Drought and oxidative stress
Bayram Sade, Süleyman Soylu and Elif Yetim*

Department of Crop Science, Faculty of Agriculture Engineering, Selcuk University, 42075, Konya, Turkey.

Accepted 11 August, 2011

Drought, a natural stress factor has the highest percentage with 26%, when the usable areas on the earth are classified in view of stress factors. Biotic and abiotic stress factors may cause yield loss in plants and affect human and animal nutrition. Amount of lacking yield due to biotic and abiotic stress factors ranged between 65 and 87%. The best option for crop production, yield improvement and yield stability under soil moisture deficient conditions is to develop drought tolerant crop varieties (Siddique et al., 2000). A physiological approach would be the most attractive way to develop new varieties rapidly. Only few studies highlighted the importance of antioxidant enzymes during drought stress. The antioxidant defenses appear to provide crucial protection against oxidative damage in cellular membranes and organelles in plants grown under unfavorable conditions. Thus, plants are equipped with complex and a highly efficient antioxidative defense system which can respond and adapt to drought stress. This system is composed of protective nonenzymatic and enzymatic protection mechanisms. They interrupt the uncontrolled oxidation and serve to maintain the antioxidants in their reduced functional state, that efficiently scavenge ROS (reactive oxygen species) and prevent damaging effects of free radicals. Balance at aerobic metabolism is defined as free radical generation and rapid removal by antioxidant systems. The structure of cells and functional changes of systems, may be damaged by the formation of irreversible oxidative stress. Redox signalling and antioxidative defense systems are very important for protection towards uncontrolled and cascade damage of biotic and abiotic stress factors. In this review, drought, drought types and antioxidative defense system components will be discussed.

Key words: Antioxidative defense system, ascorbate peroxidase, catalase, drought types, glutathione reductase, oxidative stress, superoxide dismutase.

STRESS AND STRESS TYPES

Any inappropriate environmental factor for living organisms is termed “stress” and ability of living against unfavourable environmental conditions is called "stress resistance" by scientists (Cirak and Esendal, 2006; Levitt, 1980). In nature, a wide range of biotic and abiotic environmental factors cause stress in plants. Abiotic factors can be grouped as physical and chemical environmental factors (Kacar et al., 2009). Stress factors cause a rise of tension in organisms. The tension factor cause reversible physical and chemical changes called "elastic tension" which is not significant for agriculture because of disappearing by the removal of stress factor. However, prolonged and ongoing stress creates an irreversible tension called "plastic tension" which is important for agriculture (Cirak and Esendal, 2006).

Stress affects growth and development negatively by important physiological and metabolic changes. Stress also causes death of the plant and plant organs, decrease in product quality and quantity (Kacar et al., 2009). Biotic and abiotic stress factors cause the loss of plant productivity and affect human and animal nutrition negatively. Lose of productivity by biotic and abiotic stress factors ranged from 65 to 82%. Stress factors that cause yield lost can be defined as drought, salinity, heat, chilling, biogenic, oxidative, air pollutants stress, light and ultraviolet light intensity and water flood (Kacar et al., 2009).

DROUGHT STRESS AND TYPES

Plant growth and productivity is adversely effected by nature’s wrath in the form of various biotic and abiotic stress factors. Water deficit is one of the major abiotic
stresses which adversely affects crop growth and yield (Jaleel et al., 2009). On dry farming areas, an important part of annual precipitation falls between November and April. As a result of insufficient and irregular precipitation, the cultivation of wheat in dry farming areas becomes a big problem. Drought seems at different development stages of plant and induces effects especially at the grain filling period. At drought conditions, water potential of soil and plant decreases, at advanced stages of plant growth, turgor pressure decreases, stomata close, leaf growth and photo-synthesis rate reduce (Ozturk, 1998; Monti, 1986). Drought stress is synonymous with water stress, it happens when water lost as vapor (transpiration) is more than water taken (Sade, 2000), so a competition starts between plants for water because of the negative pressure.

