Molecular characterization of an aster yellows phytoplasma associated with proliferation of periwinkle in Malaysia

Naghmeh Nejat¹, Kamaruzaman Sijam¹, Siti Nor Akmar Abdullah², Ganesan Vadamalai¹ and Matthew Dickinson³

¹Plant Protection Department, Faculty of Agriculture, University Putra Malaysia, 43400, Malaysia.
²Agriculture Technology Department, Faculty of Agriculture, University Putra Malaysia, 43400, Malaysia.
³School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.

Accepted 18 March, 2010

Madagascar periwinkle is a common decorative, easy growing and spreading perennial herb. Phyllody, virescence, proliferation, little leaf and yellowing symptoms were observed on periwinkle in Serdang and Banting, Selangor, Malaysia. Polymerase chain reaction (PCR) assays using P1/P7 universal phytoplasma primers and secA primers designed for identification and classification of phytoplasma, amplified 1.8 kb fragment that encompasses the entire 16S rRNA gene, the 16S - 23S intergenic spacer region and the beginning of the 23S rRNA gene as well as the 840 bp from part of secA gene, respectively. Sequence analysis of the 16S rDNA, 16S - 23S intergenic region and the beginning of the 23S rRNA and secA gene PCR products determined that the phytoplasma strain associated with periwinkle proliferation in Malaysia belongs to the ‘Candidatus Phytoplasma asteries’ (16Sr I-B) group of phytoplasmas. The virtual restriction fragment length polymorphism (RFLP) analysis with 10 restriction endonuclease enzymes revealed identical patterns to phytoplasmas members of Aster yellows phytoplasma subgroup B. A phylogenetic tree based on 16S rDNA sequences, secA gene sequences and virtual RFLP revealed that the periwinkle proliferation phytoplasma is closely related to the subgroup 16SrI-B. Periwinkle proliferation also confirmed which 16SrI-B has wide geographical distribution and host range.

Key words: Periwinkle, aster yellows phytoplasma, polymerase chain reaction, cloning, virtual restriction fragment length polymorphism.

INTRODUCTION

Phytoplasmas are the smallest wall-less prokaryote known plant-pathogenic bacteria associated with diseases in numerous plant species worldwide (Lee et al., 2000).

*Corresponding author. E-mail: nnejat@yahoo.com. Tel: +603-8946 7243. Fax: +603-86560698.

Abbreviations: PCR, Polymerase chain reaction; RFLP, restriction fragment length polymorphism; UPM, University Putra Malaysia; LB, Luria- Bertani; BLAST, basic local alignment search tool; NCBI, national centre for biotechnological information; PP, periwinkle proliferation; AY, aster yellows.

Yellowing, decline, witches’ broom, leaf curl, floral virescence and phyllody are the most conspicuous symptoms associated with phytoplasmas, although sometimes infections are asymptomatic. Since phytoplasma cannot be cultured in vitro, molecular techniques must be used for their diagnosis and characterization.

Diagnosis of phytoplasmas is routinely done by polymerase chain reaction (PCR) and can be divided into three phases: total DNA extraction from symptomatic tissue, PCR amplification of phytoplasma-specific DNA and characterization of the amplified DNA by restriction fragment length polymorphism (RFLP) analysis or nested PCR with group-specific primers (Marzachi, 2004).
Based on the computer-simulated RFLP analysis of 16S rRNA gene, all available phytoplasma sequence accessions were classified into 28 16Sr RFLP groups and around 100 subgroups (Wei et al., 2007).

The phylogenetic analysis of Candidatus phytoplasma asteries (16SrI) phytoplasmas were carried out based on 16S rDNA, tuf gene sequence and rp operon (rp22 and rps3 genes) (Lee et al., 2004a). The 16Sr I aster yellows (AR) phytoplasma group with more than 103 phytoplasmas is the largest subclade (Seemüller et al., 1998) and has been separated into 6 subgroups (I-A through I-F) based on 16S rDNA RFLP or putative restriction site analysis (Wei et al., 2007). The number of phytoplasmas placed in various subgroups varies from only one (I-D, I-E, I-F) to several or many; I-B being by far the largest subgroup (Gundersen et al., 1996; Marcone et al., 2000).

