Full Length Research Paper

Evaluation of the conserve flavin reductase gene from three Rhodococcus sp. strains isolated in Iran

Jamshid Raheb*1, Mohammad Javad Hajipour1 and Babak Memari2

1National Institute of Genetic Engineering and Biotechnology (NIGEB), Karaj-Tehran highway, Pajoohesh Blvd. P.O.Box.14155-6343, Tehran, Iran.
2Biology faculty, Shahid Beheshti University, Tehran, Iran.

Accepted 24 September, 2009

Previously we isolated three native strains, Rhodococcus FRF, IPF and GAF from Tabriz and Tehran refineries soil samples in a search for flavin reductase gene (dszD). In this study, these three flavin reductase genes were isolated and identified by PCR using the nucleotide sequence of dszD gene from Rhodococcus sp. The amplified dszD DNA sequences were purified and cloned into the T-vector pTZ57R/T and then introduced to the E. coli DH5α. Further sequence analysis revealed that the oxidoreductase genes of Rhodococcus FRF, IPF and GAF share high similarity to that of Rhodococcus erythropolis IGTS8. There were differences only in a few number of nucleotide. Also oxidoreductase enzymes in all strains consist of 193 amino acids that differ only in one amino acid which is located at stop codon of Rhodococcus FRF.

Key words: Biodesulfurization, Rhodococcus species, flavin reductase gene (dszD).

INTRODUCTION

Fossil fuels contain various organosulfur compounds, including alkylated dibenzothiophene (DBT), alkylated benzothiophene (BT) and other thiophene compounds, which are released as sulfur oxacids upon combustion and cause environmental problems such as acid rains. Therefore desulfurization of petroleum is necessary (Oshiro and Isumi, 1999). One strategy to reduce organic sulfur content in fossil fuel is to expose these substrates to microorganisms that can specifically break carbon-sulfur bounds and release the sulfur in a water-soluble, inorganic form (Monticello, 2000; Oldfield et al., 1997).

Most desulfurizing bacteria are nocardiaforms such as Rhodococcus which are considered feasible for petroleum desulfurization (Chang et al., 2000; Matsui et al., 2000). One of the most studied strains of this group is Rhodococcus erythropolis IGTS8 that can selectively remove covalently bound sulfur from DBT to form 2-hydroxybiphenyl (HBP) in an enzymatic way, without breaking carbon-carbon bounds (Denome et al., 1994). Three structural genes namely dszA, dszB and dszC have been isolated from R. erythropolis IGTS8 and shown to be responsible for desulfurization (Xi et al., 1997; Lizama et al., 1995). Two monooxigenases, DszA and DszC are involved in DBT desulfurization and involved an NAD(P)H/FMN oxidoreductase, encoded by dszD which supplies the monooxigenases with the necessary free-reduced flavin (FMNH2) (Gray et al., 1996; Piddington et al., 1995).

Recently Rhodococcus sp. strain FMF has been isolated by Persian Type Collection Culture (PTCC) and it was shown to be capable of desulfurization. We have previously isolated and identified desulfurization operon from Rhodococcus FMF and it was shown that dszABC operon in key organisms of Rhodococcus sp. strain IGTS8 and Rhodococcus FMF were similar. In this study we isolated and identified the oxidoreductase genes (dszD) from three native strains including Rhodococcus FRF, IPF and GAF. A comparative sequence analysis provided an evidence of the conserved nature of the dszD genes in these three strains.

MATERIALS AND METHODS

Bacteria and plasmids

Strains and plasmids used in this study are listed in Tables 1 and 2.
Table 1. Strains used in this study.

<table>
<thead>
<tr>
<th>Bacterial Strains</th>
<th>Phenotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli DH5α</td>
<td></td>
<td>NRCGEB</td>
</tr>
<tr>
<td>Rhodococcus IGTS8</td>
<td>Biodesulfurization</td>
<td>Shahid Beheshti University</td>
</tr>
</tbody>
</table>

Table 2. The plasmid used in this study.

