Full Length Research Paper

Association of the Glu298→Asp polymorphism in the endothelial nitric oxide synthase gene with risk of coronary artery disease

Nora A. Al-Faris1, Zeid A. Al Othman2 and Dilshad Ahmad3*

1Princess Nora Bint Abdulrahman University, P. O. Box 84428, Riyadh, Saudi Arabia.
2Department of Chemistry, College of Science, P. O. Box 2455, Riyadh, Saudi Arabia.
3Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P. O. Box 2460 Riyadh, Saudi Arabia.

Accepted 8 April, 2011

Genetic variants of endothelial nitric oxide synthase (eNOS) could influence individual susceptibility to coronary artery disease (CAD) with or without associated demographic factors. The aim of this study was to assess whether Glu298/Asp polymorphism of the eNOS gene is associated with the occurrence and severity of angiographically defined coronary artery disease. Polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP) analyses were carried out to detect the Glu298/Asp variant of the eNOS gene in 279 patients with CAD as compared to controls (250). The prevalence of the Asp298 variant of eNOS was not found to be significantly and independently associated with the risk of CAD (OR = 1.08, 95% CI = 0.77 to 1.51, P = 0.663), extent of CAD on angiography (OR = 1.18, 95% CI = 0.63 to 2.23, P = 0.605) and in-hospital mortality (OR = 1.08, 95% CI = 0.29 to 4.04, P = 0.908). This investigation examined whether the Glu298/Asp polymorphism of the eNOS could represent a useful genetic marker to identify individuals prone to the development of atherosclerotic diseases. More studies are needed to confirm whether the Glu298/Asp polymorphism of the eNOS gene could represent a useful genetic marker to identify individuals of the study population prone to the development of atherosclerotic disease.

Key words: eNOS gene, polymorphisms, coronary artery disease (CAD), risk factors, genetic markers.

INTRODUCTION

Coronary atherosclerosis is a common disease that causes ischemic heart diseases, such as angina pectoris and myocardial infarction. Many patients have no symptom, despite the presence of coronary artery disease (CAD). They may have silent ischemia or are unaware of potentially dangerous abnormal heart rhythms (arrhythmias). The absence of chest pain or other common symptoms can also set the stage for a heart attack that occurs without warning. Hence, it is important to look at biomarkers for early detection of CAD. Coronary risk factors, such as hypertension, hypercholesterolemia and diabetes mellitus, are known to cause this disorder. Recently, the gene polymorphisms of angiotensin-converting enzyme (ACE)1 and apolipoprotein eNOS gene have been reported as independent risk factors for myocardial infarction, although the genetic cause of this disorder has not been proved completely. Epidemiological studies also indicate that hyperlipidemia, hypertension, cigarette smoking, diabetes and obesity are risk factors for coronary artery disease. These environmental risk factors have, however, been ineffective and completely predicting development of the atherosclerotic process, suggesting that specific genetic predisposition should be taken into account as well. Vascular endothelium modulates blood vessel wall homeostasis through the production of factors regulating vessel tone coagulation state, cell growth, cell death and leukocyte trafficking. One of the most important
endothelial cell products is nitric oxide (NO), which is synthesized from L-arginine by the enzyme endothelial nitric oxide synthase (eNOS). Endothelial nitric oxide synthase (eNOS: NOS3) produces nitric oxide (NO) from L-arginine. NO has diverse physiologic regulatory functions and is involved in smooth muscle relaxation, inhibition of platelet aggregation, immune regulation, neurotransmission and blood pressure regulation (Moncada and Higgs, 1993; Schmidt and Walter, 1994; Forte et al., 1994). Moreover, it has been shown that eNOS inhibition accelerates atherosclerosis in animal models, and that abnormalities of the endothelial NO pathway is present in humans with atherosclerosis. This evidence suggests that NO may inhibit several key steps in the atherosclerotic process and that an alteration of NO production within the vascular endothelium could contribute to the pathogenesis of atherosclerosis. Thus eNOS could be a candidate gene for atherosclerosis.

A single base exchange (G894→T) in exon 7 of the human endothelial nitric oxide synthase (eNOS) gene results in a Glu→Asp substitution at residue 298 of the eNOS gene. The functional significance of this single nucleotide polymorphism remains an issue of controversy since homozygosity for the Asp298 variant has been related to reduced enzyme activity (Veldman et al., 2000) and basal NO production (Wang et al., 2000), possibly due to increased susceptibility to proteolytic cleavage, although more recent reports have convincingly demonstrated that this preferential cleavage could be a methodological artefact (Tesauro et al., 2000; Fairchild et al., 2001; Mc Donald et al., 2004).