Periwinkle (Catharanthus roseus (L.) G. Don) is also called vinca or myrtle. C. roseus is native to the Indian Ocean island of Madagascar. This herb is now common in many tropical and subtropical regions worldwide. Madagascar periwinkle is a common decorative, easy growing and spreading perennial herb. As many other plants of the dogbane family, the Vincas are poisonous, although mildly. During the 1950s, C. roseus was discovered to contain a number of chemicals in the alkaloid class. There are also 2 drugs extracted from it; vinblastine (used in the treatment of Hodgkins' disease) and vincristine (used in the treatment of leukemia) (Duke, 1985).

C. roseus (periwinkle) is a valuable experimental host. It is used as an assay host for phytoplasmas by grafting, dodder or vector transmissions, and they tend to induce specific symptoms (Marwitz, 1990).

Periwinkles are known to be susceptible to the aster yellows (16SrI) group phytoplasma in Argentina (Torres et al., 2004), and have also been found to be naturally infected with spirea stunt (16SrIII-E), peach yellow leaf roll (16SrIII-A), clover proliferation (16SrVI), potato witches' broom (16SrVI-A) (Lee et al., 1998) and Mexican periwinkle virescence (16SrXIII) (Gundersen et al., 1994).

The phytoplasma associated with periwinkle has been previously cited based on dot blot hybridization which belongs to 16Sr I AY group (Khew et al., 1991). However, it has not been sufficiently characterized to enable its assignment to one of the established subgroups (Seemüller et al., 1998). The aim of the present study is to characterize the phytoplasma at the molecular level. Molecular characterization of the 16S rRNA gene plus spacer region and first part of 23S gene, secA gene and virtual RFLP were carried out to study the phytoplasma at the molecular level.

MATERIALS AND METHODS

Plant sample collection

Samples of leaf tissue were collected from naturally infected periwinkle showing phyllody, virescence, proliferation and chlorosis symptoms in Serdang and Banting of Selangor State, Malaysia.

Samples were also collected from symptomless periwinkles. In addition, healthy samples which were grown from seed were collected as a control from glass house at University Putra Malaysia (UPM).

Transmission by grafting

Tests for transmission by grafting were conducted using infected periwinkle plants showing symptoms of phyllody, virescence, proliferation, little leaf and flower abortion. Scions from naturally infected periwinkle were grafted into 7 healthy periwinkles by side grafting. The graft-inoculated area in which the diseased scion was inserted was then bound tightly with plastic tape and was covered with plastic bag for 1 week to minimize dehydration. The grafted plants were then kept in the greenhouse at about 30°C at UPM until symptoms appeared.

Total nucleic acid extractions from plant tissue

Total nucleic acids were extracted using the small scale DNA extraction method of Zhang et al. (1998). Approximately, 0.15 g of fresh tissues were frozen in liquid nitrogen and directly ground to fine powder in a cold mortar. The powder was transferred into a 1.5 ml Eppendorf tube and 800 µl of cetyl trimethyl ammonium bromide (CTAB) buffer was added; preheated at 60°C and incubated at 60°C for 20 min in a water bath shaker. After the incubation, the lysate was cooled to room temperature. Then, extraction was carried out with two-third volume of chloroform-isoamylalcohol at 24:1 ratio and mixture was vortexed vigorously and then centrifuged at 13000 g for 8 min in a Hettich centrifuge model Mikro200. The aqueous phase was collected and transferred to a clean tube and equal volume of -20°C isopropanol was added to precipitate the nucleic acids and then, inverted to mix gently. The mixture was chilled at -20°C for 15 min and then centrifuged at 13000 g for 10 min to precipitate the nucleic acid. Pellets were each rinsed in 70% -20°C ethanol by inverting the tube several times gently and allowed to air-dry. Each pellet was dissolved in 100 µl ultrapure sterile water and stored at -20°C.