<table>
<thead>
<tr>
<th>Plasmid and Vectors</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTZ57R</td>
<td>InsT/A clone™ PCR Product cloning</td>
</tr>
</tbody>
</table>

Chemicals
All restriction enzymes and InsT/A clone™ PCR product cloning kit were from Fermentase (Germany). Molecular weight marker, high pure plasmid purification kit, high pure PCR product purification kit and agarose gel DNA extraction kit were bought from Roche (Germany). All other chemicals were from Merck (Germany).

Cultivation and genomic DNA extraction
Rhodococcus FRF, IPF and GAF were grown in Lauria Bertani broth at 30°C for 48 h, suspensions were centrifuged in 3000 RPM for 5 min and the pellet washed with EDTA (0.5 M, pH 8). Afterward cells were introduced into 10 ml lysis buffer containing lysozyme, RNase and proteinase K and then after incubation at 37°C for 30 min kept at -70°C till the next day. Then proteins were eliminated by two stages of phenol/chloroform and after separation and washing, the genomic DNAs were dissolved in distilled water.

Plasmid isolation
Large scale preparation of plasmid DNA using a cesium chloride gradient was employed (Sambrook et al., 1989). Using this method, a large amount of high quality plasmid DNA was prepared without using RNase. A small scale preparation of plasmid DNA for identification or screening of recombinant plasmids was carried out using alkaline lysis method (Sambrook et al., 1989).

Mini/Maxi plasmid purification
A quick and highly purified preparation of plasmid DNA was performed using a commercially available kit (Boehringer Company / Germany) and used according to manufacturer’s instruction.

PCR technique
In order to isolate dszD gene from *Rhodococcus* FRF, IPF and GAF, PCR technique was employed using designed primers. The primers were as follow: 5'-GAA TTC ATG TCT GAC AAG CCG AAT GCC-3' (forward) and 5'-TCT AGA CTA TTG ACC TAA CGG AGT CGG-3' (reverse). Amplification was carried out using High Fidelity PCR Master Kit (Roche) and a Perkin-Elmer (USA) DNA thermal cycler. Amplification conditions were 94°C for 1 min (1 cycle), 94°C for 1 min, 55°C for 1 min, 72°C for 1 min (30 cycles) and a final 5 min at 72°C. The PCR products were purified using High Pure Product Purification kit (Roche).

Cloning
Purified PCR products were cloned into the plasmid pTZ57R/T using InsT/A clone™ PCR Product Cloning Kit. This plasmid is comprised of ampicillin resistance marker bla site. lacZΔM15 mutation is necessary for blue/white selection. For transformation competent cells of *E. coli* DH5α were employed.

Sequencing protocol
The new constructed pTZ57R/T plasmids were used for sequencing of the dszD gene from *Rhodococcus* FRF, IPF and GAF. Sequencing was done by MGW DNA Biotech Company (Germany) automatically. For this purpose, one pair of primers consisting of a forward: 5'-GAA TTC ATG TCT GAC AAG CCG AAT GCC-3' and reverse 5'-TCT AGA CTA TTG ACC TAA CGG AGT CGG-3' was used.

RESULTS
Amplification of dszD gene
Oxidoreductase gene (*dszD*) is necessary for expression of DBT desulfurization activity. We managed to amplify dszD gene from *Rhodococcus* FRF, IPF and GAF by means of PCR technique. The nucleic acid sequences of the PCR primers were designed using conserved nucleic acid sequences of the flavin reductase enzyme from *Rhodococcus* sp. strain IGTS8. The oligonucleotide primers were as follows: 5'-GAA TTC ATG TCT GAC AAG CCG AAT GCC-3' (forward) and 5'-TCT AGA CTA TTG ACC TAA CGG AGT CGG-3' (reverse). Digestion sites for EcoRI and HindIII were located at 5' of the forward and reverse primers respectively. After amplification the PCR products were evaluated on agarose gel 1%. 580 bp bands were appeared on agarose gels were the oxidoreductase gene from *Rhodococcus* sp. strain IGTS8 used for cloning.

