Molecular cloning and characterization of two genes - \textit{PHKG2} and \textit{IRAK4} from black-boned sheep (\textit{Ovis aries})

Yongke Sun, Yuai Yang, Dongmei Xi, Xiao Gou, Huaming Mao and Weidong Deng*

Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.

Accepted 18 June, 2010

The complete coding sequences of two sheep genes - \textit{PHKG2} and \textit{IRAK4} were amplified using the rapid amplification of cDNA ends (RACE) method based on three sheep expressed sequence tags whose translated amino acids contain the mitochondrial carrier domain. The sequence analyses of these two genes revealed that the sheep \textit{PHKG2} gene encodes a protein of 406 amino acids which has high homology with the phosphorylase kinase, gamma 2 protein of five species: Cattle (99%), human (96%), mouse (92%), rat (91%) and chicken (63%). The sheep \textit{IRAK4} gene encodes a protein of 456 amino acids which has high homology with the interleukin-1 receptor-associated kinase 4 protein of six species: Cattle (94%), pig (88%), human (87%), mouse (79%), rat (79%) and chicken (54%). The tissue transcription profile analyses indicated that the Black-boned sheep \textit{PHKG2} and \textit{IRAK4} genes are generally but differentially expressed in the detected tissues including spleen, muscle, skin, kidney, lung, liver, heart, fat and small intestine. These data serve as a foundation for further insight into these two genes.

\textbf{Key words:} Black-boned sheep, \textit{PHKG2} and \textit{IRAK4}, tissue transcription profile.

\section*{INTRODUCTION}

Phosphorylase kinase gamma 2 (PHKG2) which is phosphorylase kinase catalytic subunit isoform, catalyzes the phosphorylation and activation of glycogen phosphorylase (Winchester et al., 2007). The phosphorylase kinase holoenzyme is made up of four copies of each of four subunits (alpha, beta, gamma and delta). The liver isoforms of the alpha-, beta- and gamma-subunits are encoded by PHKA2, PHKB and \textit{PHKG2}, respectively. Mutation within these genes has been shown to result in GSD type IX, which is caused by a deficiency of hepatic phosphorylase kinase activity. Seven novel mutations were identified in PHKA2 (p.I337X, p.P498L, p.P869R, p.Y116_T120dup, p.R1070del, p.R916W and p.M113I), two in \textit{PHKG2} (p.L144P and p.H48QfsX5) and two in PHKB (p.Y419X and c.2336+965A>C). There was a severe phenotype in patients with \textit{PHKG2} mutations, a mild phenotype in patients with PHKB mutations and a broad spectrum associated with PHKA2 mutations (Beauchamp et al., 2007).

Interleukin-1 receptor-associated kinase 4 (IRAK4), is a member of IL-1 receptor (IL-1R)-associated kinase (IRAK) family and has been shown to play an essential role in Toll-like receptor (TLR)-mediated signaling, and IRAK4 kinase activity plays a critical role in TLR-dependent immune responses. The IRAK4 kinase-inactive knock-in mice were completely resistant to lipopolysaccharide (LPS) and CpG-induced shock, due to impaired TLR-mediated induction of proinflammatory cytokines and chemokines. In addition, influenza virus-induced production of interferons in plasmacytoid DCs was also dependent on IRAK4 kinase activity (Kim et al., 2007; De Nardo et al., 2009; Koziczak-Holbro et al., 2007). The crystal structure reveals a six-helical bundle with a prominent loop, which among IRAKs and Pelle, a Drosophila
homologue, is unique to IRAK-4. This highly structured loop, contained between helices two and three, comprises an 11-amino acids (aa) stretch. Although innate immune domain recognition is thought to be very similar between Drosophila and mammals, this structural component points to a drastic difference. This structure can be used as a framework for future mutation and deletion studies and potential drug design (Lasker et al., 2005).

The black-boned chicken or silky fowl (Gallus gallus domesticus brisson) is the first animal to be shown to possess black muscles and organs (Muroya et al., 2000; Chen et al., 2008; Dorshorst et al., 2010). For thousands of years in oriental societies, the consumption of tissues from black-boned chickens has been believed to confer nutritional and medicinal benefits, improving the immune status and reducing emaciation and feebleness (Nozaki and Makita, 1998; Tian et al., 2007). The discovery of a second animal with black traits, Black-boned sheep (Ovis aries) present in a mixed population of sheep found in Nanping County of Yunnan Province, China was reported recently (Deng et al., 2006, 2008a, b). These sheep, like the silky fowl, have dark coloured (blackish) tissues, compared to the reddish colour found in normal sheep. The trait for the dark colour in sheep has been shown to be inherited in cross-breeding studies (Deng et al., 2009a, b). Moreover, Black-boned sheep have been certificated as a novel genetic resource by the Ministry of Agriculture, China.

The preceding description of the functions of PHKG2 and IRAK4 genes and the association of the genes with growth, health, cell morphology and other important functions that are highly related or potentially related to black traits in the Black-boned sheep, justifies their cloning in the Black-boned sheep.

