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Cell division in prokaryotes is a process (known as binary fission) where the parent cell divides into 
daughter cells. In this process, the dynamics of Min proteins is an important factor in the accurate 
positioning at the midcell in Escherichia coli. This site specificity is regulated by the oscillatory 
behavior of Min proteins. Numerous studies of Min protein dynamics have focused on dynamic spatial-
temporal pattern formation, the movement mechanism and the biochemical basis function mostly using 
wet lab experiments, but the quantitative data remains limited. Thus in this research review, focus is on 
quantitative methodologies. Up-to-date information and findings regarding Min proteins, particularly 
MinD proteins obtained by using quantitative approaches such as experiments, modeling and 
simulations were provided. This review of quantitative techniques is expected to benefit not only those 
who want to conduct research in this area using more quantitative approaches, but also those who are 
interested in using qualitative data to support their findings.  
 
Key words: Min protein, quantitative characterization, protein oscillation, Escherichia coli, spot tracking 
technique, modeling, simulation. 

 
 
INTRODUCTION 
 
Cell division in prokaryotes is the process where the 
parent cell divides into daughter cells after its DNA has 
been duplicated and distributed into the two regions that 
will later become the future daughter cells. This process 
is also known as binary fission. For successful cell division 
to   take   place,  the  cell  has  to  determine  the  optimal 
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location for cell separation and the optimal time to start 
cell cleavage. In Escherichia coli, the oscillatory dyna-
mics of Min proteins have played an important role in 
determining the default site of septal placement in cell 
division, usually at midcell. This septum formation is 
initiated through the polymerization of the FtsZ protein 
into the Z-ring, a process crucially facilitated by the Min 
proteins (Justice et al., 2000; Lutkenhaus and Addinall, 
1997).  

The Min protein system consists of MinC, MinD and 
MinE expressed from the MinB operon (de Boer et al., 
1989). They are responsible  for  facilitating  the  accurate  
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Figure 1. The graph of number of papers vs. year of the search keyword "min proteins in E. coli" getting from SCOPUS 
database during year 1980 to 2008. 

 
 
 
location of the division site at midcell through the oscil-
latory cycle from pole to pole (Rothfield et al., 2005). 
MinC proteins prevent septum formation by inhibiting 
FtsZ polymerization in vitro (Hu and Lutkenhaus, 1999). 
In other words, MinC is an antagonist of FtsZ polymeri-
zation and a specific inhibitor of Z-ring formation. While 
MinD plays a role in inhibiting MinC-mediated division, it 
is sensitive to suppression by MinE. In vivo, MinC co-
localizes and co-oscillates with MinD (Hu and 
Lutkenhaus, 1999; Raskin et al., 1999a) which acts 
together as a negative regulator of Z-ring assembly (Hu 
and Lutkenhaus, 1999; Raskin et al., 1999a, 1999b). 
Since MinC binds to MinD, the movement of MinC from 
pole to pole with relatively long polar dwell times and a 
short transit time results in blocking the formation of polar 
Z-rings. The ATPase activity of MinD is presumed to pro-
vide the driving force for the pole-to-pole oscillation of the 
MinC division inhibitor. MinE acts as a topological speci-
ficity factor to prevent the division inhibitor from acting at 
the midcell site, while permitting it to block septation at 
polar division sites. If MinE is absent, MinD will be 
distributed evenly over the cell membrane (Raskin et al., 
1999a, Rowland et al., 2000).  

