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Phytic acid (PA) and its derivatives contain the major portion of phosphorus
 
in the cereal seed and 

chelates divalent cations.
 

During germination, both minerals and phosphate are released
 

upon 
phytase-catalyzed degradation of PA. In this study, a phytase gene classified into histidine acid 
phosphatase type in rice referred to OsPHY2 was characterized. OsPHY2 is 2060 bp in length, encoding a 
polypeptide of 519 amino acids. OsPHY2 contains HP_HAP_like domain, a 24-aa signal peptide at the 
N-terminal and was targeted to the cytoplasm membrane after ER sorted. Phylogenetic analysis suggests 
that OsPHY2 shares high similarity to the phytase genes in wheat and a subset of genes without 
characterized functions in other plant species. During the seed germination, the transcripts of OsPHY2 
were much more detected in the germinated seeds than in the primary roots and the leaves. Prokaryotic 
expressed OsPHY2 has a strong function on degradation of phytate, with optimal temperature of 47°C 
and optimal pH of 3.5. Under the guidance of patatin signal peptide (PSP) of potato, the OsPHY2 
expressed in tobacco could be secreted by the rhizosphere and hydrolyze the phytate into Pi, leading to 
a significantly more inorganic phosphate (Pi) accumulated and growth improved in plants under the 
condition using phytate as the sole phosphorus source. Therefore, as one HAP type of the phytase genes, 
OsPHY2 plays a critical role on the degradation of the phytins during the seed germination and has a 
potential application on the generation of elite crop germplasms with high use of efficiency of phytate 
and a large quantity of organic phosphate compounds in the arable land.  
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INTRODUCTION 
 
As one of the indispensible macro-inorganic nutrients, 
inorganic phosphate (Pi) with adequate levels is critical to 
the growth and development of all organisms. Pi exerts a 
range of functions such as the components of the 
macromolecules and to be involved in the energy 
generation, and metabolic regulation. The demand for Pi 
increases dramatically during periods

 
of rapid cell growth 

and division, such as seed germination.  
In the cereal seeds, the phosphorus

 
is mostly stored in 

forms  of  organic  compounds, such  as  phytic acid  
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(myo-inositol hexakisphosphate) and its derivatives
 
during 

seed development (Lott et al., 1995; Raboy, 1997). Owing 
to biochemical metabolism during the seed filling stage, 
the Pi in the seeds transferred from the growth medium 
and other tissues is transformed into the organic 
compounds, resulting in maximal

 
levels of phytic acid and 

its derivatives at seed maturity (Raboy and Dickinson, 
1987). During the seed germination, the phytin reserves in 
seeds are hydrolyzed to supply the nutrients for the 
rapidly growing seedling. It is noted that the 
dephosphorylation

 
of phytin to a series of myo-inositol 

esters and inorganic
 
phosphate is catalyzed by phytases 

that belong to a type of phosphatases (Loewus and 
Murthy,

 
2000). Thus far, totally four distinct classes of 

phytase have been characterized in the organisms 
including histidine acid phosphatases (HAPS), B-propeller  



 

 
 
 
 
phytases, purple acid phosphatases (Mullaney and Ullah, 
2003), and protein tyrosine phosphatase-like phytases 
(PTP-like phytases) (Puhl et al., 2007). Of which, most of 
the known phytases belong to a class of HAPs. Thus far, 
most of the phytases have been isolated from filamentous 
fungi, bacteria and yeast (Kim et al., 2006; Chen et al., 
2006; Golovan et al., 2006; Lim et al., 2007; Nakashima et 
al., 2007; Puhl et al., 2009).  

In plants, phytases have been purified from the seeds of 
various monocot

 
and dicot species (Wodzinski and Ullah, 

1996). During
 
seed germination, a pronounced increase in 

phytase activity was induced in soybean, accompanying
 
a 

concomitant decrease in phytic acid, with maximal 
phytase activity

 
attained at approximately 10 d after 

germination (Gibson et al.,
 
1988). For the phytase genes 

isolated and characterized in plants, maize (Zea mays L.) 
is the earliest plant for which phytase gene isolation has 
been reported (Maugenest et al., 1997, 1999). The maize 
phytase genes encode a homodimeric protein,

 
with a 

subunit molecular mass of 38 kD, pH optimum of 4.5, and
 

temperature optimum of 55°C. The maize coding 
sequence contains

 
the amino acid sequence motif, 

RHGXRXP, a hallmark of histidine
 
acid phosphatases 

(Ostanin et al., 1992), including fungal phytases
 
(Ullah 

and Dischinger, 1993; Mitchell et al., 1997). In past 
several years, several other phytase genes in plant 
species have been isolated, such as GmPhy with 
sequence similarity to purple acid phosphatases that 
expressed in cotyledons of germinating soybean 
seedlings (Hegeman and Grabau, 2001), a Arabidopsis 
purple acid phosphatase AtPAP15 with phytase activity 
(Kuang et al., 2009; Zhang et al., 2007), lily alkaline 
phytase (LlALP1 and LlALP2) which possess unique 
catalytic properties that have the potential to be useful as 
feed and food supplement (Barrientos et al., 1994), and 
MtPHY1, a phytase gene sharing a high similarity to a 
purple acid phosphotase gene that was identified in 
legume model Medicago truncatula (Xiao et al., 2005).  