PCR analysis

DNA extracts derived from symptomatic and asymptomatic periwinkle were amplified using direct PCR. DNA extracts were analysed initially by direct PCR using the phytoplasma universal primer pairs P1 (5’-AAG AGT TTG ATC TCG GCT CAG GAT T-3’) (Deng and Hiruki, 1991)/P7 (5’-CGT CCT TCA TCG GCT CTT-3’) (Schneider et al., 1995b) derived from the conserved regions of the 16S ribosomal sequence used to amplify phytoplasma ribosomal DNA. Universal primer pair P1/P7 was used to amplify a 1.5 kb fragment that prime the entire 16S rRNA gene, the 16S-23S rDNA and the begining of the 23S rRNA gene. SecAfor1 (5’–GTG TTR 2CA GGT GTT CCT GCT ATN CC– 3’) (Hodgetts et al., 2008) were used to amplify secA gene.

PCR assay was performed in 20 µl volumes. Each PCR reaction mixture contained 1 µl of DNA template, 1 µl of each primer (10 pmols each), 0.4 µl of 10 mM DNTP, 0.6 µl of 25 mM MgCl₂, 2 µl of 10X Taq polymerase buffer and 0.3 µl (0.5 units) Taq DNA polymerase (Fermentas, Inc.).

The amplification using P1/P7 primers was performed in a thermocycler (iCycler, Bio Rad) under the following conditions: 1 min (2 min for an initial denaturation step) of denaturation at 94°C, annealing for 2 min at 55°C, extension for 3 min at 72°C for 35
cycles and a final extension at 72°C for 10 min (Lee et al., 1993).
PCR conditions for PCR with primer pair SecAfor1/SecArev3 were
94°C for 2 min, followed by 35 cycles of 94°C for 30 s, 53°C for 1
min, 72°C for 1 min and 30 s and a final extension step of 72°C for
15 min (Hodgetts et al., 2008). Aliquots of 7 µl of each final reaction
mixture were electrophoresed through 1% agarose gels in 1x TBE
(90 mM Tris-borate, 2 mM EDTA, pH 8.0) as running buffer. DNA
products in gels were stained with ethidium bromide (EtBr),
visualized by UV transillumination and photographed.

Cloning of PCR products
P1/P7 primed rDNA and SecAfor1/SecArev3 primed secA gene
products amplified from periwinkle from Serdang, Malaysia were
purified from agarose gels using QiAquick gel extraction kit (Qiagen).
The products were ligated into pCR 2.1 vector and 2 µl of the
ligation mixture were electrophoresed into TOP10 Escherichia coli competent
cells by heat shock following the manufaturer’s instructions
(Invitrogen, Carlsbad, CA, USA). The products were plated on Luria-
Bertani (LB) medium containing kanamycin (5 mg/ml) and 5-bromo-
4-chloro-3-indolyl β-D- galactopyranoside (X-Gal) and incubated
overnight at 37°C. White colonies were grown in liquid LB containing
kanamycin. For sequencing, plasmid DNAs were isolated from
transformed bacterial colonies using the QiAprep spin Miniprep kit
(QIAGEN, Hilden, Germany). Plasmid DNA was digested with EcoRI to confirm the presence of insert DNA and sequences were
processed on both strands using automated DNA sequencing
machine.

Sequence analysis
The sequence editing was carried out using online analysis tools at
http://mbiol-tools.ca/. The phylogenetic analysis, nearly full-length
16S rDNA, 16S - 23S intergenic spacer region and secA gene
sequences isolated from periwinkle phytoplasma and other known
phytoplasmas obtained from the Basic local alignment search tool
(BLAST) search (Altschul et al., 1990) of the National Center for
nih.gov/and Acholiplasma laidlawii (Tables 1 and 2) as an outgroup
species was performed using the program CLUSTAL W (Version
3.1) (Thompson et al., 1994). Phylogetic trees were constructed by
Neighbor-joining method with default values with MEGA version 3.1
software (Kumar et al., 2004) bootstrap values illustrated on the
phylogenetic dendrogram and were estimated by the bootstrap
sampling method (1000 replications).