The past two decades have seen tremendous effort put 
into Min protein research, with thousands of research arti-
cles and several dedicated journals. In fact as of October 
26, 2009, a keyword search of “Min protein in E. coli” 
between year 1980 - 2008 results in records as shown in 
Figure 1 (also see references such as Rothfield et al., 

2005; Shih and Rothfield, 2006; Fange and Elf, 2006; 
Kanthang, 2009). Research conducted on Min proteins is 
highly multidisciplinary, covering the biological and physi-
cal sciences, as well as the fields of mathematics and 
engineering. Hence in this review of Min protein, 
references from archival scientific literature which could 
be valuable to those conducting future experiments and/ 
or developing new theories and applications were inclu-
ded. Elaboration was made specifically on MinD, which 
has been studied using quantitative techniques, including 
the spot tracking technique, modeling and simulations. 
Image processing and data analysis were discussed to 
provide qualitative and quantitative interpretations on the 
dynamics of MinD. In addition, examination of quantita-
tive methodologies (both experimental and computa-
tional) that have emerged over the past year for studying 
Min protein dynamics as well as highlighting of some 
recent results was carried out. 
 
 
EXPERIMENTS USING THE QUANTITATIVE SPOT 
TRACKING TECHNIQUE  
 
Two important innovative works that have contributed to 
advancing molecular biology and related research in both 
pure and applied sciences are the development of fluore-
scent proteins that allow researchers to selectively label 
single proteins and the development of high-resolution 
fluorescent  imaging,  which  was  made  possible  by  the 
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new generation of bright-field and confocal microscopes 
(Pierce et al., 1997; Endow, 2001; Kain and Kitts, 1997). 
Thanks to these new technologies as scientists are now 
able to study molecular dynamics within the living cell at 
sub-micron resolution or even at the molecular scale. 
Researchers can now record a time-lapse series to study 
the dynamics of molecular transport or the conformation 
changes within the cell. While these methods offer 
enormous potential for increasing our understanding of 
biological systems, they also constitute a challenge for 
researchers in the field who have not yet devised efficient 
ways to exploit and quantitatively interpret the unprece-
dented flow of technical data.  

Regarding Min protein studies, the large majority of 
data analysis and feature extraction is currently still done 
manually. This is very time consuming and the data are 
prone to human and systematic errors. In the present 
view, although a number of previous studies of Min 
protein oscillations focus on spatial-temporal pattern 
formation and the biochemical-based function (Rothfield 
et al., 2005; Shih et al., 2002), the experimental data 
have been inadequately interpreted for quantitative study. 
Therefore optimal and friendly-user quantitative techni-
ques, together with data acquisition and image proces-
sing, are being developed to crack this short-coming. It 
should be noted that some previous quantitative results 
on Min protein dynamics that deserve to be mentioned 
were mostly obtained by using in-depth experimental 
techniques or by modeling and simulation (Rothfield et 
al., 2005; Shih et al., 2002; Meinhardt and de Boer, 2001; 
Howard et al., 2001; Kruse, 2002; Howard and 
Rutenberg, 2003; Huang, 2003). 

To deal with this shortcoming, application for the first 
time of the spot tracking technique (STT) by applying the 
more well-known technique called single particle tracking 
(Saxton and Jacobson, 1997; Qian et al., 1991) to 
explore the dynamics of GFP-Min proteins as the indi-
cator of MinD and MinE dynamics was done in this study. 
The analysis concentrated on the ensemble positions of 
GFP: MinD and GFP: MinE, as well as dynamics and pat-
tern formation, by tracking the ensemble positions of Min 
proteins. In addition, data analysis was carefully perfor-
med to provide qualitative and quantitative interpretations 
of the behavior of Min oscillation. It is believed that the 
obtained quantitative results should benefit biological, 
biomedical and biotechnological researches. 
 
 
Spot tracking technique (STT) 
 
For the sake of brevity, STT will be briefly described as 
more details can be gotten from the references. The STT 
(spot tracking technique) is an image processing techni-
que used to follow the spot-like particle in the fluorescent 
image under intense fluorescence signals (Unai et al., 
2009). In other words, STT tracks the maximum distribu-
tion   of a  particle  ensemble.  Data  from  STT  measure-  

 
 
 
 
ments generally provide key characteristics of a tracked 
micro-particle’s (or organism’s) temporal and spatial 
dynamics. The STT can be exceptionally useful for bio-
physical research and biotechnological applications to 
measure the trajectory of individual proteins or organelles 
inside the cell, or in cell membranes such as plasma and 
nuclear membranes-in a manner similar to that of the 
more powerful single particle tracking technique (Saxton 
and Jacobson, 1997), which has been used in the nu-
clear trafficking of viral genes (Babcock et al., 2004), in 
chromosome dynamics (Sage et al., 2005) and in the 
motion of bacterial actins (Kim et al., 2006). Materials and 
experimental procedures for demonstrating how STT can 
be applied to study Min protein dynamics in E. coli is dis-
cussed below. 

