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It is no doubt that the contamination of water, air and soil has worsened, and this occurs as a result of 
the increase in population. However, the need for remediation technologies has to be seriously 
considered. Phytoremediation is one of the remediation techniques with a relatively slow procedure and 
low efficiency. This review covers some of the biological, chemical, physical, physico-chemical and 
genetic methods, which were applied in parallel with phytoremediation, in an attempt to help increase 
the efficiency in the remediation of air, soil and water. These include lowering the pH and increasing the 
electrode potential (Eh), as well as using chelating agents and micro-organisms (arbuscular 
mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR)).Among the introduced 
methods, an appropriate application of the PGPRs is one of the most useful and environmentally 
friendly techniques which is currently considered as a useful process in phytoremediation. As a result 
of the discovering of these new methods, multi-approaches have been executed for a faster and higher 
removal rate of the contaminants, with a consequent increase in the efficiency of phytoremediation, as 
compared to single techniques.   
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INTRODUCTION  
 
Due to global industrialization and the increase in human 
population in the twentieth century, heavy metal 
contamination of soil, water and air has posed various 
uncompromising and fatal effects on humans and the 
stability of the ecosystem. Unlike organic contaminants, 
heavy metals are not biologically degradable, and 
therefore can remain in environmental bodies for a long 
time. The term ‘heavy metal’ has different definitions, but 
it is mostly used in the context of environmental pollution.  
Among others, Shaw et al. (2004) explained four criteria 
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in distinguishing the groups of heavy metal: 1) Relatively 
abundant in the earth’s crust; 2) reasonable extraction 
and usage; 3) having direct contact with people; and 4) 
toxic to humans. Another definition describes heavy metals 
as the metals which have a specific gravity of more than 4 
(Anonymous, 1964; Nieboer and Richardson, 1980) or 
more than 5 (Lapedes, 1974; Nieboer and Richardson, 
1980).  

Most heavy metals are categorized as toxic and 
accessible, based on the classification of Wood (1974), 
and their concentrations in soil vary between 1 to 
100,000 mg/kg (Blaylock and Huang, 2000). The plant 
toxicity of heavy metals differs according to plant species; 
for flowering plants the toxicity may appear as AS(III)~ 
Hg>Cd>Tl>Se(IV)>Pb>Bi~Sb (Fergusson, 1990). Never 
theless, it is important to highlight that many factors can 
influence this sequence. These include the properties of 
soil and the type of plants. There are generally four major 
soil remediation methods (Ward and Singh, 2004), 
namely:  
 
1. Physical remediation: thermal desorption, cement kiln, 
air stripping and incineration; 
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2. Chemical remediation: encapsulation, solvent extraction, 
neutralization, oxidation-reduction and precipitation; 
3. Bioremediation: land farming, natural attenuation, 
biopiling, bioventing, bioaugmentation and bioreactor; 
4. Phytoremediation: defined as the use of plants 
(including trees and grasses) to remove, destroy or 
sequester hazardous contaminants from various media 
such as soil, water and air (Prasad, 2003). Phyto-
remediation consists of the Greek word “phyto” which 
refers to plant, and the Latin suffix “remedium” which 
means curing or restoring. The main reason for the use of 
this technique was to collect the contaminants from the 
media and turn them into easily extractable form (plant 
tissues). Basically, the phytoremediation of contaminants 
is categorized under four major sub-groups (Khan, 2005; 
Ward and Singh, 2004), as follows: 
 
a. Phytoextraction entails the use of plants to remove soil 
contaminants and transport them to above-ground plant 
tissues. Chaney (1983) proposed this technique as the 
most promising method for the remediation of contaminated 
soils. 
b. Phytostabilization basically involves the mechanisms 
of plants, which immobilize or reduce the availability of 
soil contaminants, by plant roots or their associated 
bacteria. 
c. Phytovolatilization requires plants to volatilize soil 
contaminants into the atmosphere.  
d. Rhizofiltration involves the absorption of contaminants 
from waste water and aqueous waste streams by plant 
roots. 
 