RESULTS

Disease symptoms
A wide range of symptoms were remarked on naturally
infected periwinkle. The main symptoms were observed as virescence, phyllody, proliferation, chlorosis, witches’
broom and noticeably reduction in leaves sizes (Figure 1).

Transmission by grafting
Results of the tests for transmission by grafting indicated that
the disease is contagious. The periwinkles grafted with buds from diseased periwinkles, showed phyllody, virescence, proliferation, noticeably reduced leaf size and diminished plant development. The periwinkle plants
grafted with buds from healthy periwinkles had no
symptoms.

PCR amplification of phytoplasma DNA by universal and secA primers
The amplification products of the DNA from infected periwinkles using universal primer set P1/P7 and secA primers secAfor1/secArev3 were the expected size of about 1.8 kb and 830 bp, respectively. No product was
amplified from the healthy periwinkles (Figures 2 and 3).

Cloning and sequencing of 1800 and 830 bp fragment
P1/P7 and secAfor1/rev3 products cloned from periwinkle
were compared with the 16S rDNA and secA genes
sequences in the GenBank database. It revealed a 99% similarity between the sequence of cloned P1/P7 products
and 16SrI group phytoplasmas and 99% similarity
between the sequence of cloned secAfor1/Rev3 product
and onion yellows phytoplasma, OY-M from I-B.

Phylogenetic analysis
Phylogenetic distance trees were constructed from a data
set which included 16S rDNA and secA gene sequences
of periwinkle proliferation phytoplasma and comparable
16Sr DNA sequences of 35 additional strains representing
28 phytoplasma groups and secA gene partial sequences
of 11 phytoplasma strains from different groups, respecti-
vively (Figures 4 and 5).

Periwinkle proliferation (PP) phytoplasma clustered
closely with other known aster yellows (16SrI) group
strains and verified that PP phytoplasma was evolutionarily
closest to subgroup 16SrI-B strains.