Here, focus will be on MinD only. In the experiments 
conducted, E. coli with MinD labeled with green 
fluorescent proteins (GFP) were used. A starter of RC1/ 
pFx9 cells was grown in optimal condition media until the 
OD600nm was approximately 0.4 (log phase). Centrifu-
gation was performed to collect the cells. The sample 
was treated with isopropyl-�-D-thiogalactopyranoside 
(IPTG) for protein induction and diluted with media before 
use. Each E. coli sample (5 - 7 µl) was dropped on a 
glass slide coated with Poly-L-lysine and covered with a 
cover slip at room temperature before examination. 
Fluorescence microscopy was used with in vivo software 
to obtain fluorescent image sequences. In this process, a 
charge-coupled device (CCD) camera was attached to 
the microscope video port to acquire images and movies. 
After images were obtained, the STT technique was used 
to follow the region of interest (ROI) which consists of the 
highest GFP-MinD concentration signal. The data ob-
tained in STT measurement were supported by the Spot 
Tracker Java plugin provided by public domain ImageJ 
software (SpotTracker). Typically, the acquired images 
were in the configuration of a fluorescent signal that can 
fade after about 4 - 5 min. Subsequently, the final image 
sequence was noisy. Hence, to improve the quality of the 
acquired images, the software’s Gaussian filter to reduce 
noise was used. The improved images were further 
enhanced by using the rescaling option of the Spot 
Tracker plugin. Tracking of ROI with the SpotTracker 
plugin was performed to collect the positions at given 
times in the text file (Sage et al., 2005). Ensemble 
positions were then analyzed by MATLAB software. The 
procedure is summarized in Figure 2.  

With the STT, the main quantitative results can include 
the position and velocity profile, oscillator period, dynamic 
local and global pattern formations, mean-square dis-
placement and sub-diffusion measurements, power 
spectrum and/or correlation function, energy landscape, 
waiting time distribution and so on. For example, 
obtained data for ensemble GFP-MinD oscillations from 
pole to pole with ~ 45 s at time 0 - 50 s are shown in 
Figure 3. Figure 3(Top) is the 2D image sequence of 
pole-to-pole MinD oscillations at each successive time for 
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Figure 2.   (A) Diagram of the procedure for STT of MinD protein oscillation. (B) More details of 
the process for image acquisition are depicted in. 

 
 
 
the rescaled and enhanced signal. Each fluorescent 
image represents the ensemble of  the  GFP-MinD  signal 

located at the polar zones. The time(s) label on the left 
side of the column is  the  first  time  at  which  GFP-MinD 
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Figure 3. The ensemble GFP-MinD oscillations from pole to pole. (Top) From left to right during 0s-50s in 
E. coli c: (A) 2D image sequence at each successive time for the resize, (B) Enhanced signal, each 
fluorescence image represents the cluster of GFP: MinD signal locating at polar zones, (C) result after 
tracked, position of cluster of GFP: MinD denote as red cross. (Bottom)  The time evolution trajectories of 
MinD oscillations along the x(t) and y(t) direction. 

 
 
 
assembles after switching to the new pole. The sequence 
of positions at successive times can be used to determine 

the trajectory of GFP-MinD in x and y components as 
shown in Figure 3 (Bottom). It  is  believed  that  the  STT  



Ngamsaad et al.         7355 
 
 
 

 
 
Figure 4. The trajectory and velocity time evolution of GFP-MinD for acquisition time over 150s. (Top) Cluster Position 
Trajectory of GFP-MinD along x or cell length. (Bottom) Absolute Velocity time evolution plot of cluster GFP-MinD oscillation 
pole-to-pole; velocity peak called the switching velocity (Flight events), the other is called the localized velocity (Flight events).  