Phytases have diverse potential application roles such 
as to be used as the animal feed supplement as well as to 
affect the vigor of young seedlings. In addition, as a 
potential phosphorus pool, the phytase and its derivatives 
in the arable soil could be degraded into available Pi 
under the hydrolysis of phytase. Over expression of 
several types of phytase gene such as PhyA of 
Aspergellius niger (Richardson et al., 2001), a synthetic 
phytase gene (Zimmermann et al., 2003), and MtPHY1 
(Xiao et al., 2005) in Arabidopsis all significantly improved 
the plant growth when the phytate was used as the sole P 
source. These reports suggest that part of the phytase 
genes have potential applications for the improvement of 
plant phosphorus nutrition through promotion of the 
utilization of organic phosphate compounds, such as the 
phytin reserves in the arable land. In this study, rice 
HAP-type phytase gene referred to OsPHY2 was 
molecularly and biochemically characterized. Meanwhile, 
the function of this rice phytase has been elucidated based 
on transgene analysis. It is suggested that OsPHY2  has  a  
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potential role in generation of elite crop germplasms with 
high use efficiency of phytin, a large quantity of organic 
phosphate compounds in the arable soil. 
 
 
MATERIALS AND METHODS 

 
Plant materials and growth 
 
The seeds of Nipponbare (the Japonica subgroup) were used in this 
study. After surface-sterilization by 0.15% HgCl2 (10 min) and 
thoroughly washed with ddH2O, the seeds were put onto a wetted 
filter paper for germination at 28°C in darkness. The germinated 
seeds were then hydroponically grown in Murashige and Skoog (MS) 
nutrient solution under a photoperiod (12 h/12 h of day/night) at 
28°C. During the 20 days growth regime, the nutrient solution was 
renewed regularly, generally twice in each week. For the detection of 
the expression profile of OsPHY2 in the germinated seeds, the 
primary roots and the leaves, the whole of the seeds, roots and 
leaves growing at the given time points were separately sampled. Of 
which, the samples of the germinated seeds (covering novel primary 
roots, coleoptiles, and the endosperm) were collected at 5 , 10 , and 
15 days after the germination. The samples of roots and leaves 
were harvested at 10 and 20 days after the seed germination. The 
samples obtained at various time points were immediately frozen in 
liquid nitrogen and stored at -80°C for use. 
 
 

Identification and molecular characterization of OsPHY2 
 

Previously, a wheat phytase gene PhyIIc (multiple inositol 
polyphosphate phosphatases, MINPP, GenBank accession number 
DQ995974) was functionally analyzed in our group. In vitro analysis 
suggests that PhyIIc was strongly involved in mediation of the 
phytate hydrolysis (data to be published). Owing to few phytase 
genes in rice being functional characterized to date, we searched 
the GenBank using the wheat PhyIIc as a query. As a result, a rice 
cDNA clone with a full-length insert (GenBank accession number 
NM_001058240) sharing a high similarity to the wheat query was 
identified. Because a rice phytase gene classified into purple acid 
phosphatase type identified and functionally characterized in our 
group and referred to OsPHY1, the PhyIIc homologous in rice was 
designated as OsPHY2. 

The alignment analysis between OsPHY2, the putative rice 
phytase gene, and the wheat PhyIIc was performed based on 
MeAlign algorithm supplemented in DNAStar software. The 
isoelectric point (pI) and molecular weight (mW) of OsPHY2 were 
calculated using an online tool for computation of pI/Mw 
(http://www.expasy.org/tools/pi_tool.html). The conserved domain 
histidine acid phosphatase (HAP), generally identified in phytases 
and histidine acid phosphatases, was predicted based on conserved 
domain search in NCBI (National Center for Biotechnology 
Information, http://www.ncbi.nlm.nih.gov/Structure/cdd). An online 
algorithm

 
(Target 1.1 server 

[http://www.cbs.dtu.dk/services/TargetP/]) was run for analysis of 
putative targeting sequences in OsPHY2. Further, an online tool 
(DAS, http://www.sbc.su.se/~miklos/DAS/) was adopted to predict 
the position of signal peptide in OsPHY2. 
 
 

Identification of OsPHY2 subcellular location based on GFP 
fusion analysis 
 

Binary construct pCAMBIA3301-OsPHY2-GFP in which the fusion 
OsPHY2-GFP was under the control of CaMV35S promoter was 
constructed. The complete OsPHY2 coding sequence was

 
amplified 

with 5'-CCGTCGACATGGCTGCTCCCCGCACGCC-3' and 
5'-AACCATGGACAGCTCCGACTTCACATC-3',

 
digested  with SalI 
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and NcoI, and ligated into the CaMV35S-sGFP(S65T)-Nos

 
vector 

with a position in front of GFP (Xiao et al., 2005). The binary 
construct was used to transform Arabidopsis (ecotype Columbia) 
through the floral dip infiltration approach (Clough and Bent, 1998). 
The roots of the T2 plants were sampled for the detection of the 
subcellular location of OsPHY2-GFP fusion. The samples were 
imaged using a Leica TCS-SP5 confocal microscope

 
(Leica 

Microsystems) with a 63x, numerical aperture 1.2 water-immersion
 

objective. GFP was excited with the blue argon ion laser (488
 
nm), 

and emitted fluorescence was collected from 525
 
nm. The roots of 

the T2 Plants that transformed the free-GFP (CaMV35S-GFP) were 
performed to be used as the control.  
 