In other words, balance among plant organs is disrupted during drought (Kacar et al., 2009). It is not possible defining drought exactly. However, in general locations where annual rainfall amount is lower than 400 mm or does not take enough precipitation, during rapid plant development, soil moisture is under paling point which is defined as “dry zone” (Cirak and Esendal, 2006; Eris, 1990). Generally, drought stress occurs when the available water in the soil reduces and atmospheric conditions cause continuous loss of water by transpiration or evaporation (Jaleel et al., 2009; Anonymous, 2010a). It is also possible to define drought as a natural event that causes negative effect on land, water resources and hydrological balance as a result of falling below the normal levels. Drought types are classified as: meteorological, agricultural, hydrologic and physiologic drought.

Meteorological drought

Meteorological drought is defined as the deviation of values from normal rainfall for a specific period (at least 30 years). These definitions are usually territorial and based on understanding of the regional climatology. Under normal conditions, meteorological measurements are used as an indicator of expressing drought. An ongoing meteorological drought could be stronger quickly or finished suddenly (Anonymous, 2010a).

Agricultural drought

Agricultural drought is related with various characteristics of meteorological drought and is defined as the absence of water needs of plant, seen during limitation of water resources and in moisture periods. In this kind of drought, falling period is more important than amount of precipitation. It will be useful if rainfall comes in the right stage of plant development. Amount of precipitation may not be much, but if the time of precipitation is suitable for plant development, meteorological drought may occur but agricultural drought does not seem because of plant’s water procurement (Anonymous, 2010b).

Hydrologic drought

Hydrological drought means absence of earth and underground water resources due to long-lasting reduction of precipitation. The kind of drought may be traced by measurement of lakes, reservoirs and underground water levels. Generally, hydrological measurements are not the only indicator of drought. It is possible to see hydrological drought after a long time of meteorological drought (Anonymous, 2010a). The frequency and severity of hydrological drought is often defined on a watershed basin scale. Although, climate is a primary contributor to hydrological drought, other factors such as changes in land use, land degradation, and the construction of dams also affect the hydrological characteristics of water resources (Anonymous, 2010b).

Physiologic drought

Physiological drought is defined as a state of water expressed by the water content limiting the plant production in the soil root zone. The expression physiological drought seems to be a better characteristic to specify the water deficiency for plants. Its relation to different types of drought is not unambiguous; even if the meteorological drought exists, it does not necessarily mean physiological or hydrological drought. Accordingly, the stage of physiological drought depends on the plant type, especially on the ontogenesis stage of a particular plant (Novak, 2008). During physiological drought, plant cannot use water in the soil because of the unsuitable formation. Due to the low temperature or freezing of soil, water plants cannot take water by roots; when plants are faced with physiological drought, they try to keep water by removing their leaves (Anonymous, 2010b).

EFFECTS OF DROUGHT STRESS ON PLANTS

Various management strategies have been proposed to cope with drought stress. Drought stress causes reducing leaf size, stem extension and root proliferation, water use efficiency, and disturbing plant water relations. Different kinds of plants display physiological and biochemical responses at cellular and whole organism towards prevailing drought stress. \(\text{CO}_2 \) assimilation by leaves is reduced mainly by stomatal closure, membrane damage and disturbed activity of various enzymes, especially those of \(\text{CO}_2 \) fixation and ATP (adenosine triphosphate) synthesis by drought stress (Faroq et al., 2008). The antioxidant defenses appear to provide crucial protection...
against oxidative damage in cellular membranes and organelles in plants grown under unfavourable conditions (Al-Ghamdi, 2009; Kocsy et al., 1996).

Thus, plants are equipped with a complex and highly efficient antioxidative defense system which can respond and adapt to drought stress, composed of protective non-enzymatic and enzymatic mechanisms to interrupt the cascades of uncontrolled oxidation in some organelles (Al-Ghamdi, 2009; Noctor and Foyer, 1998). Plants maintain the antioxidants in their reduced functional state, that efficiently scavenge ROS and prevent damaging effects of free radicals (Al-Ghamdi, 2009; Schwanz et al., 1996). Only few studies highlighted the importance of antioxidant enzymes during drought stress.