In accordance with the hypothesis that this polymorphism may have an unfavorable effect on NO bioavailability, homozygosity for the Asp298 variant has been shown to influence vascular coronary reactivity as reported by Chang et al. (2001), responsiveness to adrenergic stimulation and event free survival in patients with nonischemic cardiomyopathy (Philip et a., 1999; McNamara et a., 2003). Based on these reports, a number of association studies have positively associated the presence of the Asp298 variant with risk of acute myocardial infarction (AMI) (Hingorani et al., 1999; Antoniades et al., 2005), carotid atherosclerosis (Lembo et al., 2001), early atherogenesis and coronary in-stent restenosis (Paradossi et al., 2004; Gomma et al., 2002) while several studies have found no evidence for an association between the Glu298→Asp polymorphism and premature CAD (Granath et al., 2001; Yamada et al., 2002; Spence et al., 2004; Zhang et al., 2006).

Several polymorphisms have been identified in the eNOS gene, among which is one located in exon 7 (G894T) which modifies its coding sequence (Glu298/Asp). Associations between this variant and coronary spasm, coronary artery disease and acute myocardial infarction have been reported, but data on its relation with disease severity are lacking. In this paper, we examined the associations between theGlu298/Asp polymorphism of the eNOS gene and the occurrence of angiographically defined coronary artery disease in the ethnically variant population.

MATERIALS AND METHODS

Selection criteria

We included 279 patients with angiographically diagnosed CAD, consecutively admitted to our institution with angiographically proven coronary artery disease (more than 50% stenosis affecting at least one vessel) and 250 healthy controls, in whom angiographic examination excluded the presence of coronary artery disease. The controls were those who came to the hospital with pain in the chest but did not have a history of angina pectoris or AMI, and they showed a normal electrocardiogram.

Patient’s characteristics

All the cases and age matched healthy controls were interviewed and epidemiological data/demographic data on smoking habits, hypertension, diabetes dyslipidaemia and family history of coronary artery disease were recorded. Informed consent was obtained from all the patients and the healthy controls, as required by our Hospital ethics committee.

Data on risk factors

For CAD risk factors, the following were used: subjects were defined as hypertensive if their blood pressure was >140/90 mmHg or if they were receiving any antihypertensive treatment; those with a history of diabetes or who were receiving any antidiabetic drug were considered to be diabetic; those with a total plasma cholesterol concentration of >200 mgs/dl or a triglyceride concentration of >180 mgs/dl, or who were receiving lipid lowering drugs, were considered dyslipidic. Smoking history was recorded as either none or current smokers. A positive family history was the presence of a first degree relative with coronary artery disease at the age of <55 years for men and <60 years for women.

Angiographic study

All patients underwent coronary angiography. Coronary stenosis was considered significant in the presence of a luminal diameter narrowing of >50% of at least one pericardial coronary artery. The severity of coronary artery disease was expressed by the number of affected vessels (one, two, or three vessel disease) and also by means of the Duke scoring system13: a prognostic index that includes the number of diseased major vessels, the presence of left main coronary artery disease, the percentage of narrowing of the major vessels, and involvement of the left anterior descending coronary artery, particularly when the proximal segment shows severe stenosis (>95%). The Duke score ranges from 0 to 100 (0 = no disease, 100 = the most severe disease)

Biochemical analysis

Blood samples were collected from all the subjects after 12 h fasting and placed in EDTA tubes and stored at -80°C until the time of assay: for DNA extraction and for biochemical assays. The serum concentrations of triglyceride (TG), total cholesterol, LDL cholesterol (LDL-C) and HDL cholesterol (HDL-C), urea, creatinine and random blood sugar (separate blood sample was collected for
RESULTS

The main baseline characteristics of the patients with CAD (cases) and of the subjects from the general population (controls) are presented in Table 1. The frequencies of the studied genotypes of the eNOS gene are shown in Table 2. The observed frequencies of the studied alleles were in Hardy-Weinberg equilibrium in both the cases ($\chi^2 = 0.20$, $P > 0.1$) and controls ($\chi^2 = 1.65$, $P > 0.1$).

The frequency of the Asp/Asp genotype was not found to differ significantly between the cases and controls in relation to the major coronary risk factors (gender, smoking status, diabetes mellitus, hypercholesterolemia, hypertension, obesity and family history of CAD). Furthermore, the average number of the earlier mentioned risk factors did not differ significantly in the carriers versus non-carriers of the Asp/Asp genotype, in both cases (2.36 vs. 2.32, $P = 0.771$) and controls (1.60 vs. 1.81, $P = 0.137$).

The frequency of the mutated genotype (Asp/Asp) did not differ significantly between cases and controls (11.2 vs. 10.7%, $P = NS$). Similarly, the Glu/Asp (43.8 vs. 40.9, $P = NS$) and the Glu/Glu (45.1 vs. 48.4, $P = NS$) genotypes did not differ significantly between the study groups in the univariate analysis. In backward stepwise logistic regression analysis with age, gender, smoking status, diabetes mellitus, hypercholesterolemia, hypertension, obesity and family history of CAD included as covariates, the presence of the Asp/Asp genotype was not found to be independently associated with CAD (OR = 1.08, 95% CI = 0.77–1.51, $P = 0.663$) (Figure 2).