 
Phylogenetic analysis of OsPHY2 and its homologous 

 
Nucleic acid sequences to be homologous of OsPHY2 were

 

obtained from the GenBank databases through NCBI BLAST 
analysis

 
(http://www.ncbi.nlm.nih.gov). Sequences were compared 

within each species to eliminate
 
incorrect or redundant entries. The 

phylogenetic
 
tree was constructed based on ClustalW

 
from Megalign 

5.03 (DNASTAR, Madison, WI) by using
 
a distance method based 

on comparison of 1,000 bootstrap replications. 
 
 
Molecular modeling of OsPHY2 

 
Based on SWISS-MODEL online tool (http://swissmodel. 
expasy.org/), a fully automated protein structure homology-modeling 
server, the theoretical three-dimensional (3D) model of OsPHY2 
was predicted by using the x-ray crystallography coordinates for the

 

known structure released in the protein database (PDB). A histidine 
acid phosphatase derived from the Francisella tularensis (FtHAP) 
(Singh et al., 2009), sharing a high similarity with OsPHY2 at the 
tertiary structure level, was identified and used for elucidation of the 
putative 3D model of OsPHY2. Of which, the surface charge of 
OsPHY2 was calculated

 
from the constructed model, and the 

putative α helices and β sheets were manually identified based on 
comparisons of OsPHY2 with the subject FtHAP. 

 
 
Expression analysis of OsPHY2 

 
Total RNA of the germinated seeds, primary roots, and young 
leaves sampled at various time points was isolated using the TRIzol 
reagent (Invitrogen).

 
The first strand of cDNA was synthesized from 

about 2 mg of
 
total RNA using an M-MLV reverse transcriptase kit 

(TaKaRa) by following the manufacturer’s suggestion. Reverse 
transcription polymerase chain reaction (RT-PCR) was carried out 
according to the descriptions of Zhang et al. (2008). Based on the 
OsPHY2 cDNA sequence (GenBank accession number 
NM_001058240), the primers with forward and reverse orientation 
for specifically amplification of 3’- untranslated region (UTR) of 
OsPHY2 were synthesized. The primers were 5’- 
AAGCTGCTACTATCCATCTACCAT’. (forward) and 5’- 
AAGGGCCACAATCACAACC” (reverse). The length of RT-PCR 
products was 266 bp. The PCR program was performed as follows: 
a denaturing step

 
at 95°C for 5 min, followed by 25 cycles of 94°C 

for
 
30 s, 55°C for 30 s, and 72°C for 1 min. For validation of the

 

RT-PCR results, each sample was conducted in three replications 
with independently

 
prepared total RNA. The OsPHY2 transcripts 

were normalized by RacI, a constitutively expressed actin gene in 
rice. The primers for amplification of RacI 
were ’5’-CATGCTATCCCTCGTCTCGACCT” (forward) 
and ’5’-CGCACTTCATGATGGAGTTGTAT” (reverse).  

The quantitative RT (qRT)-PCR was performed on the ABI 
PRISM 7900HT

 
Sequence Detection System using SYBR Green 

master  mix  (Applied
 
Biosystems). PCR cycling was same as that  

 
 
 
 
used in semi-quantitative RT-PCR mentioned previously. The 
expression level of RacI was also employed as an internal standard 
for normalization of OsPHY2 transcripts. For the relative 
quantification

 
of gene expression, a modification of the comparative 

threshold cycle method was used. Relative transcript levels of the 
gene

 
of interest (X) were calculated as a ratio to the RacI

 
gene 

transcripts (U) as (1 + E)
–△Ct

, where △Ct was calculated
 
as (Ct

X
 – Ct

U
). 

PCR efficiency (E) for each amplicon was
 
calculated employing the 

linear regression method on the log (fluorescence)
 
per cycle number 

data. 
 
 
Prokaryotic expression of OsPHY2 and phytase activity 
analysis 

 
For biochemical characterization of OsPHY2, the open reading 
frame (ORF) of OsPHY2 (minus the 24-aa encoding sequence of 
the N-terminal for avoidance of the induced protein targeting to 
membrane) was integrated into prokaryotic expression vector 
pET28a (+) and the putative phytase was expressed in BL21. The 
ORF was amplified using the cDNAs transcribed from the 5 
d-germinated seeds and the following primers: 5'- 
TTCCATGGCTCTCGCCGGCGGCCGAG

 
(forward) and 5'- 

TTGAATTCGATGGATAGTAGCAGCTT
 

(reverse). The PCR 
products were digested with NcoI and

 
EcoRI and inserted into 

pET28a (+) (Novagen, Madison, WI) which was also digested by 
NcoI and EcoRI. The resulting plasmid, referred to

 
pET-OsPHY2, 

was transformed into the competent
 
Escherichia coli strain BL21 

(DE3) (Stratagene). Cultures were grown
 
with shaking at 37°C to 

midlogrithmic phase (optical density
 
at 600 nm approximately 0.5) in 

Luria-Bertani medium supplemented
 

with 50 µg/ml kanamycin, 
induced by adding 1 mM of IPTG,

 
then grown an additional 12 h. 

The cells were harvested
 
by centrifugation at 4,000 g for 10 min. The 

concurrently cultured E. coli strain transformed the empty vector 
pET28a (+) used as the control. The sonic-broken cells were used 
for the identification of the target protein based on SDS-PAGE 
analysis. The phytase activities of the sonic-broken cells were 
assayed according to the descriptions of Xiao et al. (2005). 
 
