1261</td>
<td>Keressi 246</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1519</td>
<td>Laboco KN 59</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2927</td>
<td>Kplindjo 2B-78 1060</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>3459</td>
<td>Kratsi 208</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2471</td>
<td>1538-18</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2969</td>
<td>Boraha BH-48 - 1141</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1730</td>
<td>Bakou A34</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2527</td>
<td>BN 340</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1688</td>
<td>BN 307</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1501</td>
<td>Kapaza A 52</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1998</td>
<td>1021</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>3489</td>
<td>Kanitiki D-3 - 1150</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>3009</td>
<td>Kratsi BL-23 – 483</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1842</td>
<td>Fulakde KN 63</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1798</td>
<td>Lamlaun 2B C2</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1756</td>
<td>Aboa He D-48</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1739</td>
<td>Lou B-7</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1737</td>
<td>Fasse-He-BI 35</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1699</td>
<td>Aridji S-74</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1673</td>
<td>Korokoro 2B 12</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1565</td>
<td>Adoworo BH 49</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1512</td>
<td>Keke T113</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1478</td>
<td>Foulande KN 75</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2234</td>
<td>Nwana Ill 337</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2493</td>
<td>BN 337</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2547</td>
<td>S-Tdr</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2704</td>
<td>Larboko 1039 IIIB 56</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2776</td>
<td>Tombre 634</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2961</td>
<td>Keressi 246</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>2986</td>
<td>Tsiboto 97</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>3473</td>
<td>Kratsi 338</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>3481</td>
<td>Yabai BH-15-1108</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>3493</td>
<td>Sarmata 2B-4-1028</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>3506</td>
<td>Djiatouba 1400</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>3513</td>
<td>Bakou 875</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>3516</td>
<td>Bayere KN-44-1274</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1855</td>
<td>Kpadjoli B-14</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>1738</td>
<td>Afir Ratwa KN-22</td>
<td>Togo</td>
<td>Togo</td>
</tr>
<tr>
<td>Tdc 3967</td>
<td>Nkene</td>
<td>Benin</td>
<td>Benin</td>
</tr>
</tbody>
</table>
Table 1. contd.

<table>
<thead>
<tr>
<th>Microsatellite name</th>
<th>Sample Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDc 2809</td>
<td>BE 109</td>
<td>Benin</td>
</tr>
<tr>
<td>TDc 3704</td>
<td>Unknown</td>
<td>Congo</td>
</tr>
<tr>
<td>TDc 3712</td>
<td>Unkown</td>
<td>Congo</td>
</tr>
<tr>
<td>TDc 2817</td>
<td>C.V. 1730</td>
<td>Cote d Ivoire</td>
</tr>
<tr>
<td>TDc 2794</td>
<td>IC 14</td>
<td>Cote d Ivoire</td>
</tr>
<tr>
<td>TDc 2831</td>
<td>Obou bi kwae</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDc 2828</td>
<td>Sebor</td>
<td>Ghana</td>
</tr>
<tr>
<td>TDc 3840</td>
<td>Lasinrin</td>
<td>Nigeria</td>
</tr>
<tr>
<td>TDc 3807</td>
<td>Yellow</td>
<td>Nigeria</td>
</tr>
<tr>
<td>TDc 2815</td>
<td>HVD T 2/12/89</td>
<td>Nigeria</td>
</tr>
<tr>
<td>TDc 2811</td>
<td>BO 6</td>
<td>Togo</td>
</tr>
<tr>
<td>TDc 2790</td>
<td>282</td>
<td>Togo</td>
</tr>
<tr>
<td>TDc 2798</td>
<td>Okuao 1389</td>
<td>Togo</td>
</tr>
<tr>
<td>TDc 3839</td>
<td>Iganganran</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Table 2. Primer sequences (forward/reserve) used in the SSR analyses and their respective size annealing temperature (T_a), number of alleles per locus (A), observed heterozygosity (H_{obs}) and polymorphic information content (PIC).