 
 
 
can provide accurate enough predictions to suggest use-
ful biological features in predicting protein motion. With 
improvements to the STT (such as improved data 
acquisition and data analysis), the technique could be-
come a very well-accepted one. It is reasonable to say 
that the quantitative information the STT yields could con-
tribute to improvements in the dynamic model of protein 
oscillation, as well as improved experimental procedures.  
 
 

Quantitative results of the movement dynamics and 
pattern formation of MinD proteins via STT 
 

If the time series of MinD positions denoting 
))(),(()( tytxtr =�

 were recorded, the mean squared 

displacements (MSD) can be calculated,

2
r
�∆

, with the 
average being taken over time within a single trajectory 
(one also could do ensemble average). It is theoretically 
well known that the MSD of a diffusing particle varies with 

time as 
αttr ∝∆ 2

)(
�

, where the dynamic exponent α  

distinguishes the type of diffusion encountered; 1=α  
indicates normal Brownian diffusion; 0 < α < 1 subdiffu-
sion and α > 1 superdiffusion (Saxton and Jacobson, 
1997; Qian et al., 1991; Metzler and Klafter, 2000).  

Recently, Unai and co-workers (Unai et al., 2009) used 
the STT to quantitatively investigate MinD dynamics at 

the level of particle cluster. Their studies provided infor-
mation on position alterations and time sequences which 
can be used to analyze GFP-MinD dynamics. They 
quantitatively found that the ensemble GFP-MinD protein 
dynamics can be separated into 2 types: trapping event 
and flight event (Figure 4). The trapping event mostly 
occurs at the polar zones, while the flight event takes 
place between the trapping events in the space between 
the polar zones. Therefore, high concentrations of GFP-
MinD are mostly found in the Polar Regions. In previous 
studies, this phenomenon was explained by stating that 
the dynamics of trapping events at polar zones involves 
the formation of MinD polymerization at the cytoplasmic 
membrane (Hu and Lutkenhaus, 2001; Hu et al., 2002). 
Flight event behavior, on the other hand can be identified 
by the peaks of each time interval mentioned earlier. 
Although MinD proteins globally perform oscillatory pole-
to-pole motion, the local membrane-bound motion, which 
exhibits a horseshoe structure in the polar zone (Raskin 
et al., 1999a; Rowland et al., 2000), is another trademark. 
That's why it is believed that this dynamic relates to the 
formation of MinD polymerization at the cytoplasmic 
membrane (Suefuji et al., 2002; Hu et al., 2002).  

Recently, Kanthang, (2009) applied the STT to reveal 
the underlying spatial-temporal pattern formation dyna-
mics and energy landscape of MinD proteins. They speci-
ically focused on the physical quantities of MinD cluster 
dynamics, including mean square displacements (MSDs), 
time   memories,    spatial    distributions    and    effective    



7356         Afr. J. Biotechnol. 
 
 
 

 
 
Figure 5. The position scattering and histogram of GFP: MinD localization. (A) Shows 
the position scattering normalization plot of x-y (13 individual cells). (B) The solid line is 
a fit to the Gaussian Distribution Function of the cluster GFP: MinD position along x axis 

for 13 individual cells, =cx  0.52 and =2R  0.9. 

 
 
 
potential profiles. Moreover, they revealed the relation 
between the potential profiles and diffusion modes which 
typically follow sub-diffusion. Analyzed ensemble GFP-
MinD localization through a normalization position 
scattering plot is shown in Figure 5(A). The probability 
distribution plot shown in Figure 5(B) revealed that the 

region near the midcell had the lower concentration. The 

midpoint of cell length with GDF fitting is =cx  0.52, =2R  
0.9. This fiting value provides the lower concentration 
point  of  GFP- MinD located at 51.685% of cell length. 
These   results  correspond  to  previous  reports  (Justice   
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Table 1. Some physical quantities of MinD proteins. 
 