This natural and environmental friendly technology is 
cost-effective, aesthetically pleasant, soil organism-
friendly, diversity enhancer, energy derivation from 
sunlight (Chaney et al., 2005; Huang et al., 2004; Susarla 
et al., 2002), and more importantly, it is able to retain the 
fertility status of the soil even after the removal of heavy 
metals (Kirkham, 2006). However, this relatively new 
technology poses some disadvantages which have limited 
its application. These include the necessary demands for 
nutritional materials and specific climatic conditions, as 
well as proper soil characteristics to maintain a normal 
plant growth. For instance, Thlaspi praecox, that is, the 
hyperaccumulator of cadmium (Cd), zinc (Zn) and lead 
(Pb), is a perennial plant which is native to Slovenia, 
where the roots survive during cold winters and is very 
sensitive to warm temperatures. In particular, one of the 
most important drawbacks in phytoextraction is the long 
time required in this method which has challenged the 
application of phytoremediation.  Huang et al. (1997) 
justified that for an economical phytoextraction, plants 
should be able to accumulate at least 1% of the total 
heavy metal content present in the soil into their dry 
shoot biomass.  

Neugschwandtner et al. (2008) estimated that in order 
to obtain the Czech threshold values  for  Cd  (1 mg kg-1 soil)   

 
 
 
 
and Pb (220 mg kg-1 soil) in contaminated soils under 
maximum obtained remediation factors, 260 and 300 
cropping seasons, would respectively be required. 
Obviously, operating the huge number of cropping 
seasons is definitely very costly and time-consuming. 

Other disadvantages of phytoextraction are the limited 
tolerance of the plant (particularly encountered at high 
concentration of contaminants), lower efficiency over 
other non-biological remediation techniques and the 
limitations when the contaminated soil layer occasionally 
extends to the deeper profile (Wei et al., 2008; Wu et al., 
2006). Another major issue is the handling and disposal 
of the contaminated plant waste which could be land 
filled, composted or incinerated (Keller et al., 2005; 
Rathinasabapathi et al., 2006). However, these methods 
could be responsible of the transfer of the contaminants 
to other compartments of the ecosystem (e.g. land filling 
increases the risk of groundwater contamination).  

Generally, two approaches have been proposed to be 
employed in using plants to extract heavy metals from 
contaminated soils. First is the use of plants with 
extraordinary ability to accumulate the contaminants 
known as “hyperaccumulators”, and second is the use of 
tolerant plants (Peer et al., 2005) with a relatively higher 
accumulation ability as compared to most other plants 
(but with lower ability as compared to hyperaccumulators) 
and high biomass such as corn, rice, peas and Indian 
mustard. These are normally accompanied by other 
enhancement methods (e.g. using chelating agents) to 
increase the concentration of heavy metals in plant 
tissues (Do Nascimento and Xing, 2006). In total, there 
are 45 families and 400 species of introduced hyper-
accumulator vascular plants (Reeves and Baker, 2000). 
The number of species with a high accumulation capacity 
and high biomass are rather rare because hyperaccu-
mulators have a small above-ground biomass, slow 
growth and a long maturity phase (Zhou and Song, 
2004). The term “hyperaccumulator” was first explained 
by Brooks et al. (1977) who related it to plants which 
could accumulate nickel (Ni) at a concentration of more 
than 1000 mg/kg dry weight in their leaves. This was 
followed by Baker and Brooks (1989) who defined this 
term by including the concentration of other heavy metals 
in shoots of hyperaccumulator plants as 100 mg/kg dry 
weight for Cd; 1,000 mg/kg dry weight for Ni, copper 
(Cu), cobalt (Co), Pb; 10,000 mg/kg dry weight for Zn and 
manganese (Mn) and 1 mg/kg dry weight for gold (Au). 
There are three other important characteristics (Wei et 
al., 2008; Wei et al., 2004) used in defining a plant as a 
hyperaccumulator. The first characteristic is the 
translocation factor (TF) which refers to the concentration 
of heavy metal in shoots divided by that in roots, and it 
should be higher than 1 (the concentration of contaminants 
in shoots should be higher than in roots). This particular 
criterion is especially important in phytoextraction since 
harvesting of the shoots is the main purpose. The second 
characteristic is the accumulation factor (AF), that  is,  the  



 
 
 
 
concentration of heavy metal in roots divided by that in 
soil which should be higher than 1. Tolerance is the third 
criterion, which is manifested by insignificant or no 
reduction in the shoot biomass of plants grown in 
contaminated sites. Although finding out the species 
which carry all the mentioned criteria is rather difficult, 
hyperaccumulators usually have a weak point in at least 
one of them. 
 