Mechanical effect

Mechanical effect of drought occurs when turgor reduces as a result of extreme water lost. The structure of the plasma membrane is a consequence of the aqueous environment of the cell; the hydrophobic phospholipid tails in the membrane are repelled by water forming the bilayer (Liquid-crystalline phase). As water leaves the cell, the structure of the membrane alters, the hydrophilic head groups of the phospholipids approach to each other and membranes become compact (Gel phase). In the phase, the membrane lipids have less kinetic energy and lateral and rotational motion compared with the liquid crystalline phase due to water loss, cell volume begins to decrease, resulting in plasmolysis, where the plasma membrane withdraws from the cell wall, remaining attached only at the plasmodesmata. The collapse places the plasma membrane and tonoplast under tension, in that it can cause the tearing of either the plasma membrane, or the tonoplast can cause a release of hydrolytic enzymes (Kalefetoglu and Ekmekci, 2005) which separate organic molecules from one or more components and autolysis of the cytoplasm (Anonymous, 2010c). This damage inevitably disrupts, often permanently, the normal cellular metabolism (Kalefetoglu and Ekmekci, 2005).

Metabolic effect

Plants give 99% of water taken by roots to the atmosphere by transpiration and use the remaining 1% for metabolic activities. Water is used as a source of electron to the pigment of photosystem II in photosynthesis light reactions. For this reason, water is very important for ongoing photosynthetic reactions (Sade, 2000). Because of the functional properties of water and as a result of its loss, the regulation of normal cell metabolism is disrupted and cannot continue. Ion accumulation originates from the water loss of the cell, can damage the cell, disrupts membranes and causes protein denaturation (Kalefetoglu and Ekmekci, 2005).

Oxidative effect

Many abiotic environmental stresses including salinity, drought stress, temperature extremes, and metal toxicity disrupt the redox homeostasis of cells and exert a wide range of adverse effects on plant growth and metabolism (Maheswari and Dubey, 2009). These stressful conditions induce overproduction of ROS such as O$_2^-$ (singlet oxygen), the (OH) (hydroxyl radical) and H$_2$O$_2$ (hydrogen peroxide), which can cause oxidative damage to vital cellular components, such as membrane lipids, proteins, enzymes, pigments and nucleic acids (Maheswari and Dubey, 2009; Dat et al., 2000). ROS damage DNA, proteins, chlorophyll and membrane function are produced by oxidative meta-bolism in chloroplasts, mitochondria and peroxisomes (Keles and Unyayar, 2004; Asada, 1996).

ROS production is further enhanced in response to various abiotic stresses, such as drought (Keles and Unyayar, 2004; Rubio et al., 2002), salt, extreme temperatures. Numerous studies show that the level of antioxidant enzymes increases when plants are exposed to biotic or abiotic stresses. Higher plants employ defense strategies under environmental stresses (Keles and Unyayar, 2004; Pastori and Foyer, 2002). Effectively, in order to survive, plants need to respond to environmental stresses through a variety of biochemical reactions (Keles and Unyayar, 2004; Bonnet et al., 2000). Plant cells are also equipped with oxygen radical detoxifying enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) (Keles and Unyayar, 2004; Alscher et al., 2002).