Physical quantities MinD  finding References 
~55 s Hale et al. (39) 
~40 s Raskin et al. (45) 
~60 s Shih et al. (15) 

Oscillation Periods 

~55 s Unai et al. (9) 
Polar Zones ~ 0.3 µm/s Unai et al. (9) 

Velocities 
Pole to Pole ~  3 µm/s Unai et al. (9) 
Cytoplasmic Diffusion ~ 17 µm2/s Meacci et al. (47) FCS 
Cytoplasmic Membrane ~ 0.2 µm2/s Meacci et al. (47) FCS Diffusion Coefficients 
Polar Zones ~ 0.3 µm2/s� Unai et al. (9) STT 

 

FCS = Fluorescence correlation spectroscopy; STT = Spot tracking technique. � = 0.34 ± 0.18. 
 
 
 
et al., 2000; Hu and Lutkenhaus, 1999; Raskin et al., 
1999a, 1999b) which suggested that the time-averaged 
concentration of MinD (or the division inhibitor) is lowest 
at midcell. A summary of previous MinD dynamic findings 
both from fluorescence correlation spectroscopy and STT 
is shown in Table 1. 

To recap, the spot tracking technique (STT) was used 
here to track the maximum distribution of a particle 
ensemble. The STT can provide accurate enough predi-
ctions to suggest useful biological features in predicting 
protein localization. With improvements to the STT (in 
data acquisition and data analysis), the technique could 
become a very well-accepted one. It is reasonable to say 
that this quantitative information could contribute to 
improvements in the dynamic model of protein oscillation.  
 
 
COMPUTATIONAL METHODS 
 
To gain greater insight into the nature of the mechanism 
of MinD dynamics, numerous computational researchers 
have proposed models to fill in the missing links. In this 
section, a review the on computational methods used to 
study MinD dynamics is made. They include deterministic 
mean-field mathematical modeling, the mesoscopic 
lattice Boltzmann method and stochastic modeling and 
simulation.  
 
 
Deterministic mathematical reaction-diffusion models 
for Min protein oscillation 
  
A number of mathematical models of Min protein oscil-
lation have been proposed and studied (Howard et al., 
2001, 2003; Meinhardt and de Boer, 2001; Kruse, 2002; 
Huang et al., 2003, Huang and Wingreen, 2004; Drew et 
al., 2005). Due to the fact that these Min proteins can 
move diffusively and interact with each other, these 
models were based on macroscopic nonlinear reaction-
diffusion equations (RDE) and were solved using conven-
tional grid-based finite difference method (Strikwerda, 

1989). Howard et al. (2001) proposed an RDE model in 
which the reaction consisted of a protein’s association to 
the membrane and its dissociation from the membrane 
(Figure 6). This model was primarily based on the 
experimental results of Raskin et al. (1999a). The model 
incorporates a series of events where MinE was recruited 
to the membrane by membrane-associated MinD using a 
set of four non-linear coupled reaction-diffusion equa-
tions. Though the model is straightforward and relatively 
simple, it gives the correct placement of the division sep-
tum in E. coli. The mechanism is governed by the time 
rates of change of protein densities due to the diffusions 
of MinD and MinE and the mass transfer between the cell 
membrane and the cytoplasm, as schematically shown in 
Figure 6. In dimensionless form, the dynamics may be 
given by the following equations: 
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Where, 
2∇  = Lapacian operator and { , , , }s D d E e=  

symbolizes the cytoplasmic MinD, the membrane bound 
MinD, the cytoplasmic MinE and the membrane bound 

MinE, respectively; sρ  = mass density of particles of spe-

cies s  at time t  and position r
�

; sR  = reaction term 

which depends on the density of  the  species  ( )sρ   and 
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Figure 6. A schematic diagram of the MinDE dynamics according to the model proposed by Howard et al. 
(2001). It depicts reactions of Min proteins in the cytoplasm and cytoplasmic membrane. 