 
INCREASING THE EFFICIENCY OF PHYTO-
REMEDIATION 
 
Increasing the bioavailability of heavy metals 
 
One of the most critical points of phytoremediation is the 
phytoavailability of heavy metals in soil (Lombi et al., 
2001). Based on the uptake by plants, heavy metals in 
soil could be classified into three groups which include 
“available” fractions (easily absorbable forms including 
free ions and chelating ions), “exchangeable” fractions 
(bound to organic matter, carbonates or Fe-Mn oxides) 
and “unavailable” fractions (residual forms which are 
most difficult to be absorbed) (Wei et al., 2008; Zhou and 
Song, 2004). Nevertheless, there are other techniques 
which can be used to increase the bioavailability of heavy 
metals such as decreasing pH by adding sulfuric acid or 
organic fertilizers (Roy and Singh, 2006; Warton and 
Matthiessen, 2005) or using chelating re-agents. Sappin-
Didier et al. (2005) showed the increase in the accu-
mulation of Cd in transgenic tobacco as pH decreased, 
whereas Singer et al. (2007) proved an increase in the Ni 
concentration of Alyssum lesbiacum which was paralleled 
with the increase in pH. The latter case showed a 
different impact strategy of pH under different situations 
on the accumulation of metal.  

Chelating agents have been widely used by many 
researchers (Blaylock et al., 1997; Chiu et al., 2005; 
Marques et al., 2008b; Pastor et al., 2007). Synthetic 
chelating agents are shown to have the potential to increase 
the bioavailability of unavailable and exchangeable heavy 
metal fractions (Komarek et al., 2007; Sun et al., 2001). 
The most important application of the chelating reagent is 
related to phytoremediation of less bioavailable heavy 
metals such as lead (as only 0.1% of soil Pb is bioavailable) 
(Peer et al., 2005). The use of non-biodegradable or the 
least biodegradable chelating agents, such as ethylene-
diaminetetraacetic acid (EDTA), can leach metals into the 
ground water (Santos et al., 2006) and create a new 
source of pollution by this residual chelating reagent (Wei 
et al., 2008). (S,S)-N,N´-ethylenediamine disuccinic acid 
(EDDS) is the biodegradable form of EDTA (Schowanek 
et al., 1997; Vandevivere et al., 2001) with 90% biode-
gradability within 20 days (Dixon, 2004) and is a good 
substitute of EDTA (Tandy et al., 2006).  Luo et al. (2006) 
showed that the application of hot EDDS (90°C) was 
much more  efficient  than  the  normal  chelate  solutions  
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(25°C) in improving the uptake of heavy metals by plants. 
These authors also hypothesized that when hot water 
pre-treatment was used, the uptake of metal-EDTA was 
enhanced through physiological damage to the roots. 
However, the applicability of this experiment in big 
expanse of contaminated land is still being questioned, 
since spreading near boiling EDDS on soil surface can 
seriously injure plant shoots and further disrupt phyto-
remediation process, unless long tubes are used to 
directly transfer hot solution to soil surface. Nevertheless, 
this method has its own economical and operational 
restrictions. 

Another method is to increase the electrode potential 
(Eh) which can enhance the bioavailability of metals in 
soil solution (Zhou and Song, 2004). The adjustment of 
Eh is usually executed using farming techniques such as 
solar drying, balancing of organic materials or irrigation 
arrangement; however, the adjustment of Eh is generally 
complicated (Wei et al., 2008; Yang, 1998). 
 
 
The increase of plant growth 
 
As the biomass of plants (especially the biomass of 
shoot) has a critical role in the total metal removal, any 
physical (such as light and temperature adjustment), 
chemical (such as the use of fertilizers) or physico-
chemical (such as adjustment of soil pH) methods could 
improve the efficiency of phytoremediation. Appropriate 
application of fertilizers (N, P, K) and irrigation also have 
beneficial effects (Wei et al., 2008); for instance, Jankong 
et al. (2007) found an increase in the biomass and 
accumulation of arsenic in silverback ferns (Pityrogramma 
calomelanos) fertilized with phosphorus. Meanwhile, 
Barrutia et al. (2009) observed an increase in the mean 
plant biomass and tolerance when treated with fertilizers 
in Pb, Cd and Zn contaminated soils. Hamlin and Barker 
(2006) discovered that nitrate fertilizers could be used to 
enhance the biomass of shoot and stimulate the 
accumulation of Zn. In spite of the presence of positive 
effects of fertilizers on metal accumulation, Marques et al. 
(2008a) showed a reduction in the accumulation of Zn in 
Solanum nigrum when amended with manure.  
 