FREE RADICALS

Oxygen toxicity is an inherent feature of aerobic life, since it has been estimated that 1% of the oxygen consumed by plants is diverted to produce activated oxygen (Carlos et al., 1999; Asada and Takahashi, 1987) in various subcellular loci. The univalent reduction of dioxygen occurs in almost all aerobic cells (Keles and Unyayar, 2004; Behera et al., 2002). Free radicals are the chemicals which have an uncoupled electron. All free radicals are reactive oxygen species but every reactive oxygen species are not free radicals. These chemicals are capable of reacting rapidly (Antmen, 2005). The first product is superoxide radical anion, O$_2^-$. Subsequently, other toxic chemical entities such as H$_2$O$_2$ and hydroxyl radical, OH•, are formed. Superoxide radicals resulting in H$_2$O$_2$ formation are detoxified by SOD (Keles and Unyayar, 2004; Alscher et al., 2002). The removal of H$_2$O$_2$ is achieved by APX which oxidises ascorbate to
monodehydro Ascorbate radicals (Keles and Unyayar, 2004; Rubio et al., 2002). Dehydroascorbate is reduced to ascorbate by glutathione. Glutathione, which is oxidised in this process to glutathione disulfide, is recycled by glutathione reductase (GR) consuming NADPH. Antioxidant defense capacity of cells is determined by the pool size of the antioxidant compounds and antioxidant enzyme activities. Changes of these parameters reflect the impact of environmental stresses on plant metabolism (Keles and Unyayar, 2004; Herbinger et al., 2002).

Free radical effects

The effects on DNA and nucleic acids

A wide variety of oxidative damage products are induced in DNA by hydroxyl radicals, superoxide, and nitric oxide (Britt, 1996; Demple et al., 1985). Some of these damaged bases, including thymine glycol and its degradation product, urea, act as blocks to DNA synthesis but are not particularly mutagenic. Significant extracellular sources of activation include air pollutants such as ozone or perhaps radicals produced by neighboring cells during the hypersensitive response. Very high levels of UV-B radiation can also induce oxidative damage in DNA (Britt, 1996). In some cases, free radicals can cause DNA mutations by effecting cells. Chromosomal and other changes in DNA cause cytotoxic effects due to modificational changes. Hydroxyl radical can react as deoxyribose and other base modifications. Hydrogen peroxide can easily pass cell membranes and reach to nucleus and cause DNA damage by dysfunction of cells and cell death (Antmen, 2005; Meram and Aktaran, 2002).

The effects on proteins

Oxidative attack on proteins results in site-specific amino acid modifications, fragmentation of the peptide chain, altered electrical charge and increased susceptibility to proteolysis. The amino acids in a peptide differ in their susceptibility to attack, and the various forms of activated oxygen differ in their potential reactivity. Primary and secondary protein structures alter the relative susceptibility of certain amino acids. In spite of this complexity, generalisations can be made. Amino acids containing sulphur, and thiol groups specifically, are very susceptible sites. Activated oxygen can abstract a H atom from cysteine residues to form a thyl radical that will transform to a second thyl radical to form disulphide bridges. Alternatively, oxygen can add to a methionine residue to form methionine sulphoxide derivatives. Reduction of both may be accomplished in microbial systems by thioredoxin and thioredoxin reductase (Anonymous, 2010c; Farr and Kogama, 1991). A protein-methionine-S-oxide reductase has been measured in pea chloroplasts (Anonymous, 2010d; Ferguson and Burke, 1992). This enzyme reduces the methionyl sulfoxide back to methionyl residues in the presence of thioredoxin (Anonymous 2010d; Brot and Weissbach, 1982). In some instances, this enzyme has restored the biological activity of a protein, but this function in plants has not been described. Other forms of free radical attack on proteins are not reversible. For example, superoxide with enzymatic function destroys oxidation of iron-sulphur (Anonymous, 2010d; Gardner and Fridovich, 1991). Many amino acids undergo specific irreversible modifications when a protein is oxidised.

For example, tryptophan is readily transformed to form bityrosine products (Anonymous, 2010d; Davies, 1987). Histidine, lysine, proline, arginine, and serine form carbonyl groups on oxidation. The oxidative degradation of protein is enhanced in the presence of metal cofactors that are capable of redox cycling, such as Fe. In these cases, the metal binds to a divalent cation binding site on the protein. The metal then reacts with hydrogen peroxide in a Fenton reaction to form a hydroxyl radical that rapidly oxidises an amino acid residue at or near the cation binding site of the protein. This site-specific alteration of an amino acid, usually inactivates the enzyme by destruction of the cation binding site. Oxidative modification of specific amino acids is one mechanism of marking a protein for proteolysis (Anonymous, 2010d; Stadtman, 1986). In Escherichia coli, there are specific proteases that degrade oxidised proteins (Anonymous, 2010d; Farr and Kogama, 1991) and similar specificity is expected in plants. It is well documented that the various peptide components of photosystem II turnover at different frequencies (Anonymous, 2010d; Barber and Andersson, 1992).