 
 
 
on the density of the other species that react with species 

s ; sD  = diffusion coefficient; 1σ  = parameter connected 
to the spontaneous association of MinD to the cyto-

plasmic membrane; 1σ ′
 =  connected to the suppression 

of MinD recruitment from the cytoplasm by the 

membrane-bound MinE; 2σ  = the rate that MinE on the 
membrane drives the MinD on the membrane into the 

cytoplasm; 3σ  = the rate that cytoplasmic MinD recruits 

cytoplasmic MinE to the membrane; 4σ  = the rate of 
dissociation of MinE from the membrane to the cytoplasm 

and 4σ ′
 = cytoplasmic MinD suppression of the release of 

the membrane-bound MinE.  
The diffusion on the membrane occurs at a much 

smaller time scale than that in the cytoplasm. It seems, 

therefore, reasonable to set dD  and eD  at zero. The Min 
protein is expected to bind/unbind from the membrane, 
but not be degraded in the process. Thus, the total 
amount of each Min protein type is conserved. The zero-
flux boundary condition is imposed, which requires a 
closed system with reflecting or hard-wall boundary con-
ditions. The total concentration of Min proteins is 
conserved.  

In addition, Meinhardt  and  de  Boer,  (2001)  proposed  
the model and showed later that the pattern formation of 
the Min system requires the interaction of a self-enhan-

cing component with its long-ranging antagonists. They 
included the dynamics of FtsZ proteins in their model. 
More recently, Kruse (2002) found that pole-to-pole 
oscillation depends on the membrane-bound MinD’s ten-
dency to cluster and attach to (and detach from) the cell 
wall. However, the Kruse model requires unrealistically 
rapid membrane diffusion of MinD. Since most of the 
models mentioned above were applied only to uniformly 
rod-shaped wild-type cells, Huang and Wingreen, (2004) 
proposed a model to reproduce experimental oscillations 
in not only rod-shaped cells, but also in round and 
ellipsoidal cells. In all these models, oscillation patterns 
were successfully generated and in qualitative agreement 
with experimental observations. Lastly, Huang et al. 
(2003) formulated a 3 dimensional model based on their 
experiments to describe Min protein oscillation, while 
Drew et al. (2005) proposed a mathematical model to 
describe polymerization and depolymerization behavior of 
MinD. Drew’s team found that MinD bind to the mem-
brane, followed by subsequent binding of MinE (Drew et 
al., 2005).  
 
 
Mesoscopic lattice Boltzmann method (LBM) 
 
The lattice Boltzmann method (LBM) is a recently deve-
loped efficient numerical tool for simulating fluid flows and 
transport phenomena based on kinetic equations and 
statistical physics (Zhaoli et al., 2005). The LBM is based 
on particle dynamics that focus on the averaged 
macroscopic  behavior,  leaving  out  the fluctuation. With 



 
 
 
 
the LBM, it is relatively easy to implement more complex 
boundary conditions, such as the curved boundary (Mei 
et al., 1999), when compared to conventional grid-based 
numerical integration. In addition, for models where the 
dynamics is very complex, use of parallel computing 
(Chen and Doolen, 1998) in combination with the LBM 
algorithm is greatly beneficial in terms of delivering simu-
lation times in a straight forward manner. The LBM solves 
a problem at the microscopic level in order to recover 
particle density and velocity from macroscopic properties 
(Zhou, 2004), while traditional computational methods in 
fluid dynamics (such as the finite element method, finite 
difference method and finite volume method) solve 
macroscopic fluid dynamics equations. 