 
Biochemical characterization of OsPHY2  
 

For the determination of biochemical properties of OsPHY2, the 
activities of OsPHY2 were assayed in a range of temperatures and 
pH. For understanding of the effects of temperature on the enzyme 
activities, reactions were initiated at temperatures ranging from

 
27 to 

77°C at 10°C intervals for 30 min at pH 3.5 with 0.5 mM
 
phytate-Na2 

as substrate. For elucidation of the effects of pH on the enzyme 
activities, biochemical reactions were performed in a pH ranges 
from 2.5 to 6.5 at 1 pH internal for 30 min at temperature 47°C using 
also 0.5 mM

 
phytate-Na2 as substrate. To measure the effect of heat 

treatment
 
on activity, the OsPHY2 were pre-incubated for 10 min at

 

10°C intervals from 40 to 100°C. Following pre-incubation, the
 

enzyme samples were cooled to room temperature and the enzyme 
activities were assayed same under a temperature of 47°C and a pH 
of 3.5 supplemented with the substrate phytate-Na2 (in 50 mM 
NaOAc, pH 4.5). The phytase activities were assayed according to 
the descriptions of Xiao et al. (2005).  
 
 
Construction of a chimeric binary construct fused potato signal 
peptide sequence (PSP) and the open reading frame of OsPHY2  
 

A chimeric binary plasmid fused the potato patatin signal peptide 
(PSP) and the open reading frame (ORF) of OsPHY2. The PSP, 
previously confirmed to possess the ability to direct the polypeptide 
into the root-soil interface (Xiao et al., 2006), was PCR amplified 
using the potato DNA and specific primers  and inserted in front of 



 

 
 
 
 
the open reading frame of OsPHY2 without the frame shift. For 
avoidance of the possible interference of the 24-aa signal peptide, 
the sequence encoding the signal peptide of OsPHY2 was not 
included in the PSP-OsPHY2 fusion. The primers for amplification of 
OsPHY2 ORF were 5'- TTCCATGGCTCTCGCCGGCGGCCGAG

 

(forward) and 5'- TTGGTAACCGATGGATAGTAGCAGCTT
 

(reverse). The PCR products were double digested by NcoI and 
BstEII, and then were integrated into binary expression vector 
pCAMBIA3301 that were also double digested by the previous 
enzymes. The PSP was amplified using the potato genome DNA 
and following primers: “5’-TTCCATGGCAACTACTAAATCTTTT” 
(forward) and 5’-TTCCATGGGCGTAGCACATGTTGAACT 
(reverse). After digested by NcoI, the PCR products were integrated 
into the OsPHY2 ORF integrated binary plasmids with the position 
being in front of the OsPHY2 ORF. After sequencing confirmation, 
the chimeric construct was transferred into Agrobacterium 
tumefaciens (strain

 
EHA105) and genetic transformation of tobacco 

was performed by following the descriptions of Guo et al. (2009). 

 
 
Measurements of phytase activities, contents of Pi and the total 
P in the transgenic plants that were grown under phytate-Na2 
as sole P source 

 
The generated transgenic T1 plants were grown in a growth room to 
maturity. The T2 transgenic lines generated from thirteen 
independent transformation events with single target gene 
integrated were subjected to analysis of the target gene transcripts 
based on qRT-PCR. The qRT-PCR was performed same as in 
detection of OsPHY2 transcripts in the germinated seeds, roots, and 
leaves mentioned previously except the primers used: 
5’-CTCTCGCCGGCGGCCGAGACCG (forward) and 
5’-TACAGCTCCGACTTCACATCCT (reverse). Based on the 
detection of the OsPHY2 transcripts in the control (CK, transformed 
the empty vector) and the transgenic lines, two lines with strong 
OsPHY2 expression (Line 5 and Line 9), one line with weak 
OsPHY2 expression (Line 3), and CK were selected for further 
analysis. For that the seeds from the transgenic lines and the control 
were separately grown in a plastic tray filled with well mixed medium 
(vermiculite containing 1% phytate-Na2, w/w) for three weeks. 
During the growth, the plants were regularly supplemented with MS 
(without Pi) solution. After the treatment, the phytase activities, total 
P, and the dry weight of the transgenic plants and the control were 
analyzed.  

The phytase activities of the transgenic plants and the control 
were assayed according to the descriptions of Xiao et al. (2005). 
The contents of Pi and total P were measured by following the 
regular molybdenum-blue assay method. The dry weight of the 
control and transgenic lines were obtained by drying three 
representative plants in an oven under 90°C for 24 h. 

 
 
RESULTS 

 
Identification of OsPHY2, a phytase gene that 
classified into HAP-type in rice 

 
Using the sequence of wheat phytase gene PhyIIc 
(multiple inositol polyphosphate phosphatases, MINPP, 
GenBank accession number DQ995974) as a query, a 
cDNA clone with a full-length insert (GenBank accession 
number NM_001058240) sharing a high similarity to the 
wheat MINPP was identified based on BLAST search in 
NCBI website (http://www.ncbi.nlm.nih.gov/). Because the  
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uncharacterized rice cDNA shares a high similarity to 
wheat phytase gene, and another phytase gene in rice 
classified into purple acid phosphotase type, we have 
designated OsPHY1 previously (unpublished data), this 
putative rice phytase gene was referred to OsPHY2 
hereafter. The identity between OsPHY2 and the wheat 
PhyIIc is 77.2% at the nucleic acid level. The alignment 
results of these two phytase genes are shown in Figure 1. 

