Prevalence of *Candida* species in the oral cavity of patients with periodontitis

Batool Sadeghi Nejad¹,², Ablollah Rafiei¹ and Fereshteh Moosanejad²

¹Department of Mycoparasitology, Infectious Disease and Tropical Medicine Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
²Department of Mycoparasitology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Accepted 15 March, 2011

During the past two decades, there has been a significant increase in the prevalence of fungal infections caused by *Candida* species. Oral candidiasis is a common opportunistic infection of the oral cavity caused by yeast fungi of the genus *Candida* on the mucous membranes of the mouth. To isolate and determine the incidence rate of oral *Candida* species in periodontitis and gingivitis patients referred to school of dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, this study was carried out in 172 patients with periodontitis and gingivitis aged 11 to 72 years. Swabs samples were taken from salivary secretion, the palate mucosa and dentine carious lesions and were cultured directly on Sabouraud dextrose agar medium. Isolated yeasts were identified by CHROMagar *Candida*, germ tube test and Clamidoconidia formation (corn meal agar plus Tween 80 medium). Results showed the prevalence of *Candida albicans* (n = 120, 75%), *Candida glabrata* (n = 20, 12.5%), *Cadida tropicalis* (n = 10, 6.5%), *Candida dubliniensis* (n = 6, 4.0%) and *Cadida krusei* (n = 3, 2.0%). In this investigation, germ tube-test and chlamydospore formation were positive in the isolates that produced dark-green colonies and were considered as *C. dubliniensis* and light-green colonies were identified as *C. albicans*. CHROMagar *Candida* is a satisfactory isolation medium for oral and dental specimens. It is a satisfactory method for correct and rapid identification of common yeast species and easy recognition of mixed cultures in clinical samples.

Key words: Periodontitis, gingivitis, oral candidiasis, CHROMagar.

INTRODUCTION

The oral cavity is inhabited by more than 700 microbial species and many intrinsic and extrinsic factors affect the composition, metabolic activity and pathogenicity of the highly diversified oral microflora (Samaranayake et al., 2002; Aas et al., 2005). This fact has been correlated mainly to the use of broad-spectrum antibacterials, corticosteroids, anti-tumoral agents, oral contraceptives and increase in the number of immunocompromised patients (Eggimann et al., 2003). Yeasts, especially *Candida* spp. are the normal oral flora and their isolation from the mouth can be investigated in excessive consumption of fermentable carbohydrates (Samaranayake et al., 1986), dental caries risk and denture-wearing status (Beighton et al., 1991). *Candida* is not harmful in healthy hosts, but may cause opportunistic infections in immunocompromised hosts, such as patients suffering from AIDS, leukemia and diabetes. Oral candidiasis, which is frequently caused by *Candida albicans*, is one of the most common fungal opportunistic infections in immunocompromised patients (Klein et al., 1984). In the majority of clinical investigations, yeasts are routinely cultured on Sabouraud dextrose agar (SDA). This media is reliable for isolation of yeasts but overall, the colonies on SDA media are very similar in appearance and their subsequent identification in laboratory is required. CHROMagar *Candida* (CaC) is a selective and differential chromogenic medium for rapid screening of clinical specimens for identification of *Candida* spp. CaC contains various substrates for the enzymes of yeast species. It has been demonstrated that β-N-acetylgalactosaminidase which was produced by *C. albicans* enables the chromogenic substrates to be incur-
unable to grow at 45° C temperature, according to Venitia, et al. It is important to notice that Tween 80 agar (Sandven, 1990; Williams and Lewis, 2000) and phenotypic identification included germ tube formation at 37° C medium (CHROMagar, Paris, France). Both colony color evaluation and in males (n = 62; 36%). Among these specimens, identification of yeasts revealed C. albicans (120, 75%), C. glabrata (20, 12.5%), C. dubliniensis (10, 6.5%), C. tropicalis (6, 4.0%) and C. krusei (3, 2.0%). All C. dubliniensis cases (6, 4.0%) demonstrated negligible or no growth at 45°C. It was found that 30 (18.5%) of 160 positive cultures contained mixtures of Candida species and the most common mixtures observed in the present study were either C. albicans plus C. glabrata or C. albicans plus C. tropicalis (Table 1 and Figures 1 and 2).

RESULTS
One hundred and sixty samples obtained from the oral cavities of 172 patients with periodontitis and gingivitis was positive for oral candidal infection (93.0%). Candidal infection was registered both in females (n = 110; 64%) and in males (n = 62; 36%). Among these specimens, identification of yeasts revealed C. albicans (120, 75%), C. glabrata (20, 12.5%), C. tropicalis (6, 4.0%) and C. krusei (3, 2.0%). All C. dubliniensis cases (6, 4.0%) demonstrated negligible or no growth at 45°C. It was found that 30 (18.5%) of 160 positive cultures contained mixtures of Candida species and the most common mixtures observed in the present study were either C. albicans plus C. glabrata or C. albicans plus C. tropicalis (Table 1 and Figures 1 and 2).

DISCUSSION
In agreement with findings of others (Back-Brito et al., 2009), the majority of yeast isolates from oral cavity swabs were C. albicans (75%), but it was often recovered in association with other yeasts. The higher prevalence of isolates of C. glabrata which is the second most common yeast isolated in this survey, is similar with reports of the literature (Houang et al., 1997). Overall, chromogenic media have been reported to enable the identification of mixed cultures (Pfaller et al., 1996; Willinger and Manafi, 1999). Cultures that contained mixtures of Candida species were found and this has also been reported by other researchers (Louvagie et al., 1995; Moyer et al., 1995; Odds and Bernaerts, 1994). The most common mixtures observed in the present study were C. albicans plus C. glabrata or C. albicans plus C. tropicalis. Thus,
CHROMagar not only facilitates the detection of mixed cultures but also detects species of isolates within the mixture without the need of additional subcultures. In this investigation, the most common association was *C. albicans* plus *C. tropicalis*, which was detected in 14.5% of the samples containing mixed fungal population, while the most common association was *C. albicans* plus *C. glabrata* (46.5% according to Pfaller et al., 1996). In this study, 6 isolates were seen as dark green colonies and identified as *C. dubliniensis*. Willinger et al. (2001) also reported that some of *C. dubliniensis* isolates yielded a dark green color. This is an important point to note, however, this species is very rarely encountered in clinical specimens. In this study, twenty isolates of *C. glabrata* produced pink, glossy colonies with pale edges on the pink colonies. Pfaller and Houston (1996) and Willinger et al. (2001) concluded that CaC also allowed the identification of *C. glabrata*.

In conclusion, the use of this medium could allow mycology laboratories to rapidly identify *Candida* spp. in clinical samples (Ainscough and Kibbler, 1998). More importantly, this capability will also enable clinicians to more rapidly make appropriate antifungal choices, decreasing patient morbidity and mortality.

In spite of its greater cost in comparison with SDA, CHROMagar *Candida* medium is a satisfactory isolation medium for oral cavity specimens, allowing rapid and correct identification of yeast colonies and easy recognition of mixed cultures. Thus, it is easy to use, would save staff time and is suitable for routine use in clinical mycology laboratories.

ACKNOWLEDGEMENTS

This study was supported by a grant from Ahvaz Jundishapur University of Medical Sciences (U-88255), Ahwaz, Iran. The author would like to acknowledge the cooperation of Dentistry School, Ahvaz Jundishapur University of Medical Sciences.

REFERENCES