Restriction analysis
16SrDNA sequences of PP phytoplasma and type strain

In silico restriction enzyme digestion and virtual gel plotting
Phytoplasma rDNA sequence derived from diseased periwinkle in
Malaysia and type strain phytoplasmas from each subgroups include
AY witches’ broom phytoplasma *rrmA* I-A, *Candidatus
phytoplasma asteries* I-B, clover phyllody phytoplasma strain *CPH-I-
C, AY phytoplasma strain PaWB I-D, blueberry stunt phytoplasma
strain BBS3 I-E and AY phytoplasma strain ACLR-AY I-F (Tables 1)
as described by Wei et al. (2007) from NCBI were exported to the *in silico*
restriction analysis and virtual gel plotting using the pDRAW32
programme developed by AcaClone Software (http://www.acaclone.
com) as described by Wei et al. (2007) to determine genetic
relatedness. Each rDNA sequence was analysed in detail *in silico*
by separate digestion with restriction endonucleases *AluI*, *DraI,
EcoRI, HaeIII, Hhal, HinfI*, *MboI*, *Msel*, *Rsal* and *TagI*. These
enzymes were chosen from endonucleases list previously
published by Lee et al. (1993b), in phytoplasma classification. After *in silico* restriction digestion, a virtual 4.0% agarose gel electrophoresis
image was plotted automatically.
Table 1. Phytoplasma 16S rDNA sequences used as references in this study.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Phytoplasma or association disease</th>
<th>16S rRNA group</th>
<th>GenBank accession no.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AYW B-I-A</td>
<td>Aster yellows witchesbroom phytoplasma rrnA I-A</td>
<td>16Srl</td>
<td>NC_007716</td>
<td>Bai et al., 2006</td>
</tr>
<tr>
<td>Ca. P. asteris I-B</td>
<td>Candidatus Phytoplasma asteries I-B</td>
<td>16Srl</td>
<td>M30790</td>
<td>Lee et al., 2004a</td>
</tr>
<tr>
<td>CP I-C</td>
<td>Clover phytoplasma strain CPh I-C</td>
<td>16Srl</td>
<td>AF222065</td>
<td>2000 (GenBank submission)</td>
</tr>
<tr>
<td>AY I-D</td>
<td>Aster yellows phytoplasma strain PaWB I-D</td>
<td>16Srl</td>
<td>AY265206</td>
<td>2003 (GenBank submission)</td>
</tr>
<tr>
<td>Bbs I-E</td>
<td>Blueberry stunt phytoplasma strain BBS3 I-E</td>
<td>16Srl</td>
<td>AY265213</td>
<td>2003 (GenBank submission)</td>
</tr>
<tr>
<td>AY I-F</td>
<td>Aster yellows phytoplasma strain ACLR-AY I-F</td>
<td>16Srl</td>
<td>AY265211</td>
<td>2003 (GenBank submission)</td>
</tr>
<tr>
<td>PP</td>
<td>Periwinkle proliferation phytoplasma</td>
<td>16Srl</td>
<td>FJ008869</td>
<td>Nejat et al., 2009</td>
</tr>
<tr>
<td>Ca. P. aurantifolia</td>
<td>Candidatus Phytoplasma aurantifolia</td>
<td>16Srl</td>
<td>U15442</td>
<td>Zreik et al., 1995</td>
</tr>
<tr>
<td>WX</td>
<td>Western X</td>
<td>16SrIII</td>
<td>L04682</td>
<td>1999 (GenBank submission)</td>
</tr>
<tr>
<td>CLY</td>
<td>Coconut lethal yellowing phytoplasma</td>
<td>16SrIV</td>
<td>AF498307</td>
<td>Harrison et al., 2002a</td>
</tr>
<tr>
<td>Ca. P. ulmi</td>
<td>Candidatus Phytoplasma ulmi</td>
<td>16SrV</td>
<td>AY197655</td>
<td>Lee et al., 2004b</td>
</tr>
<tr>
<td>Ca. P. trifolii</td>
<td>Candidatus Phytoplasma trifolii</td>
<td>16SrVI</td>
<td>AY390261</td>
<td>Hiruki & Wang, 2004</td>
</tr>
<tr>
<td>Ca. P. fraxini</td>
<td>Candidatus Phytoplasma fraxini</td>