The objective of this study was to clone and analyze the coding sequences of the Black-boned sheep PHKG2 and IRAK4 genes, and determine their tissue transcription profiles. The data obtained will serve as a basis for understanding these sheep genes.

MATERIALS AND METHODS

Samples collection

Six matured Black-boned sheep were slaughtered. Spleen, muscle, skin, kidney, lung, liver, heart, fat and small intestine samples were collected and snap frozen in liquid nitrogen and then stored at -80°C. The total RNA was extracted using the Total RNA Extraction Kit (Gibco, USA). Before the first-strand cDNA synthesis, DNase I treatment of the total RNA was done.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primer sequences</th>
<th>Length (bp)</th>
<th>Ta (°C)</th>
</tr>
</thead>
</table>
| PHKG2 | Forward: 5'- CCCACTCGGTTGAACTAA -3'
Reverse: 5'- AGCTTCATGTTCTGATT -3' | 472 | 53 |
| IRAK4 | Forward: 5'- CCATCCAGCAAGCCAGT -3'
Reverse: 5'- G TTCAGCGAAGACCCAGG -3' | 479 | 52 |
| Actin | Forward: 5'- AGACCTCTACGCCAAG -3'
Reverse: 5'- ATCCCAGCCTCATAACCCT -3' | 419 | 54 |

RT-PCR for tissue expression profile analysis

RT-PCR for tissue expression profile analysis was performed as previously described elsewhere (Liu and Xiong 2007, Liu et al., 2008). We selected the housekeeping gene β-actin (Accession no. NM_001009784) as a positive control. The gene specific primers were used to perform the RT-PCR for tissue expression profile analysis of sheep PHKG2 and IRAK4 genes and were listed in Table 1.

Table 1. Primers for sheep PHKG2, IRAK4 and Actin genes and their annealing temperatures.

- **PHKG2**
 - Forward: 5'- CCCACTCGGTTGAACTAA -3'
 - Reverse: 5'- AGCTTCATGTTCTGATT -3'
- **IRAK4**
 - Forward: 5'- CCATCCAGCAAGCCAGT -3'
 - Reverse: 5'- G TTCAGCGAAGACCCAGG -3'
- **Actin**
 - Forward: 5'- AGACCTCTACGCCAAG -3'
 - Reverse: 5'- ATCCCAGCCTCATAACCCT -3'

The 25 µl reaction system was: 2 µl cDNA (100 ng), 5 pmole each oligo-nucleotide primer (forward primer 1 and reverse primer 1 or forward primer 1 and reverse primer 2), 2.5µl 2 mmol/l mixed dNTPs, 2.5µl 10 × Taq DNA polymerase buffer, 2.5µl 25 mmol/l MgCl2, 1.0 units of Taq DNA polymerase, and finally add sterile water to volume 25 µl. The PCR program initially started with a 94°C denaturation for 4 min, followed by 25 cycles of 94°C/50s, Ta °C /50s, 72°C /50s, then 72°C extension for 10 min, finally 4°C to terminate the reaction.

Sequence analysis

The gene analysis for cDNA sequence was conducted using GenScan software (http://genes.mit.edu/GENSCAN.html). The protein prediction and analysis were performed using the Conserved Domain Architecture Retrieval Tool of BLAST at the National Center for Biotechnology Information (NCBI) server (http://www.ncbi.nlm.nih.gov).
RESULTS

RACE results for sheep PHKG2 and IRAK4 genes

For sheep PHKG2 gene, through 5'-RACE, one PCR product of 749 bp was obtained. The 3’-RACE product was 889 bp. These products were then cloned to T-vector and sequenced. Taken together, a 1613 bp cDNA complete sequence was finally obtained (Figure 1). For sheep IRAK4 gene, through 5’-RACE, one PCR product of 665 bp was obtained. The 3’-RACE product was 1399 bp. These products were then cloned to T-vector and sequenced. Taken together, a 1982 bp cDNA complete sequence was finally obtained (Figure 1).

Sequence analysis

These cDNA nucleotide sequence analysis using the BLAST software revealed that these genes were not homologous to any of the known sheep genes and they were then deposited into the GenBank database (Accession numbers: FJ422551 and FJ422555). The sequence prediction was carried out using the GenScan software and results showed that the 1613 bp and 1982 bp cDNA sequences represented two single genes which encoded 406 and 456 amino acids, respectively. For sheep PHKG2 gene, there was a 5’ untranslated region of 124 bp and a 3’ untranslated region of 278 bp. For sheep IRAK4 gene, there was a 5’ untranslated region of 47 bp and a 3’ untranslated region of 564 bp.

The theoretical isoelectric point (pl) and molecular weight (Mw) of these deduced proteins of the two sheep genes were computed using the Compute pl/Mw Tool. The pl of sheep PHKG2 and IRAK4 are 5.69 and 5.25, respectively. The molecular weights of these two putative proteins are 46470.32 and 51369.48 dalton, respectively.