The LBM consists of simple arithmetic calculations, so 
it is easy to implement the algorithm. In this method, the 
space is divided into a regular Cartesian lattice grid as a 
consequence of the symmetry of the discrete velocity set. 
Each lattice point has an assigned set of velocity vectors 
with specified magnitudes and directions connecting the 
lattice point to its neighboring lattice points. The total 
velocity and particle density are defined by specifying the 
number of particles associated with each of the velocity 
vectors. The microscopic particle distribution function, 
which is the only unknown, evolves at each time step 
through a two-step procedure: convection and collision. 
The first step, convection (or streaming), simply advan-
ces the particles from one lattice site to another lattice 
site along the directions of motion according to their 
velocities. This feature is borrowed from kinetic theory. 
The second step, or collision, is to imitate various inte-
ractions among particles by allowing for the relaxation of 
a distribution towards an equilibrium distribution through 
a linear relaxation parameter (Baoming and Daniel, 
2003). The averaging process uses information based on 
the whole velocity phase space. The lattice Boltzmann 
equation can be viewed as a discretized version of the 
Boltzmann equation. LBM can be derived directly from 
the simplified Boltzmann Bhatnagher-Gross-Krook (BGK) 
equation (He et al., 1997a, 1997b). 

Ngamsaad et al. (2009) used the lattice Boltzmann 
method (LBM) to study the dynamics of the oscillations of 
the Min proteins in E. coli. Their results indicated that the 
LBM can be an alternative computational tool for simu-
lating problems dealing with complex biological systems 
that are described by reaction-diffusion equations. They 
also used the LBM on a two dimensional system to 
investigate the possible evolutionary connection between 
the shape and cell division of E. coli. The results showed 
that for the dimension 1 x 2 the oscillatory pattern is most 
consistent with experimental results. They also sugges-
ted that as the dimension of the system approaches a 
square shape, the oscillatory pattern no longer places the 
cell division of E. coli at the proper position. LBM simulation 
results were found to agree well with experimental results 
as shown in Figure 7. Both experiment and simulation 
implied that the position division site of E. coli locates at  
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the midcell via the pattern formation of MinD. This 
suggestion is supported by previous reports (Hu and 
Lutkenhaus, 1999; Raskin et al., 1999a, 1999b; de Boer 
et al., 1990). As mentioned before, the first two computa-
tional methods neglect the fluctuation effects generally 
involved in protein dynamics.  
 
 
Stochastic modeling and simulations  
 

The methods mentioned in the previous sections of this 
review only deal with macroscopic features and provide 
average or trend behavior. To take into account more 
microscopic details, stochastic models are more relevant 
and suitable. Typically, the stochastic modeling approach 
is used in order to take fluctuation or noise into account. 
This approach allows us to understand how the intrinsic 
chemical fluctuations in spatially extended systems can 
cause different properties than what would be described 
by a mean-field model or deterministic counterpart. 

Howard et al. (2003) studied the fluctuation effect due 
to the low copy number of Min proteins and focused on a 
stochastic model of oscillating in a Min protein system. 
They found that for some parameter regions, the copy 
number of Min proteins is low enough that fluctuations 
are essential for the generation of the oscillation pattern. 
Later, Modchang et al. (2005, 2008) investigated the 
response of oscillatory dynamics to various electric field 
strengths and the total number of Min proteins. Figure 8 
shows a space-time plot of number of MinD proteins at 
lattice sites along the cell under the influence of an 
electric field. It can be seen that in the case of no external 
field (J = 0.0) concentrations, MinD were symmetric 
around the midcell. MinD has a minimum at the midcell 
which is in good agreement with that which was reported 
in previous studies. When the external electric field is 
turned on, a shift in the minimum of MinD was observed 
to be dependent. The positions of MinD concentration 
minimum are more pronouncedly shifted toward the left 
pole as J increases. These results are consistent, at least 
qualitatively, with those obtained with a deterministic 
partial differential model (Modchang et al., 2005). In 
Figure 8, two different numbers of total MinD protein 
copies were used. It can be clearly seen from the figure 
that using lower number of Min proteins (N = 200) can 
still produce the oscillation pattern but with a higher level 
of noise. They also reported that using fewer number of 
Min proteins degrades the cell division accuracy but 
using too much number of Min proteins costs E. coli to 
use more energy in order to maintain the oscillation 
pattern, so there should exist an optimal number of Min 
protein in E. coli (Howard et al., 2003; Modchang et al., 
2008). These studies may be of significant importance in 
the development of new technological processes in the 
fields of agriculture, food processing and medicine. The 
electric field may stop E. coli cell division or may even kill 
E. coli. Lastly, Kerr et al. (2006) studied a large number 
of protein oscillations in a stochastic model  by  using  the 
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Figure 7. The LBM simulation results for MinD protein oscillation. (Left) Space-time 
plots of the MinD densities. The color scale runs from the lowest (blue) to the highest 
(red). The MinD depletion from midcell is immediately evident. Times increase from 
top to bottom, and the pattern repeats indefinitely as time increases.  The vertical 
scale spans a time 1000 seconds. (Right) The time average of MinD 