<td>16SrvII</td>
<td>AF092209</td>
<td>Griffiths et al., 1999</td>
</tr>
<tr>
<td>LWB</td>
<td>Loofah witches-broom phytoplasma</td>
<td>16SrVIII</td>
<td>AF353090</td>
<td>2001 (GenBank submission)</td>
</tr>
<tr>
<td>Ca. P. phoenicium</td>
<td>Candidatus Phytoplasma Phoenicium</td>
<td>16SrIX</td>
<td>AF515636</td>
<td>Verdin et al., 2003</td>
</tr>
<tr>
<td>Ca. P. mali</td>
<td>Candidatus Phytoplasma mali</td>
<td>16SrXI</td>
<td>AJ542541</td>
<td>Seemüller & Schneider, 2004</td>
</tr>
<tr>
<td>Ca. P. oryzae</td>
<td>Candidatus Phytoplasma oryzae</td>
<td>16SrXII</td>
<td>AB052873</td>
<td>Jung et al., 2003</td>
</tr>
<tr>
<td>Ca. P. australiense</td>
<td>Candidatus Phytoplasma australiense</td>
<td>16SrXII</td>
<td>L76865</td>
<td>Davis et al., 1997</td>
</tr>
<tr>
<td>Ca. P. japonicum</td>
<td>Candidatus Phytoplasma japonicum</td>
<td>16SrXIII</td>
<td>AB010425</td>
<td>Sawayanagi et al., 1999</td>
</tr>
<tr>
<td>MPV</td>
<td>Mexican periwinkle virescence</td>
<td>16SrXIV</td>
<td>AF248960</td>
<td>2000 (GenBank submission)</td>
</tr>
<tr>
<td>Ca. P. cynodontis</td>
<td>Candidatus Phytoplasma cynodontis</td>
<td>16SrXV</td>
<td>AJ550984</td>
<td>Marcone et al., 2004b</td>
</tr>
<tr>
<td>Ca. P. brasiliense</td>
<td>Candidatus Phytoplasma brasiliense</td>
<td>16SrXVI</td>
<td>AF147708</td>
<td>Montano et al., 2001</td>
</tr>
<tr>
<td>Ca. P. graminis</td>
<td>Candidatus phytoplasma graminis</td>
<td>16SrXVII</td>
<td>AY725228</td>
<td>Arocha et al., 2005</td>
</tr>
<tr>
<td>Ca. P. Caricae</td>
<td>Candidatus Phytoplasma caricae</td>
<td>16SrXVIII</td>
<td>AY725234</td>
<td>Arocha et al., 2005</td>
</tr>
<tr>
<td>Ca. P. Americanum</td>
<td>Candidatus Phytoplasma americanum</td>
<td>16SrXIX</td>
<td>DQ174122</td>
<td>Lee et al., 2006</td>
</tr>
<tr>
<td>Ca. P. castaneae</td>
<td>Candidatus Phytoplasma castaneae</td>
<td>16SrXX</td>
<td>AB054986</td>
<td>Jung et al., 2002</td>
</tr>
<tr>
<td>Ca. P. rhamni</td>
<td>Candidatus Phytoplasma rhamni</td>
<td>16SrXII</td>
<td>X76431</td>
<td>Marcone et al., 2004a</td>
</tr>
<tr>
<td>Ca. P. pini</td>
<td>Candidatus Phytoplasma pini</td>
<td>16SrXXII</td>
<td>AJ632155</td>
<td>Schneider et al., 2005</td>
</tr>
<tr>
<td>Ph.sp</td>
<td>Phytoplasma sp. strain LDN</td>
<td>16SrXIII</td>
<td>Y14175</td>
<td>Tymon et al., 1998</td>
</tr>
<tr>
<td>BVGYP</td>
<td>Buckland valley grapevine yellow phytoplasma</td>
<td>16SrXIV</td>
<td>AY083605</td>
<td>Constable et al., 2002</td>
</tr>
<tr>
<td>SBSP</td>
<td></td>
<td>16Srl</td>
<td>AF509322</td>
<td>Blanche et al., 2003</td>
</tr>
<tr>
<td>WTWBP</td>
<td></td>
<td>16SrXXV</td>
<td>AF521672</td>
<td>2002 (GenBank submission)</td>
</tr>
<tr>
<td>ScP1</td>
<td>Sugar cane phytoplasma D3T1</td>
<td>16SrXXVI</td>
<td>AJ539179</td>
<td>2003 (GenBank submission)</td>
</tr>
<tr>
<td>ScP2</td>
<td>Sugar cane phytoplasma D3T2</td>
<td>16SrXXVII</td>
<td>AJ539180</td>
<td>2003 (GenBank submission)</td>
</tr>
<tr>
<td>DP</td>
<td>Derbid phytoplasma</td>
<td>16SrXXVIII</td>
<td>AY744945</td>
<td>2004 (GenBank submission)</td>
</tr>
<tr>
<td>A. laidlawii</td>
<td>Accholeplasma laidlawii</td>
<td>-</td>
<td>M23932</td>
<td>Weisburg et al., 1989</td>
</tr>
</tbody>
</table>