The frequencies of the Asp/Asp genotype in relation to the number of diseased vessels were 13.3, 8.1, and 9.3% in patients with one-, two- and three-vessel disease, respectively ($P = 0.192$). In multivariate analysis adjusted for age, gender, diabetes mellitus, smoking status, hypertension, hypercholesterolemia and obesity, the Asp/Asp variant was not found to be independently associated with the number of diseased vessels on coronary angiography (OR = 1.18, 95% CI = 0.63 to 2.23, $P = 0.605$).

DISCUSSION

The eNOS gene has a number of polymorphic sites, including SNPs, di-nucleotide repeats and variable number tandem repeat sequences, and the opportunity exists to investigate polymorphic functional correlation as well as disease-specific associations, especially in cardiovascular disease, including coronary artery disease, and its most severe consequence, myocardial infarction. Several polymorphisms have been identified in...
Table 1. Baseline characteristics of the study population.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Case (n = 280)</th>
<th>Control (n = 250)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>62 ± 13</td>
<td>58 ± 15</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Male gender</td>
<td>78.9% (221)</td>
<td>42.8% (107)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>28.9% (81)</td>
<td>10.8% (27)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Cigarette smoking</td>
<td>63.9% (179)</td>
<td>34% (82)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Hypercholesterolaemia</td>
<td>50% (140)</td>
<td>34% (82)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>45% (126)</td>
<td>32% (80)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Heredity for CAD</td>
<td>26% (73)</td>
<td>22% (55)</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Table 2. Allele frequencies of the Glu²⁹⁸→Asp polymorphism in CAD patients and controls.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Glu (%)</th>
<th>Asp (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>60.02</td>
<td>37.97</td>
</tr>
<tr>
<td>Controls</td>
<td>64.55</td>
<td>23.41</td>
</tr>
</tbody>
</table>

Figure 2. Synopsis of the results of genotype analyses. The distributions of genotypes in relation to the disease are shown (data shown in %). Detailed description of the variables included in each multivariate analysis is presented in the results section of the manuscript.

The reported results are amenable to criticism due to the significant heterogeneity of the individual odds ratios incorporated in the calculation of the summary odds ratio. After extracting the most influential odds ratio from the analysis of the study, the authors abrogated the methodological limitation of heterogeneity, but the calculated risk of CAD was largely blunted and bordered on significance (OR = 1.17; 95% CI = 1.00–1.36; P = 0.05).

Antoniades et al. (2005) in an elegantly designed study with 229 consecutive patients with premature CAD demonstrated that homozygosity for this polymorphism is associated with a significantly increased risk for premature CAD. Although discordant at a first glance with our results, the conclusions of this study refer to a different, younger than our patient population, where the relative contribution of the Glu²⁹⁸→Asp polymorphism to the susceptibility for CAD might be enhanced. A large scale study on 5061 individuals of Japanese origin demonstrated no association of the Glu²⁹⁸→Asp polymorphism with the risk of CAD (Yamada et al., 2002; Spence et al., 2004), using family-based association tests specifically designed for the study of the genetic basis of multifactorial diseases. There was no evidence that the Glu²⁹⁸→Asp eNOS gene polymorphism was related to the development of CAD in a total of 1023 Caucasian individuals.

In a recent study of 861 diabetic men, no significant association was observed between Glu²⁹⁸→Asp eNOS polymorphism and risk of CAD (Zhang et al., 2006). There is also discrepancy in the literature regarding the association between the Glu²⁹⁸→Asp polymorphism and premature CAD. Granath and colleagues (Granath et al., 2001) studying 573 patients younger than 50 years reported the absence of the association between Glu²⁹⁸→Asp eNOS polymorphism and premature CAD, while in a recent smaller trial, the TT genotype was significantly and independently associated with premature CAD (Cam et al., 2005; Gardemann et al., 2002) under the studied young individuals with high risk of atherosclerotic profile and they reported an association between Glu²⁹⁸→Asp eNOS polymorphism and CAD in this cohort. To our knowledge, this study is the first specifically designed study conducted in a Saudi population to test the possible association of this polymorphism with the eNOS gene, among which is one located in exon 7 (G894T) which modifies its coding sequence (Glu²⁹⁸/Asp).

A case-control study evaluating the potential association between Glu²⁹⁸→Asp eNOS polymorphism and the risk of CAD reached the conclusion that homozygosity for eNOS Asp²⁹⁸ allele was associated with a moderately, though significantly increased risk of CAD (OR = 1.31; 95% CI = 1.13–1.51) (Casas et al., 2004).
risk of CAD. Our results have not validated the association between G^{298}→T polymorphism, in the eNOS gene and increased risk of CAD.

Identifying a correlation among genes and risk for coronary heart disease is a first step in a long path to potentially important clinical implications. What we are looking for, ultimately, are novel therapeutics and/or lifestyle modifications that can be recommended to individuals to help manage and reduce the risk of heart diseases.

REFERENCES