 
 
Molecular characterization of OsPHY2 

 
OsPHY2 has a cDNA of 2040 bp in full-length, with an 
open reading frame of 1560 bp and encoding a 519-aa 
polypeptide (Figure 2). OsPHY2 has a predicted 
molecular weight of 57.99 kD and an isoelectric point of 
7.59. In the meantime, OsPHY2 contains a histidine 
phosphatase domain (residue 48 to 441) that is generally 
conserved in histidine acid phosphatase (HAP)-type 
phytases. Similar to the histidine

 
acid phosphatases 

(HAPs) identified in fungi and angiosperms (Ostanin et al., 
1992; Ullah and Dischinger, 1993; Mitchell et al., 1997), 
OsPHY2 contains

 
the amino acid sequence motif, 

RHGXRXP (residue 77 to 83), acts as a hallmark in the 
HAPs (Figure 2). However, OsPHY2 does not share high 
similarities to the maize phytase genes, and lacks any 
additional regions of high sequence homology to fungal

 

phytases, although, all of them have the motif RHGXRXP. 
These results suggest that OsPHY2 and other phytase 
genes identified in maize and fungi derived from different 
ancestors. 

 
 
OsPHY2 was targeted to the cytoplasm membrane  

 
Analysis of putative targeting sequences using an online 
algorithm

 
(Target 1.1 server 

[http://www.cbs.dtu.dk/services/TargetP/]) suggests that 
OsPHY2 is targeted to the cytoplasm membrane after ER 
sorted, with a coefficient of 0.848 assigned to signal 
peptide (SP), which is much higher than coefficients of 
0.033, 0.037 and 0.004 assigned to chloroplast transit 
peptide (cTP), mitochondrial targeting peptide (mTP), and 
other subcellular signaling, respectively. For predication of 
the SP length in OsPHY2, another online tool (DAS, 
http://www.sbc.su.se/~miklos/DAS/), a transmenbrane 
predication server, was adopted. The SP was located at 
the residue 1 to 24 at the N-terminal. Further, to 
experimentally determine the

 
subcellular localization of 

OsPHY2, the open reading frame of OsPHY2 (minus the 
translation start codon TAG) was

 
inserted in front of a 

green fluorescent protein (GFP) reporter gene. In the 
roots of the OsPHY2-GFP fusion transgenic Arabidopsis, 
it is clearly observed that the fusion was targeted on top of 
the cytoplasm membrane (Figure 3). Therefore, OsPHY2 
is located at the cytoplasm membrane owing to the 
guidance of the 24-aa signal peptide at the N-terminal. 
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Figure 1. Alignment analysis of OsPHY2 and a wheat phytase gene TaPhyIIc.  
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Figure 2. The cDNA sequence of OsPHY2 and the corresponding translated polypeptide. The conserved amino 
acid sequence motif, RHGXRXP (residue 77 to 83) that acts as a hallmark in OsPHY2 is shadow labeled. The 
putative signal peptide locating at the N-terminal (residue 1 to 24) is underline labeled.   
 
 
 

 

 

A B 

 
 
Figure 3. Subcellular location of OsPHY2 based on confocal laser scanning microscopy 
analysis. (A) The GFP fluorescence was detected in the Arabidopsis plant transformed the 
empty binary plasmid. (B) The GFP fluorescence was detected in the Arabidopsis plant 
transformed the binary plasmid that fused OsPHY2-GFP. The roots of the plants were 
sampled and subjected to the signal scanning analysis. 
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Figure 4   Phylogenetic relationships among OsPHY2 and its homologous in plant species 
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Figure 4. Phylogenetic relationships among OsPHY2 and its homologous in plant species. 

 
 
 

Phylogenetic analysis of OsPHY2  
 
OsPHY2 was used as a query sequence in a BLASTX 
search for similarities to other sequences in GenBank. 
Among the identified homologous of OsPHY2, no 
homology was revealed to any of the previously reported 
phytase

 
sequences from maize or microbes. Phylogenetic 

analysis suggests that OsPHY2 and its plant homologous 
could be classified into four groups, including group I to 
group IV. The top scoring results against to OsPHY2 
included the multiple inositol polyphosphate phosphatase 
genes released in wheat (Triticum aestivum L.) and barley 
(Hordeum vulgare L.) (sharing similarities of 71.6% to 
82.2), as well

 
as the phyatse genes in L. longiflorum, acid 

phosphatase genes in Arabidopsis thaliana, and the 
cDNAs from diverse plants with uncharacterized functions 
(Figure 4).  

These results implicate that OsPHY2 derived a different 

progenitor from its plant homologous. 
 
 
Molecular modeling of OsPHY2 
 
Based on SWISS-MODEL (http://swissmodel.expasy.org/), 
a fully automated protein structure homology-modeling 
server, the theoretical three-dimensional (3D) model of 
OsPHY2 was derived

 
by using the x-ray crystallography 

coordinates for the
 
known structure of histidine acid 

phosphatase, a homologous from the Francisella 
tularensis (FtHAP) (Singh et al., 2009). The surface 
charge of OsPHY2 was calculated

 
from the constructed 

model, indicating the presence of considerable
 
surface 

areas with positive charge (blue areas in Figure 5), as
 

expected for a basic protein and to be conserved in the 
histidine acid phosphatses. In addition, despite the 
relative high sequence divergence

 
between OsPHY2 and  
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Figure 5. Structural representations of molecular models of OsPHY2 and PtHAP, a histidine acid phosphatse 
sharing a high similarity to OsPHY2 in Francisella tularensis (A) The theoretical three-dimensional (3D) model of 
PtHAP. (B) The theoretical three-dimensional (3D) model of OsPHY2. 