The effects on lipids

The occurrence of malondialdehyde (MDA), a secondary end product of the oxidation of polyunsaturated fatty acids, is considered a useful index of general lipid peroxidation (Hodges et al., 1998). Lipid is an important component surrounding cells and cellular organelles. Oxidative degradation of membrane lipids is defined as lipid peroxidation known as unsaturated fat acids’ distortion and occurrence of lipid hydroperoxides at cell membrane. Lipid peroxidation is the only way of producing MDA at biological systems (Dogan, 2005; Horton and Fairhurst, 1987).

RESISTANCE MECHANISMS TO OXIDATIVE STRESS

The antioxidant defenses appear to provide crucial protection against oxidative damage in cellular membranes.
and organelles in plants grown under unfavorable conditions (Al-Ghamdi, 2009; Kocsy et al., 1996). Cellular antioxidative defense system, which keeps AOS (active oxygen species) under control and functions as a reductant for many free radicals, minimizes the damage caused by oxidative stress (Al-Ghamdi, 2009; Noctor and Foyer, 1998). Plants possess a complex antioxidant system, which consists of ascorbic acid, glutathione and enzymes that protect the plant against oxidative damage induced by environmental stresses. Ascorbate (ASC), a ubiquitous soluble antioxidant in photosynthetic organisms, is the most important reducing substrate for hydrogen peroxide detoxification (Chen et al., 2007). An antioxidant system consists of low molecular weight antioxidants such as ascorbate, glutathione, α-tocopherol and carotenoids, as well as several enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR) (Feng et al., 2004). Superoxide dismutase (SOD) is a group of metalloenzymes that catalyse the disproportionation of superoxide to H$_2$O$_2$ and O$_2$.

Thus, SOD constitutes the first line of defense against superoxide derived oxidative stress in the plant cell. Cellular H$_2$O$_2$ is detoxified by CAT and in chloroplasts by ascorbate-glutathione cycle with its key enzymes APX and GR. Environmental stresses exert their effects on plant growth and development indirectly through formation of ROS (Arora et al., 2002). Enhanced activities of antioxidants are associated with resistance to environmental stresses. In sunflower seedlings, it was reported that there was an induction of defense enzyme activities and an increase in glutathione content when plants reached a moderate level of water deficit stress. Wheat plants subjected to water stress (Carlos et al., 1999) showed that ascorbate/glutathione cycle allowed the plants to maintain hydrogen peroxide at the control level, despite a greater capacity of the thylakoid membranes to leak electrons towards oxygen (Szehynska et al., 2007; Loschiavo et al., 1989; Vergara et al., 1990). Oxidative stress causes an imbalance between reactive oxygen species (ROS) generation and antioxidant capacity of cells (Szehynska et al., 2007; Cutler et al., 1991; Papadakis et al., 2001). It has been proposed that water-stress conditions may trigger formation of the superoxide radical and hydrogen peroxide, which can directly attack membrane lipids and inactivate SH-containing enzymes (Carlos et al., 1999). The control of H$_2$O$_2$ levels is complex and dissection of H$_2$O$_2$ is difficult, particularly in biotechnological researches like in vitro culture. The principal H$_2$O$_2$ scavenging enzyme in plants is catalase (CAT), which is located in peroxisomes/glyoxysomes and in mitochondria. Alternative H$_2$O$_2$ scavenging mechanisms may compensate for a reduced catalase activity, as shown by increased peroxidases (PODs) (Szehynska et al., 2007; Willekens et al., 1997).