These putative proteins were also blasted using the Conserved Domain Architecture Retrieval Tool of Blast at the NCBI server (http://www.ncbi.nlm.nih.gov/BLAST) and their conserved domains were identified as Serine/Threonine protein kinases’ catalytic domain (Figure 2).

Further BLAST analysis of these proteins revealed that the sheep PHKG2 has high homology with the phosphorylase kinase gamma 2 protein of four species: Cattle (NP_000285, 96%), mouse (NP_081164, 92%), rat (NP_542151, 91%) and chicken (NP_001006217, 63%) (Figure 3). The sheep IRAK4 has high homology with the interleukin-1 receptor-associated kinase 4 protein of six species: Cattle (NP_001069466, 94%), pig (NP_001106163, 88%), human (NP_057207, 87%), mouse (NP_084202, 79%) and chicken (NP_001025909, 54%) (Figure 4).

The prediction of secondary structure by SOPMA (Combet et al., 2000) indicated that the deduced PHKG2 contained 171 α-helices, 66 extended strands, 37 β-turns and 132 random coils. Furthermore, the deduced IRAK4 consisted of 187 α-helices, 58 extended strands, 35 β-turns and 176 random coils, respectively (Figure 5).

Based on the results of the alignment of PHKG2 and IRAK4, phylogenetic trees were constructed using the
Figure 2. The putative domains of the proteins encoded by sheep PHKG2 and IRAK4 gene. (a) Serine/Threonine protein kinases, catalytic domain of sheep PHKG2; (b) Serine/Threonine protein kinases, catalytic domain of sheep IRAK4.

Figure 3. The alignment of the protein encoded by sheep PHKG2 gene and other five kinds of PHKG2 from mouse, cattle, rat, human and chicken.
Figure 4. The alignment of the protein encoded by sheep IRAK4 gene and other six kinds of IRAK4 from cattle, rat, mouse, pig, human and chicken.
Figure 5. Predicted secondary structure of the Black-boned sheep PHKG2 (a) and IRAK4 (b) proteins by SOPMA. Helices, extended strands, β-turns and random coils are indicated, respectively, with the longest, the second longest, the second shortest and the shortest vertical lines.

Figure 6. The phylogenetic tree for several kinds of PHKG2 (left) and IRAK4 (right) protein from sheep, cattle, rat, mouse, human and chicken.

Dendrogram procedure of ClustalW software (http://align.genome.jp/), as shown in Figure 6.

The phylogenetic tree analysis revealed that the sheep PHKG2 has a closer genetic relationship with the PHKG2 protein of cattle, and sheep IRAK4 have closer genetic relationships with the IRAK4 from cattle.

Tissue transcription profile

Tissue transcription profile analysis revealed that, compared to the expression of sheep actin gene, the Black-boned sheep PHKG2 and IRAK4 genes are generally but differentially expressed in the detected tissues which include: spleen, muscle, skin, kidney, lung, liver and heart, fat and small intestine (Figure 7).

DISCUSSION

In the current study, we firstly get the full length of PHKG2 and IRAK4 genes cDNAs and partial 5’ and 3’-UTR from the Black-boned sheep (O. aries) by using 5’- and 3’- RACE. PHKG2 and IRAK4 genes had been reported to play important roles in signal transformation and melanoma, respectively. Thus, this work will provide molecular basis for associate analysis DNA polymorphic of the two genes with black traits of the Black-boned sheep.

The development of modern bioinformatics and specific sheep NCBI EST database was established along with different convenient analysis tools and make researchers much easier to find the useful ESTs which have the important encoding amino acids information (Yang et al., 2009; Yu et al., 2010). Based on their sequences, we can obtain the entire coding sequences through some modern experimental methods such as rapid amplification of cDNA ends (RACE) method. From the isolation and sequence analysis of sheep PHKG2 and IRAK4 genes, it could be seen that this is an effective method to isolate the sheep genes.

From the tissue transcription profile analysis in our experiment, it can be seen that these genes were obviously differentially expressed in some tissues. The
suitable explanation for this is that, at the same time, those biological activities associated with the functions of these genes were presented diversely in different tissues.

Conclusion

We firstly isolated the ovine PHKG2 and IRAK4 genes and performed necessary sequence analysis and tissue transcription profile analysis from Black-boned sheep. This established the primary foundation for further insight into the relationship between the polymorphism of these two genes with black traits of Black-boned sheep.

ACKNOWLEDGMENTS

This work was supported by grants from the Natural Science Foundation Key Project of Yunnan Province (No. 2006C00052), National Nature Science Foundation of China (30760177 and 30860042), the “863” Key Program Science Foundation Key Project of Yunnan Province (No. 2008PY039, to Dr. W. D. Deng).

REFERENCES

Figure 7. Tissue transcription profile of Black-boned sheep PHKG2 and IRAK4 genes. The actin expression is the internal control. 1: spleen; 2: muscle; 3: skin; 4: kidney; 5: lung; 6: liver; 7: heart; 8: fat; and 9: small intestine.