 
 
 

PtHAP, overall predicted enzyme
 
structures are fairly 

similar, showing that OsPHY2 contains three similar α 
helices (α1, α2, and α3), and several similar β sheets. In 
the meantime, similar to the structure of the FtHAP 
determined at 1.50 A resolution, OsPHY2 exhibits a 
two-domain fold that is composed of an alpha/beta core 
domain and a smaller domain that caps the core domain. 
The structures show that the core domain supplies the 
phosphoryl binding site, catalytic histidine (putative His41, 
whereas the FtHAP being His17), and an aspartic acid 
residue (putative Asp302, whereas FtHAP being Asp261) 
that protonates the leaving group with the cap domain to 
contribute residues that enforce substrate preference. 
These predicted structural data of OsPHY2 are consistent 
with a role for the rice phytase in scavenging phosphate 
from phytins present in the seeds. 
 
 
Expression patterns of OsPHY2 in the germinated 
seeds, roots and leaves 

 
The expression patterns of OsPHY2

 
in the germinated 

seeds, the primary roots and the leaves in the young 
seedlings were investigated based on semi-quantitative

 

reverse transcription (RT)-PCR and qRT-PCR analysis. 
Of the tested tissues, the most abundant transcripts of 
OsPHY2

 
were detected in the germinated seeds, with a 

trend to be gradually elevated along with the seed 
germination progression (Figure 6A and B). The 
expression levels of OsPHY2 in the roots were kept stable 

and were much lower than those of the germinated seeds. 
The lowest transcript levels of OsPHY2 were detected in 
the leaves, showing a pattern to be dropped along the 
growth progress (Figure 6A and B). The much more 
transcripts of OsPHY2 were observed in the germinated 
seeds suggesting that OsPHY2 is possibly involved in the 
hydrolysis of seed phytins and plays major role in the 
supply of the Pi for the rapid cell growth and division 
during the seed germination. 
 
 
Characteristics of the prokaryotic expressed OsPHY2 
 
For the determination of the biochemical characteristics of 
OsPHY2, the open reading frame (ORF) of OsPHY2 was 
integrated into a prokaryotic expression vector pET28a(+) 
and expressed in the E. coli host BL21. The induced 
target protein is shown in Figure 7A. The prokaryotic 
expressed OsPHY2 was subjected to a range of 
temperature

 
and pH and the phytase activities were 

assayed. In a range of tested temperatures from 27 to 
77°C, the highest enzymatic activity of OsPHY2

 
was 

reached at 47°C (Figure 7B). Similarly, in a range of 
tested pH from 2.5 to 6.5, the highest enzymatic activity of 
OsPHY2

 
was obtained at pH 3.5 (Figure 7C). In the 

meantime, the thermostability of the induced OsPHY2 
was also tested by conducting a 10 min pre-incubation at 
temperatures

 
ranging from of 40 to 100°C prior to the 

standard activity assay
 
(Figure 7D). The results indicate 

that OsPHY2 possesses relative strong enzyme activities 
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Figure 6. The transcripts of OsPHY2 in the germinated seeds, primary roots, and young leaves. (A) 
Results of semi-quantitative RT-PCR analysis. (B) Results of qRT-PCR analysis. G 5, G 10, and G 
15 represent the germinated seed samples of 5 d, 10 d, and 15 d after seed germination, 
respectively. R 10 and R 20 represent the primary root samples of 10 d and 20 d after seed 
germination, respectively. L 10 and L 20 represent the leaf samples of 10 d and 20 d after seed 
germination, respectively. 

 
 
up to 80°C, but does not regain activity after heat 
denaturation

 
at temperatures over 80°C. 

 
 
Over expression of OsPHY2 in tobacco significantly 
improved plant growth when phytate act as the sole P 
source in the medium 

 
A binary plasmid integrated with a fusion of the potato 
signal peptide (SP) and OsPHY2 open reading frame 
(SP-OsPHY2) was constructed and the schematic 
diagram is represented in Figure 8A. Thirteen 
independent transgenic T2 tobacco plants that integrated 
just one copy of the fusion were identified and subjected 
to identification of the target gene transcripts, of which the 
expression levels of OsPHY2 were varied largely (Figure 
8B). For determination of the role of OsPHY2 on 
mediation of the phytate hydrolysis in the growth medium, 
two lines with strong OsPHY2 expression (Line 5 and Line 

9), one line with weak OsPHY2 expression (Line 3), and 
the control (CK) were selected for further analysis. After 
3-week growth under the condition that phytate-Na2 was 
the sole P source, dramatically variations on the plant 
phenotypes among the transgenic lines and CK could be 
observed, showing that OsPHY2-overexpressing 
transgenic lines displayed a pronounced improvement on 
the plant growth. The lines with strong OsPHY2 
expression showed to grow much better than the line with 
weak OsPHY2 expression (Figure 8C). These results 
suggest that the overexpressed OsPHY2 in tobacco could 
be secreted into the rhizhosphere and plays an important 
role on degradation of the medium phytate. 