They are found primarily in the cytosol, chloroplasts and cell walls (Szehynska et al., 2007; Karpinski et al., 1999). Higher antioxidant enzyme activities were observed in regenerating protoplasts in comparison with non-regenerating protoplasts (Szehynska et al., 2007; Siminis et al., 1993). Another soluble antioxidant, reduced glutathione (GSH), is a disulfide reductant that protects thiols of enzymes. It can regenerate ASC and react with singlet oxygen, hydrogen peroxide and hydroxyl radical. Changes in ASC and GSH pools including the increases in ASC and GSH levels, ASC/dehydroAscorbate (DHA) and GSH/oxidized glutathione (GSSG) ratios, and activities of the enzymes related to their biosynthesis and metabolism, are tightly related to the responses of plants to a wide range of stresses. Levels and redox status of ASC and GSH also regulate expression of genes and activities of the redox sensitive transcription factors and enzymes (Chen et al., 2007).

ENZYMATIC ANTIOXIDANTS

Catalase

Catalase is an antioxidative defense system enzyme which transforms H$_2$O$_2$ to H$_2$O and O$_2$. H$_2$O$_2$ damages cell by transforming to hydroxyl radical which is very dangerous for cell and DNA structure. Those kind of dangerous reactive oxygen species are detoxified by ascorbate-glutathione cycle (Arora, 2002). Catalase is a critical enzyme for maintaining the redox balance during oxidative stress. Catalase controls peroxisomal H$_2$O$_2$ without limiting its production (Willekens et al., 1997). It was observed that catalase injected into the intercellular space of the leaf, can compensate for peroxisomal catalase deficiency. It was suggested that catalase functionally protects cells against H$_2$O$_2$ that is produced at a distant location. This would imply that catalase could be involved in the removal of H$_2$O$_2$ from subcellular compartments other than the peroxisomes (Willekens et al., 1997).

Ascorbate peroxidase

Ascorbate has been found in the chloroplast, cytosol, vacuole and extra-cellular compartments of the cell. About 20 to 40% of the ascorbate is in chloroplast of leaf mesophyll cell. The chloroplast contains all the enzymes to regenerate reduced ascorbate from its oxidised products. Some researchers proposed that hydrogen peroxide was dissipated in the chloroplast by the coupling of ascorbate and glutathione redox cycling (Anonymous, 2010d). APX is a very important enzyme in the ascorbate-glutathione cycle. The enzyme transforms H$_2$O$_2$ to H$_2$O and O$_2$ (Antmen, 2005). This sequence of reactions is also named as the Halliwell-Asada pathway. It was illuminated that chloroplasts produce superoxide and hydrogen peroxide on the thylakoids, most commonly PSI (protein structure initiative). Superoxide is
converted into hydrogen peroxide by either spontaneous
dismutation or the SOD enzyme (Koc and Ustun, 2008).
Hydrogen peroxide is scavenged by ascorbate and the
enzyme ascorbate peroxidase.

The monodehydroascorbate has two routes of
regeneration, one via monodehydroascorbate reductase,
the other via dehydroascorbate reductase and glutathione.
The terminal electron donor is NADPH (Keser, 2005). This pathway serves two functions. One is the
detoxification of hydrogen peroxide, otherwise it
participates in Fenton reactions, and oxidizes NADPH. The latter function is an apparently energy-consuming,
wasteful process analogous to photorespiration.

The chloroplast contains catalase and dissipates
hydrogen peroxide without "wasting" NADPH. However, it
should be realized that favoring conditions for electron
transfer from PSI to oxygen, generally causes a high
redox potential like high NADPH/NADP ratio. By reducing
this redox potential through the Halliwell-Asada pathway,
the tendency of PSI to reduce oxygen is minimized
(Anonymous, 2010d).

Superoxide dismutase

SOD, the first enzyme in the detoxifying process,
converts radicals to H_2O_2. Cu/Zn SOD isozymes are found
primarily in chloroplasts and in the cytosol, and Mn SODs
are located in the mitochondria (Gupta et al., 1993;
Rabinowitch and Fridovich, 1983). Peroxisomal locali-
ization of Mn/SOD has also been reported in pea (Gupta
et al., 1993; Sandalia et al., 1987). Tobacco plants
contain chloroplast-localized Fe/SOD (Gupta et al., 1993;
Bosler et al., 1992; Van Camp et al., 1990).