 
Decreased phytoremediation period 
 
Another suggested approach is to accelerate  the  growth 
of plants, which consequently decreases phyto-
remediation cycle, by providing specific demands of 
respective plant species (e.g. adjusting light, temperature 
and CO2) (Wu et al., 2009 ; Wei et al., 2008). This could 
also be achieved by transferring the seedling to the field 
so as to decrease the duration of phytoremediation (as 
the accumulation of heavy metal in plant shoots at flowering 
stage is high) (Wei et al., 2008); however, this  technique 
also has its own ambiguous applicability because  of  the 
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restrictions in the sowing of individual seedlings in a vast 
area of contaminated land. 
 
 
Biological methods 
 
Hiltner (1904) was the first to describe the term 
‘rhizosphere’. This microbial community is effective in 
tracing metal phytoavailability using different mechanisms, 
including the release of chelators, acidification and redox 
changes (Abou-Shanab et al., 2003).  Generally, beneficial 
rhizospheric micro-organisms include free-living as well 
as symbiotic rhizobacteria and mycorrhizal fungi. 
 
 
Arbuscular mycorrhizal fungi (AMF) 
 
The term “mykorrhiza” was first used by Frank in 1885 
and it was related to the modified root structure of forest 
trees. More than 80% of terrestrial plant diversity has a 
symbiotic association with mycorrhizae fungi (Sylvia, 
2005). The principal role of mycorrhizal fungi is to 
improve the uptake of phosphorus and mineral nutrients 
for plants (Chen et al., 2006) and enhance the number 
and length of root branch (Padilla and Encina, 2005). 
However, the alleviation mechanisms of AMF on the 
phytoremediation of metal is not clear (Jankong and 
Visoottiviseth, 2008). Some researchers did not find any 
change in the concentration of heavy metals with the 
presence of AMF (e.g. Vogel-Mikus et al., 2006), while 
others found an increase in some metal concentrations in 
plant tissues (e.g. Marques et al., 2008a; Whitfield et al., 
2003) and some others observed a decrease (e.g. Xu et 
al., 2008; Zhang et al., 2009). 
 
 
Plant growth promoting rhizobacteria (PGPR) 
 
Plant growth promoting rhizobacteria (PGPR) have 
initially been used in agriculture and forestry to increase 
plant yield, as well as growth and tolerance to diseases. 
In addition, they have recently been used in environ-
mental remediation, particularly to overcome plant stress 
under flooded, high temperature and acidic conditions 
(Lucy et al., 2004). This group of microbes can be divided 
into two main groups, based on their relationships, 
namely free living (ePGPR) which live outside the plant 
cells and symbiotic (iPGPR) which live inside the plant 
cells and produce nodules (Gray and Smith, 2005). 
PGPR can promote the growth of plants using direct and 
indirect mechanisms. Direct mechanisms include lowering 
the production levels of ethylene through synthesis of 1-
aminocylopropane-1-carboxylate (ACC) deaminase in 
plants (Reed and Glick, 2005; Safronova et al., 2006; 
Saleem et al., 2007), providing bioavailable phosphorus 
for plant uptake and atmospheric nitrogen fixation for 
plant  use,  sequestering  trace  elements  like  iron  using  

 
 
 
 
siderophores (Glick et al., 1995) and production of plant 
hormones like gibberellins, cytokinins and auxins (Glick 
et al., 1999). Indirect impact of PGPR is usually achieved 
by increasing the plant tolerance to diseases (Guo et al., 
2004). It is crucial to highlight that because the efficient 
use of PGPR is limited to slight and moderately 
contaminated sites (Wu et al., 2006), the most important 
limiting factor for the application of PGPR is their 
tolerance to the concentration of heavy metal. Based on 
the amount and the type of the organic compounds, 
which are mostly exuded from plant roots (Myers et al., 
2001) as well as the amount and the type of heavy 
metals (Sandaa et al., 1999), the PGPR population 
between plants could be different among the same 
species in the contaminated soils, or even between the 
different growing stages of an individual plant. Wu et al. 
(2006) explained the increasing population of PGPR on 
the rhizosphere of Brassica juncea grown in Pb-Zn mine 
tailing by seedling stage > flowering stage > tillering 
stage.  
 