Further, the phytase activities, total P contents, 
accumulative P amount per plant, and plant dry weight of 
the transgenic lines and CK were investigated after 3 
weeks growth under the condition of phytate-Na2 as sole 
P source. In accordance with the OsPHY2 expression 
levels  and  the plant phenotype displayed after 3 weeks  
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Figure 7. Effects of temperature and pH on the phytase activity of OsPHY2. (A) The SDS-PAGE analysis showing that OsPHY2 was induced 
in E. coli strain. M: Protein standard ladder, Lane 1: E. coli strain transformed empty expression vector; Lane 2: E. coli transformed expression 
plasmid harboring the ORF of OsPHY2 after 6 h of IPTG induced; Lane 3: E. coli transformed expression plasmid harboring the ORF of 
OsPHY2 without IPTG induced. The arrow points to the induced OsPHY2. (B)The phytase activities of OsPHY2 assayed in temperatures from 
27 to 77°C. (C) The phytase activities of OsPHY2 assayed from pH 2.5 to 6.5. (D) The thermostabilities of OsPHY2 determined by 
preincubating samples at temperatures ranging from 40 to 100°C for 10 min and subsequently assaying remaining phytase activity.  
 
 
 

treatment, the lines with strong expression of OsPHY2 
(Line 5 and Line 9) also showed higher phytase activities 
and total P contents, and much more of plant dry mass 
and accumulative P amount (Figure 9A to D). These 
results clearly demonstrate that OsPHY2 is involved in the 
hydrolysis of the medium phytate and play an important 
role on the improvement of plant growth by alleviation of 
the P stress when the phytate was used as the sole P 
source. 

 

 

DISCUSSION 
 

Myo-inositol hexakisphosphate (InsP6; phytic acid) is the 
most  abundant form of phosphorus found in plant seeds. 

In the cereal seed, the InsP6 is bound to minerals (K, Ca, 
Mg, Zn and Mn) to form inclusion particles (globoids) 
which are commonly located in protein storage vacuoles 
(Lott et al., 1979). During the seed germination, InsP6 is 
hydrolysed into myo-inositol and inorganic phosphates (Pi) 
by phytase (myo-inositol hexakisphosphate phosphatase) 
and used for subsequent seedling growth (Loewus and 
Murthy, 2000; Raboy, 2003). Thus far, totally four distinct 
classes of phytase have been characterized in the 
literature, including HAPs, B-propeller phytases, purple 
acid phosphatases (Mullaney et al., 2003), and most 
recently, protein tyrosine phosphatase-like phytases 
(PTP-like phytases) (Puhl et al., 2007). Of which, most of 
the known phytases belong to a class of enzyme called 
HAPs. HAPs have been isolated from diverse organisms
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Figure 8. The transcripts of OsPHY2 in the generated transgenic tobacco plants and plant phenotypes of the typical transgenic 
lines when subjected to growth under phytate to be sole P source. (A) A schematic diagram of the constructed binary plasmid 
harboring OsPHY2. (B) The phytase activities in the generated transgenic tobacco plants. (C) The plant phenotypes of three 
typical transgenic lines and CK when subjected to growth under phytate to be sole P source. 

 
 
 

such as filamentous fungi, bacteria, yeast, and plants 
(Mullaney et al., 2000). It is noted that all members of this 
class of phytase share a common active site sequence 
motif (Arg-His-Gly-X-Arg-X-Pro) and hydrolyzes phytic 
acid and its derivatives with a two-step mechanism 
manner (Mullaney  et  al.,  2003).  In  this  study, a  

rice phytase gene referred to OsPHY2 sharing a high 
similarity to wheat histidine acid phospahtase PhyIIc was 
molecularly and functionally characterized. It was found 
that OsPHY2 possess the typical molecular 
characterization including to contain a conserved active 
sequence  motif  AHGXAP (Ullah and Dischinger,

 
1993;  



Li et al.         11121 
 
 
 

 

0

0.5

1

1.5

2

2.5

3

CK Line 3 Line 5 Lin 9

T
o
ta

l 
P
 c

o
n
te

n
t 
(m

g
 g

-1
 D

W
)

0

2

4

6

8

10

12

14

16

CK Line 3 Line 5 Line 9

D
ry

 w
ei

g
h
t 
(g

 p
la

n
t -1
)

0

5

10

15

20

25

30

35

40

45

CK Line 3 Line 5 Line 9

A
cc

u
m

u
la

ti
v
e 

P
 a

m
o
u
n
t 
(m

g
 p

la
n
t

-1
)

A 

D C 

B 

0

1

2

3

4

5

6

CK Line 3 Line 5 Line 9

P
h
y
ta

se
 a

ct
iv

it
y
 (
O

D
6
6
0
  
m

g-1
  
p
ro

  
h-1

)

C 

 
 
Figure 9. The phytase activities, total P contents, and plant dry weights and accumulative P amounts in control (transformed empty vector) and the transgenic tobacco lines 
ectopically expressing OsPHY2 (A) phytase activities, (B) total P contents, (C) plant dry weights, (D) accumulative amounts per plant. The plants were grown 3-week under the 
condition of  phytate-Na2 as sole P source.. 

 
 
 

Maugenest et al., 1999), a huge HAP domain, and 
a  conserved  phosphoryl binding  site  which  

is composed of a conserved catalytic histidine 
(putative His41)  and  an  aspartic acid residue 

(putative Asp302). Phylogenetic analysis displays 
that  OsPHY2  shares high similarity to HAPs in 
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wheat and barley. However, no similarities were detected 
between OsPHY2 with the HAPs derived from maize, the 
early phytases identified in plant species (Maugenest et 
al., 1997, 1999), and fungi. These results have indicated 
that OsPHY2 and its homologous such as those identified 
in wheat and barley were derived from different ancestors 
in contrast to the HAPs in maize and fungi.  