Glutathione reductase

Glutathione reductase converts GSSG/2 (oxidized
glutathione) by various nonenzymic and enzymic (that is
dehydrascorbate reductase) reactions back to the
reduced form GSH (free glutathione) in a short time
(Keser, 2005).

One of the main functions of GSH is to protect –SH
(sulphur) groups in enzymes and structural proteins
against oxidation, either by acting as a scavenger for
oxidizing substances or by repairing the -SH groups via
the GSH-disulfide exchange reaction. The GSSG formed
in both cases is reduced rapidly by the action of GR.
According to the -SH hypothesis, freezing tolerance in
plants involves an increase in the resistance toward
oxidation of -SH groups in proteins.

The theory, however, supposes that an effective system
is operating in the leaves of frost-resistant plants which
maintains the -SH containing proteins in the reduced
state during the frost period (Esterbauer and Dieter,
1977).

NON-ENZYMATIC ANTIOXIDANTS

Ascorbic acid (vitamin C)

ASC can directly scavenge OH· and regenerate
tocopherol from tocopheryl radical, thus, providing
membrane protection. ASC also acts as cofactor of
violaxanthin de-epoxidase, thus sustaining dissipation of
excess excitation energy (Ahmad et al, 2008; Smirnoff,
2000). It can react indirectly by regenerating c-tocopherol
or in the synthesis of zeaxanthin in the xanthophylls
cycle. ASC plays a great role in minimizing the damage
caused by oxidative process. This is performed by its
synergistic action with other antioxidants (Ahmad et al,
2008; Foyer and Noctor, 2005).

Tocopherols

c-Tocopherols prevent lipid auto-oxidation and this
makes it an effective free radical trap. The increase in
tocopherols in conjunction with ASC has been implicated
as one of the primary responses of water deficit
conditions in rice (Ahmad et al, 2008; Boo and Jung,
1999). Oxidative stress activates the expression of genes
responsible for the synthesis of tocopherols in higher
plants (Ahmad et al, 2008; Wu et al., 2007). Antioxidants
including c-tocopherol and ascorbic acid have been
reported to increase following triazole treatment in tomato
and these may have a role in protecting membranes from
oxidative damage, thus contributing to chilling tolerance
(Ahmad et al, 2008; Shao et al., 2007). Increase in
tocopherol during water stress in plants has been
demonstrated by many workers (Ahmad et al, 2008; Wu
et al., 2007; Shao et al., 2007; Pourcel et al., 2007) have
shown that drought stress led to an increase of 1 to 3-fold
of c-tocopherol concentration in some grass species.

CONCLUSION AND FUTURE PERSPECTIVE

It is very important to understand mechanism of drought
and oxidative stress, especially for breeding. For this aim,
physiological approaches will be more effective. At this
manuscript, drought effects are discussed at this way.
Antioxidative defence is very important to detoxify biotic
and abiotic stresses' harmful effects. Precautions should
be taken to be preserved from those factors. Current
observations suggest that increasing the level of stress
tolerance by reinforcing the plant's defence system with
new genes is an attainable goal (Arora, 2002).

There are different ways of triggering gene expression
like pre-treatment of seeds with different solutions called
priming. There are also molecular and genetic appro-
aches like gene transfer. ROS detoxifying gene
expression is an effective way also. Especially, pretreat-
ment of seeds with H_2O_2 solutions trigger antioxidative
defence system components. Redox regulation of gene expression by oxidants is emerging as a vital mechanism in the growth and development of the plant (Shao et al., 2007). ROS serve as a common factor in regulating various signalling pathways (Ahmad et al., 2008). It is very important finding more ways to trigger antioxidant defence components for providing plant protection from the lethal effects of stress factors.

REFERENCES

Sade et al. 11109

(59): 37-49.