of known aster yellows (16Srl) subgroup phytoplasmas were separately digested with 10 endonuclease and then compared. Digestion with the 10 restriction enzymes showed the same restriction profile for PP and Candidatus phytoplasma asteries from 16SrI-B. However, 3 enzymes profile were different and were revealed among PP and
Table 2. Phytoplasma secA sequences used as references in this study

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Phytoplasma or association disease</th>
<th>secA group</th>
<th>GenBank accession no.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AYWB</td>
<td>Aster yellows witches’-broom phytoplasma</td>
<td>I-A</td>
<td>CP000061</td>
<td>Bai et al., 2006</td>
</tr>
<tr>
<td>OY-M</td>
<td>Onion yellows phytoplasma</td>
<td>I-B</td>
<td>AP006628</td>
<td>Oshima et al., 2004</td>
</tr>
<tr>
<td>OY</td>
<td>Onion yellows phytoplasma</td>
<td>I-B</td>
<td>AB056578</td>
<td>Kakizawa et al., 2001</td>
</tr>
<tr>
<td>PWB</td>
<td>Paulownia witches’-broom phytoplasma strain YL07</td>
<td>I-B</td>
<td>EU665493</td>
<td>(GenBank submission)</td>
</tr>
<tr>
<td>AAY</td>
<td>Atypical aster yellows phytoplasma</td>
<td>I-B</td>
<td>EU168720</td>
<td>Hodgetts et al., 2008</td>
</tr>
<tr>
<td>CAY</td>
<td>Cactus aster yellows phytoplasma</td>
<td>I-B</td>
<td>EU168721</td>
<td>Hodgetts et al., 2008</td>
</tr>
<tr>
<td>PP</td>
<td>Periwinkle proliferation phytoplasma</td>
<td>I-B</td>
<td>FJ176389</td>
<td>Nejat et al., 2009</td>
</tr>
<tr>
<td>CP</td>
<td>Clover phyllody phytoplasma</td>
<td>I-C</td>
<td>EU168722</td>
<td>Hodgetts et al., 2008</td>
</tr>
<tr>
<td>BcRD</td>
<td>Black currant reversion disease phytoplasma</td>
<td>I-C</td>
<td>EU168723</td>
<td>Hodgetts et al., 2008</td>
</tr>
<tr>
<td>ACLL</td>
<td>Apricot chlorotic leafroll phytoplasma</td>
<td>I-F</td>
<td>EU168724</td>
<td>Hodgetts et al., 2008</td>
</tr>
<tr>
<td>PPWB</td>
<td>Pigeon pea witches’-broom phytoplasma</td>
<td>IX</td>
<td>EU168746</td>
<td>Hodgetts et al., 2008</td>
</tr>
<tr>
<td>MPV</td>
<td>Mexican periwinkle virescence phytoplasma</td>
<td>XIII</td>
<td>EU168753</td>
<td>Hodgetts et al., 2008</td>
</tr>
</tbody>
</table>

Figure 1. Naturally infected (left), healthy (center) periwinkle and experimentally infected periwinkle by grafting (right).

phytoplasma strains from subgroups 16SrI-A, C, E and F. The PP phytoplasma differed from aster yellows witches’-broom phytoplasma rRNA from 16SrI-A in the HhaI, MseI and MboI profiles. Digests with HaeIII, HhaI and MseI produced different pattern between PP and clover phyllody phytoplasma strain CPh from subgroup 16SrI-C. HhaI, HinfI and TaqI digests yielded profiles showing difference between PP and blueberry stunt phytoplasma strain BBS3 from 16SrI-E. In addition, digests with AluI, HhaI and RsaI showed different fragment patterns between PP and aster yellows phytoplasma strain ACLR from 16SrI-F. Furthermore, different fragment profile in 2
Figure 2. Polymerase chain reaction amplification of naturally infected periwinkle samples with universal primer pairs P1/P7. M: 1 kb ladder; lane 1 - 4: amplification of phytoplasma using P1/P7 primer set from Malaysia; lane 5: healthy periwinkle sample.

Figure 3. Polymerase chain reaction of naturally infected periwinkle samples with secAfor1/secArev3 primer pairs. M: 1 kb ladder; lane 1 - 4: amplification of phytoplasma secA gene; lane 5: healthy periwinkle sample.
Figure 4. Phylogenetic tree, comparing the 16s rRNA gene sequences of PP phytoplasmas with 35 phytoplasmas and A. laidlawii as out group constructed by the Neighbor-Joining method.
enzymes (AluI and TaqI) was shown between PP and aster yellows phytoplasma strain PaWB from subgroup 16SrI-D (Figure 6).

DraI and EcoRI showed same fragment patterns among PP and all of the strains from different subgroups.