PGPR in terrestrial plants: The alteration of rhizospheric 
microbial complex in the uptake of essential elements, 
such as Mn+2 and Fe+3 (Barber and Lee, 1974), and the 
efficiency of phytoremediation (O'Connell et al., 1996) 
have been well documented. Hasnain and Sabri (1997) 
showed an improvement in the growth of Triticum 
aestivum seedling in different Pb concentrations when 
their seeds were inoculated with two Pseudomonas 
strains as compared to the uninoculated control. The 
safety of their usage is one of the most important 
considerations which should be taken into account before 
deciding on whether to use PGPR for phytoremediation 
purposes. For example, Burkholderia cepacia is a multi-
drug resistant PGPR with health risk potentials (Lee et 
al., 2008), but at the same time, it has been shown to 
have special abilities in increasing the efficiency of 
phytoremediation (Table 1). A number of new researches 
carried out in relation to the effects of PGPRs on the 
growth of plants and/or heavy metal concentrations in 
contaminated soils are summarized in Table 1.  
 
PGPR in aquatic plants: Aquatic plants are relatively new 
approved organisms for remediation purposes; these 
include rhizofiltration, phytofiltration, and constructed 
wetlands (Abou-Shanab et al., 2007; Bennicelli et al., 
2004; Zurayk et al., 2001). These aspects of 
phytoremediation have attracted more attention because 
of the increase in water pollution. Due to the new 
approach, most of the current research still focuses on 
the wetland hyperaccumulator species. Nonetheless, the 
availability of information on the effects of rhizospheric or  
rhizoplanic bacteria on the uptake of metal by plants 
rooted in aquatic systems is rather scarce. So et al. 
(2003) demonstrated that bacterial species resistant to 
Cu2+ or Zn2+, isolated from water hyacinths (Eichhornia 
crassipes), had led to  an  increase  in  the  Cu2+  removal  
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Table 1. Some recent researches in relation to the effects of PGPRs on plants in heavy metal contaminated soils. 
 

PGPR Plant Heavy metal Effect(s) References 
Bradyrhizobium sp., 
 Pseudomonas sp.,  
 Ochrobactrum cytisi 

Lupinus luteus Pb, Cu, Cd,  Decreased the metals accumulation. However, plant biomass was increased. Dary et al. (2010) 

Bacillus subtilis, Bacillus cereus, 
Flavobacterium sp. ,     
Pseudomonas aeruginosa 

Orychophragmus 
violaceus Zn Increased shoot biomass and Zn accumulation. 

 
He et al. (2010) 

Ralstonia metalidurans 
 
Pseudomonas aeruginosa 

 
Maize 

Cr 
 
Cr, Pb 

Increased the accumulation of Cr in shoots by a factor of 5.2. 
 
Increased the uptake by shoots by a factor of 5.4 and 3.8, respectively. 

 
Braud et al. 
(2009) 

Achromobacter xylosoxidans strain 
Ax10 Brassica juncea Cu 

Increased the length of roots and shoots, fresh and dry weight significantly and 
extensively improved the Cu uptake of B. juncea plants as compared to the 
control. 

Ma et al. (2009) 

Brevibacterium Halotolerans 
 
Bacillus subtilis, 
Bacillus pumilus 
Pseudomonas pseudoalcaligenes 
Brevibacterium  halotolerans 

Zea mays 

Pb, Zn,Cu 
 
 
 
 
Cr 

Demonstrated the highest concentrations of  Pb, Zn, Cu with the PGPR strain. 
 
 
 
 
Demonstrated the highest concentration of Cr with  mixed PGPR strains. 

 
Abou-shanab et 
al. (2008) 

Pseudomonas tolaasii ACC23 
 
Pseudomonas fluorescens ACC9 

Brassica napus 
 
 
 

Cd 

The Cd content per plant was not increased significantly; but the growth of 
roots was increased by 83% and shoots by 94%. 
The Cd content per plant was increased to 72% and the growth of the roots 
and shoots was by 56% and 64% respectively. 