densities max/)( nxn , related to their respective time-average maxima, as a 

function of position x (in mµ ) along the bacterium.  
 
 

 
 
Figure 8. Space-time plots of the number of MinD proteins at lattice 
sites along the bacterium cell for J = 0.0 µm/s to J = 0.3 µm/s with total 
number of MinD protein molecules N = 200 in upper panel and N = 800 
in the lower panel. The color scale, running from blue to red, denotes 
an increase in the numbers, and hence concentrations, of Min proteins 
from the lowest to the highest. The vertical scale spans a time of 500 s. 
The time increases from top to bottom. The horizontal scale spans the 
bacterial length 2 µm. The oscillation pattern is robust.  Even at the low 
number of Min protein copies N = 200 the oscillation pattern still can be 
generated but with a larger amount of noise as compare to N = 800. 



 
 
 
 
Monte Carlo simulation and showed that their results 
agree well with the results from a deterministic treatment 
of the equations. Ultimately, more realistic (and compli-
cated) models still need to be developed.  
 
 
CONCLUDING REMARKS 
 
Understanding bacteria cell division is central to 
understanding microorganisms, as well as the origin of 
life. However, the functions and mechanisms underlying 
the transport process and movement still remain unclear. 
E. coli is a prokaryotic microorganism well appropriate for 
research and biotechnological applications. In these 
bacteria, chromosome replication and cell division appear 
to be coordinated such that the frequency of initiation of 
replication determines the rate of cell division. To control 
the number of bacteria via the division process through 
interrupting the protein expression or protein dynamics is  
one of the practical means. 

Using quantitative techniques to conduct research 
would provide more precise and useful information 
toward understanding and applying this prokaryote. 
Achieving this goal requires more experimental and theo-
retical work, especially more realistic (and complicated) 
model development using deterministic and stochastic 
approaches. Therefore the quantitative approach may be 
of significance in the development of new technological 
processes in the fields of biology, agriculture, food and 
medicine. Given the significance of protein oscillation in 
correlation with cell division, another interesting question 
is: how is abnormal or unsuccessful cell division affected 
by the abnormal protein oscillation? More specifically, 
under external stresses such as pH, heat, electric fields, 
or magnetic fields, how does each perturbation or com-
bined perturbation affect protein oscillation in correlation 
with cell division? Answering such questions will be 
significant in the development of these new technological 
processes. Researchers can expect that the quantitative 
approach will help them define the roles of these factors 
in affecting E. coli division more accurately. It may also 
help minimize the number of experiments necessary 
when conducting future in vitro studies of cell division. 
Moreover, establishing a correct link to other compare-
tments like signal transduction or system biology, will 
contribute greatly to the health and well-being of our 
communities. More quantitative tools could contribute to 
great improvements in the dynamic models of protein 
oscillation, cell division and related applications. Thus 
these quantitative approaches will benefit biotechno-
logical research, which includes multidiscipline research 
tools, including biological, physical and mathematical 
approaches.  
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