Cloning of dszD gene
The PCR products were purified using high pure PCR
product purification kit (Roche) and cloned to the pTZ57R vector at multiple cloning sites. Then the ligation products were transformed to the competent cells of *E. coli* DH5α. Transformed bacteria were differentiated based on α-complementation phenomenon as white colonies. In order to confirm the insertion of *dszD* gene into the pTZ57R, plasmid extraction was done from white colonies and then pTZD57R was digested with EcoRI and Hind III. After digestion, a 580 bp band was observed on agarose gel confirming the cloning of *dszD* gene into the
pTZ57R vector.

Nucleotide sequencing analysis

Using a pair of specific primers, the *dszD* gene from *Rhodococcus* FRF, IPF and GAF were sequenced using the ABI 3700 sequencer (Germany). The *dszD* gene from these strains was completely aligned with the oxidoreductase gene from *Rhodococcus* sp. strain IGTS8. The existence of only 6 and 9 altered nucleotides for *Rhodococcus* FRF, IPF and no changed nucleotide for *Rhodococcus* GAF confirmed that the oxidoreductase gene in these strains are highly conserved (Figure 1).
DISCUSSION

Rhodococcus FRF, IPF and GAF are native strains which were isolated from Tabriz refinery soil samples. They were able to desulfurize DBT through the 4S pathway. We have already showed that three desulfurization genes (*dszA, dszB* and *dszC*) of *Rhodococcus* FMF constitute an operon similar to that of *Rhodococcus* sp. IGTS8 and each of them shows a considerable homology to the corresponding *dsz* genes (Raheb et al., 2004). However, there is another enzyme involved in DBT desulfurization, flavin reductase (*DsxD*) and two monoxygenases, *DsxA* and *DsxC*, are dependant on FADH$_2$, generated by this NADH-depndent FMN reductase (Gray et al., 1996; Galan et al., 2000). Therefore before the properties of isolated *Rhodococcus* strains can be applied as genetic resources for biodesulfurization, all the biodesulfurization genes must be identified and functionally analyzed.

The peculiarity of the dependence of *DsxA* and *DsxC* on FADH$_2$ has been noted; compared with the enzymes which utilize a built-in FAD cofactor, this mode of operation is apparently relatively rare in nature (Oldfield et al., 1997). Although destroying the *dszD* gene by insertional inactivation causes of losing DBT-desulfurization completely, it has no effect on the viability of this strain. It seems therefore that the sole function of *DsxD* is to provide FADH$_2$ for *DsxA* and *DsxC* (Lei and Tu 1996; Li et al., 1996).

Sequence analysis showed that there was significant sequence identity between *dszD* genes of the three isolated strains and that of *Rhodococcus* sp. IGTS8. The oxidoreductase gene of *Rhodococcus* FRF, IPF and GAF share 99, 98.5 and 100% similarity, respectively, to that of *Rhodococcus* sp. IGTS8 and There were differences only in 6 and 9 nucleotides for *Rhodococcus* FRF and IPF respectively (Figure 1). Furthermore ORF studies revealed that oxidoreductase enzyme in all strains consists of 193 amino acids. Alignment of ORFs were carried out by DNASTAR soft ware. The result showed a difference of only one amino acid for *Rhodococcus* FRF which is located at stop codon.

We have already showed that there is a high conservation between chromosomal encoded sox operon in *Rhodococcus* FMF and its plasmid counterpart in *Rhodococcus* sp. strain IGTS8 (Raheb et al., 2004). The results of this study also showed that the *dszD* gene is highly conserved in *Rhodococcus* FRF, GAF and IPF and that of *Rhodococcus* sp. IGTS8. Therefore it can be concluded that these strains are closely related to the *Rhodococcus* sp. strain IGTS8.

ACKNOWLEDGEMENT

The authors are grateful to National Institute for Genetic Engineering and Biotechnology (NIGEB) in Iran for providing financial support in project. NO 213 In this study.

REFERENCES