Dell’Amico et al. 
(2008) 

Pseudomonas aeruginosa Black gram 
plants Cd Lessened the accumulation of cadmium in plants; showed extensive rooting 

and enhanced plant growth. Ganesan (2008) 

Burkholderia sp. J62 Maize and 
tomato Cd, Pb 

Increased the biomass of maize and tomato plants significantly; the increased 
Pb and Cd contents in tissues varied from 38% to 192% and from 5% to 191%, 
respectively. 

Jiang et al. (2008) 

Pseudomonas fluorescens G10, 
Microbacterium sp. G16 

Rape Pb Increased root elongation of inoculated rape seedlings and total Pb 
accumulation as compared to the control plants. 

 
Sheng et al. 
(2008) 

Pseudomonas aeruginosa Mustard and 
pumpkin Cd 

Demonstrated improved growth and branched rooting expansively, reduced 
cadmium uptake of pumpkin by 59.22% in roots and 47.40% in shoots; 
reduction in the uptake of Cd by 52.44% and 36.89% in roots and shoots of 
mustard, respectively. 

Sinha and 
Mukherjee (2008) 

Burkholderia cepacia Sedum alfredii Cd, Zn Increased plant growth with Zn treatment up to 110%; increased Cd and Zn 
uptakes up to 243% and 96.3%, respectively. 

 
Li et al. (2007)  
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Table 1. Contd. 
 

Bradyrhizobium sp. RM8 Green gram var 
.K851 Ni, Zn Increased plant growth and decreased uptake of heavy metals by plant. Wani, et al. 

(2007) 

Pseudomonas sp. RJ10 
 
 
Bacillus sp. RJ16 

Rape (Brassica 
napus) 
 

Cd 
 
 

Increased uptake of Cd by plant, and significantly enhanced shoot and root 
dry weight. 
 
Increased shoot and root Cd content from 11% to 136% and 20% to 27% 
compared to control; Increase shoot and root dry weight significantly. 

Sheng et al. 
(2006) 
 
 

Azotobacter chroococcum HKN-5 
Bacillus megaterium HKP-1 
Bacillus mucilaginosus HKK-1 

Brassica  juncea Pb, Zn, Cu Increased the removal of Pb, Zn, Cu by 92%, 38% and 36%, respectively. Wu et al. 
(2006) 

Bacillus subtilis SJ-101 Brassica juncea Ni Approximately increased the accumulation of Ni by 1.5 fold; Increased plant 
biomass. 

Zaidi et al. 
(2006) 

V. paradoxus 2C-1, 2P-1, 2P-4, 
3C-2, 3C-3, 3C-5, 3P-3, 5C-2, 5P-
3 
Flavobacterium sp. 5P-4 
Rhodococcus sp. 4N-4 

Indian mustard 
(Brassica 
juncea) 

Cd Increased the length of roots significantly (specially strain 5C-2). Belimov et al. 
(2005) 

Azospirillum lipoferum 137, 
Arthrobacter mysorens 7, 
Agrobacterium radiobacter 10 

Barley cultivar 
Tselinnyi-5 Pb, Cd Increased growth of plants and uptake of nutrients; prevented the 

accumulation of  Pb and Cd. 
Belimov et al. 
(2004) 

 
 
 
 
capacity of this plant species. Xiong et al. (2008), 
who worked on Sedum alfredii Hance (a terrestrial 
plant), in an aqueous medium with rhizospheric 
bacteria, suggested that rhizospheric bacteria 
appeared to protect the roots against heavy metal 
toxicity. The number of bacteria on the root 
surface of terrestrial plants is approximately 107 
cell/cm2 (Kennedy et al., 1998), but this was found 
to decrease to 106 cell/cm2 in aquatic plants (Fry 
and Humphrey, 1978). The difference in the 
population of bacteria could be attributed to 
several factors, such as the variability of oxygen 
flux around the roots of aquatic plants, which 
might change the equations of phytoremediation  
in the different media.  