DISCUSSION

Periwinkle has been demonstrated to be a host for numerous phytoplasmas. Periwinkles are known to be susceptible to the aster yellows (16SrI) group phytoplasma in several countries. Aster yellows phytoplasma has been reported in Malaysia (Khew et al., 1991) and Argentina (Torres et al., 2004). American aster yellows (Lee et al., 1998) and periwinkle virescence (Lee et al., 1991) in North America; the Catharanthus virescence (Schneider et al., 1993) in South America; the Italian periwinkle witches´-broom in Europe and the Catharanthus virescence from Asia (Marcone et al., 2000) have been reported as members of the 16SrI group.

In the present study phytoplasmas were detected and characterized from naturally infected periwinkle plants grown in different locations in Selangor State, Malaysia . The collected periwinkles exhibited typical symptoms of phytoplasma such as phyllody and virescence.

The pathogenicity of the phytoplasma was confirmed by graft transmission, as they were transmitted from diseased to healthy periwinkle plants by grafting and the symptoms of experimentally infected periwinkles appeared similar to naturally infected periwinkle.

The association of a phytoplasma with symptoms was also demonstrated through PCR amplification of the 16Sr DNA and secA genes of periwinkle proliferation phytoplasma characteristic 1.8 kb and 830 bp, respectively. For accurate classification of a phytoplasma strain, it is preferable to sequence 16S rRNA genes. Also, virtual RFLP analysis could serve as a convenient and reliable alternative to conventional RFLP analysis (Wei et al., 2007). In RFLP analysis, a composite pattern is suspected when the sum of the sizes of DNA fragments is greater than the expected size of the F2nR2 region. Furthermore, RFLP analysis of sequence-heterogenous rRNA operons of phytoplasma in mutual isolation could result in erroneous assignment of the same phytoplasma to different 16S rRNA subgroups (Davis et al., 2003). The secA gene sequences amplified is offered a further approach to phytoplasma diagnostics and strain identification (Hodgetts et al., 2008).

A phylogenetic tree constructed based on 16S rDNA sequences, secA gene sequences and virtual RFLP has revealed the periwinkle proliferation phytoplasma in Malaysia associated with subgroup I-B of aster yellows phytoplasma group.

The aster yellows (AY) group is the largest group of the phytoplasmas (Marcone et al., 2000). The comprehensive
Figure 6. A computer-simulated virtual gel analysis of rDNA PCR products. Comparison of fragment patterns resulting from restriction endonuclease digestion of rDNA sequences from periwinkle proliferation phytoplasma infected periwinkle [PP] and aster yellows witchesbroom phytoplasma rRNA (A), *Candidatus* phytoplasma asteries (B), clover phyllody phytoplasma strain Cph (C), aster yellows phytoplasma strain PaWB (D), blueberry stunt phytoplasma strain BBS3 (E) and aster yellows phytoplasma strain ACLR-AY (F) with *Alu*, *Dra*, *EcoR*, *HaeIII*, *HhaI*, *MboI*, *MseI*, *RsaI* and *TaqI* endonucleases. MW is Promega 100 bp step ladder.
classification of AY-group phytoplasmas appears that subgroup 16SrI-B is by far the most prevalent AY phytoplasma type occurring in America, Europe and Asia (Lee et al., 1992, 1993, 1998; Gundersen et al., 1996; Seemüller et al., 1998; Marcone et al., 2000). The obtained results proved that periwinkle proliferation phytoplasma in Malaysia associated with 16SrI-B group and this consequently demonstrates the wide geographical distribution of the 16SrI-B phytoplasmas.

The major sub groups (16SrI-A and –B) have a wide host range and may also occur in the same host. Subgroups 16SrI-A and B induce in periwinkle a wide variety of symptoms such as virescence, phyllody, small and faintly coloured flowers, flower malformations, shortening of internodes, elongation and etiolation of internodes, small and deformed leaves, yellowing and decline (Marcone et al., 2000).

This information will serve as basis for future investigations concerned with epidemiology aspects of the disease, host range study and identifying possible insect vectors through molecular techniques.

REFERENCES