In this study, green fluorescent protein (GFP) reporter 
gene was used to examine the subcellular localization of 
OsPHY2 after sorted through endoplasmic reticulum 
system. Under the control of CaMV35S promoter, the 
fused OsPHY2 and GFP gene were expressed in 
Arabidopsis constitutively and those expressed in roots 
were subjected to detection of the GFP signal. It is 
observed that the fluorescence was confined to the 
cytoplasm membrane, in strikingly contrast to the signals 
detected were freely distributed in every positions of the 
cell in the control that transformed the sole GFP gene. 
The subcellular location determined by the fusion gene 
was consistent with the results of targeting prediction 
analysis based on Target1.1 and DAS. Therefore, 
OsPHY2 is targeted to the cytoplasm membrane. 

For understanding of the theoretical three-dimensional 
(3D) model of OsPHY2, SWISS-MODEL on line tool 
(http://swissmodel.expasy.org/), a fully automated protein 
structure homology-modeling server, was used to define 
the putative tertiary structure of this rice phytase. As a 
result, a histidine acid phosphatase from the FtHAP 
released in the PDB (Singh et al., 2009) was identified to 
be used as the structural model of OsPHY2. It is observed 
that the considerable

 
surface area of OsPHY2 was 

positively charged, as
 
expected for a basic protein and to 

be conserved in the HAPs. In the meantime, OsPHY2 
contains three α helices (α1, α2, and α3) and β sheets 
similar to FtHAP, exhibiting a two-domain fold that is 
composed of an alpha/beta core domain and a smaller 
domain that caps the core domain. These predicted 
structural data suggest that OsPHY2 possess the 
molecular characterizations of histidine acid phosphatase 
and is possibly functional as a phytase gene in 
scavenging phosphate from phytins present in the seeds. 

Animal feeds are comprised primarily of plant seed 
components, typically from corn and soybean. However, 
seed phytic acid

 
is largely unavailable to monogastric 

animals, including poultry,
 

swine, fish, and humans 
(Reddy et al., 1989; Ravindran et al.,

 
1995). The excretion 

of undigested phytic acid in manure leads to
 

the 
redistribution of phosphorus to the soil. An undesirable 
side

 
effect of high soil phosphorus levels is the loss of this 

important
 
nutrient, due to its entry into watersheds through 

runoff. Furthermore, as a limiting
 
nutrient in aquatic 

environments, elevated phosphorus levels can lead to 
eutrophication and water quality issues (Sharpley et al.,

 

1994). Therefore, phytases have potential applications to 
be used as the seed supplements as well as to exert 
positive affections on the environment. In past two 
decades, the HAP type phytase from the fungus 
Aspergillus niger is well known for its high specific activity  

 
 
 
 
and its commercially marketed role as an animal feed 
additive to increase the bioavailability of phosphate from 
phytic acid in the grain-based diets of poultry and swine 
(Kim et al., 2006). HAPs have also been over expressed 
in several transgenic plants as a potential alternative 
method of phytase production for the animal feed industry 
(Chen et al., 2006). In this study, the prokaryotic 
expressed OsPHY2 was confirmed to exhibit strong 
enzyme activities, with an optimal temperature of 47°C 
and a suitable pH of 3.5 in the biochemical reactions. 
These biochemical properties have been implicated that 
OsPHY2, a phytase gene derived from rice, could be 
acted as a useful potential target gene on commercially 
production of phytases used for animal feed additive. 

Phosphorus (P) is a critical macronutrient for plant 
growth

 
and development. Terrestrial plants generally take 

up soil P
 
in its inorganic form (Marschner, 1995). However, 

50 to
 
80% of the total P in arable lands exists as organic 

phosphate,
 

in which, up to 60 to 80% is phytate 
(myoinositol hexakisphosphate;

 
Iyamuremye et al., 1996; 

Turner et al., 2002; George and Richardson,
 
2008). Since 

phytate-P is not directly available to plants,
 

low P 
availability becomes one of the limiting factors to plant

 

growth. As a special type of APases, phytases possess a 
capability to hydrolyze

 
phytate and its derivatives and to 

have demonstrated to be important for utilizing Pi from 
phytate

 
in the growth medium (Asmar, 1997; Li et al., 

1997; Hayes et
 
al., 1999; Richardson et al., 2000). Thus 

far, some success has been obtained in engineering 
plants that acquire Pi more efficiently through ectopic 
expression of secreted phytases (Richardson et al., 2001; 
Zimmermann et al., 2003; Xiao et al., 2005). In this study, 
the rice OsPHY2 gene directed by an extracellular

 

targeting sequence from a potato patatin gene
 

was 
transformed into tobacco plants. Under the condition that 
phyate was used as the sole P source, the transgenic 
plants over expressing OsPHY2 showed higher phytase 
activities and total P contents, and much more of plant dry 
mass and accumulative P amount (Figure 9A to D) as well 
as much more improved plant growth (Figure 8C). These 
results clearly confirm that OsPHY2 is involved in the 
hydrolysis of the medium phytate and play an important 
role in the improvement of plant growth by the alleviation 
of the P stress when the phytate was used as the sole P 
source. This study could also have significant implication 
for improving

 
crop production on low-P soils, which is a 

serious agronomic
 
limitation worldwide. 
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