Genetically-engineered approaches 
  
As a result of the development in biological science, 
genetic modification methods have attracted the 
attention of many scientists. Higher efficiency in 
the remediation by plants is achieved mostly by 
an increase in the tolerance and/or accumulation 
capacity of transgenic plants. The earliest 
research by Misra and Gedamu (1989) showed an 
increase in cadmium tolerance of transgenic 
tobacco plants (Nicotiana tobacum) expressing a 
yeast metallothionein gene. In addition, Hsieh et 
al. (2009) found an increase in mercury (Hg) 
accumulation and tolerance of Arabidopsis thaliana 
when mercuric ion binding protein (MerP), 

originated from transposonTnMERI1 of 
transposon TnMERI1 Bacillus megaterium strain 
MB1, was expressed in the transgenic plants. 
Transgenic plants usually contain some beneficial 
enzymes like ACC deaminase (Grckho et al., 
2000; Nie et al., 2002) and gamma-
glutamylcysteine synthetase (Han et al., 2000), 
which in turn improve the tolerance of plants to 
stress and increase the ratio between plant 
growth and shoot/root. Transgenic plants, with 
selected genes, have also been shown to have 
higher abilities to biodegrade organic contami-
nants in their tissues (Doty et al., 2000; 
Kawahigashi et al., 2003). 

Along   with  genetically  engineered  plants,  the 



 
 
 
 
the role of transgenic PGPR is considerable. The trans-
genic PGPRs usually have a higher ability to degrade 
organic contaminants (Barac et al., 2004; Monti et al., 
2005) and exude heavy metal binding components, such 
as methallothioneins (MTs) and phytochelatines (PCs), 
which are useful in phytoremediation and bioremediation 
of contaminants (Wu et al., 2006). 

Since all the research mentioned in the earlier section 
were merely confined to laboratory studies and field 
applications of transgenic organisms were also highly 
restricted, the use of this approach is therefore restricted 
in most countries; thus, they could not be considered as 
possible tools in phytoremediation of contaminated lands 
in the near future. 
 
 
Multi-functional methods to improve phytoremediation  
 
As each described method has its own advantages and 
disadvantages, new approaches have been focusing on 
multi-improvement methods. Lin et al. (2009) found a 
better efficiency of the low dose EDTA with a medium soil 
nutrient level on the accumulation of Pb in sunflower. 
Vaxevanidou et al. (2008) showed a 10% increase in the 
extraction of Pb with bacteria (Desulfuromonas palmitatis) 
and EDTA, as compared to the amendment ofEDTA 
alone. However, in the same study, a 30% reduction was 
observed for the extraction of Zn, with the presence of 
bacteria and EDTA, as compared to only EDTA. Similarly, 
Di Gregorio et al. (2006) showed a 56% increase in the 
efficiency of the EDTA-led phytoextraction by B. juncea, 
which was combined with an application of Triton X-100 
and Sinorhizobium sp. Pb002 inoculums. More processes 
for the multi-function removal of contaminants are 
currently being used in removing organic compounds 
such as polycyclic aromatic hydrocarbons (PAHs) and 
polychlorinated biphenyls (PCBs).  For instance, a multi-
process which includes physical (volatilization), photo-
chemical (photooxidation) and microbial remediation 
(contaminant degrading bacteria, PGPRs) processes was 
employed by Huang et al. (2004). In their study, the 
average efficiency for the removal of 16 priority PAHs, 
using the multi-process remediation system, was found to 
be 100% more than land-farming, 50% more than using 
bacteria alone and 45% more than phytoremediation 
alone. 
 
 
CONCLUSION 
  
The increase of heavy metal pollution in the environment 
has led many researchers to focus on developing fast, 
economical and more efficient remediation technologies. 
It is no doubt that phytoremediation is an environmentally 
friendly technique, but the removal process is rather slow 
with lower efficiency as compared to many other 
techniques. Thus, some other remediation techniques,  
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which are paralleled to or in sequence with phyto-
remediation, have been suggested to increase the 
potential for remediation. This review has highlighted 
some phytoremediation efficiency enhancer methods, 
including the recent studies which showed higher abilities 
when multiple techniques were used to increase the 
concentration and speed of pollution removal. At the 
same time, it is important to note that plants have a focal 
role in this system, and that the entire accompanying 
techniques are for higher and faster bioaccumulation of 
contaminants in plant tissues. 
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