<table>
<thead>
<tr>
<th>Microsatellite name</th>
<th>5' to 3' Primer sequence</th>
<th>T_a (ºC)</th>
<th>A</th>
<th>H_{obs}</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da1F08</td>
<td>TATGCTTCGTAAATCCAAC -F</td>
<td>51</td>
<td>6</td>
<td>0.532</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>CTATAAGGAAATGGTGGCC -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da2C05</td>
<td>ACCATGCTGTTAGTTGTTG -F</td>
<td>51</td>
<td>9</td>
<td>0.520</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>TGCTCAGCTCTTTTACTTG -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da2D06</td>
<td>TGTAAGATGCCACATT -F</td>
<td>51</td>
<td>9</td>
<td>0.770</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>TCTCAGGCTTCAGGG -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da2D08</td>
<td>ACAAGAGAACCCGACATAGT -F</td>
<td>51</td>
<td>8</td>
<td>0.602</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>GATTTGCTTTAGTGTCCTT -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da2E07</td>
<td>TTGAACCTTGAACCTTGTTG -F</td>
<td>51</td>
<td>9</td>
<td>0.746</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>GAGTTCTGTACCTCTTGT -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da2E09</td>
<td>AACTATAAAAGAGAGATCA -F</td>
<td>51</td>
<td>8</td>
<td>0.496</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>ATAACCTTTAACTCCCA -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dpr3B12</td>
<td>CATCAATCTTTCTCTGTCTTCT- F</td>
<td>51</td>
<td>9</td>
<td>0.647</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>CCATCAGCAATCCATCC -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dpr3D06</td>
<td>ATAGGAAGGCATACAGG -F</td>
<td>51</td>
<td>9</td>
<td>0.714</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>ACCCATCTCTTACCC -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dpr3F12</td>
<td>TCCCCATAGAAACAAAGT -F</td>
<td>51</td>
<td>9</td>
<td>0.239</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>TCAAGCAAGAAGGTG -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dpr3F04</td>
<td>AGACTTCTTGCTATG -F</td>
<td>51</td>
<td>6</td>
<td>0.526</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>GCCGTGTACTATTTATTC -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Da1A01</td>
<td>TATAATCGGCCAGAGG -F</td>
<td>51</td>
<td>7</td>
<td>0.315</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>TGTTGGAAGCATAGAGAA -R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YM5</td>
<td>AATGAAGAAACGCGTGAGGAAG -F</td>
<td>51</td>
<td>9</td>
<td>0.765</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>CAGCCAATGTTAGTGGACACCTCT -R</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YM26</td>
<td>AATTCTGACATCGTTTCTCCCT -F</td>
<td>58</td>
<td>9</td>
<td>0.724</td>
<td>0.61</td>
</tr>
</tbody>
</table>
is in agreement with Hamon and Touré (1990) who recognized some intermediate accessions. Taxonomic relationship between *D. cayenensis* and *D. rotundata* (Guinea yams) has often been a subject of controversy and speculation. The existences of numerous vernacular names specifying a given cultivar (Dansi et al., 1999; Mignouna et al., 1998), and the existence of many intermediate forms (Akoroda and Chheda, 1983; Hamon and Touré, 1990; Mignouna et al., 2002c), have complicated their exact classification.

Our study contributes to an increased knowledge of the taxonomic classification and genetic arrangement of core set of Guinea yams.

ACKNOWLEDGEMENTS

This study would not have been possible without the support of Generation Challenge Program (GCP) in Project Number 3d of sub-programme 1. The technical assistance of Athanson Blessing, Hammed Adeola and Olayunti Aina of the Central Biotechnology Laboratory (CBL),
International Institute of Tropical Agriculture (IITA), Ibadan is acknowledged.

REFERENCES

Mignouna HD, Mank RA, Ellis THN, Van den Bosch N, Asiedu R, Ng...

