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As a model system, Aquilegia is of evolutionary and ecological significance. Availability of new 
genomic resources is facilitating the related researches at molecular level. MicroRNAs (miRNAs) are a 
class of endogenous, non-coding and short RNAs directly involved in regulating gene expression at the 
post-transcriptional level. High conservation of miRNAs in plants provides the foundation for 
identification of conserved miRNAs in other plant species through homology alignment. For the 
purpose of finding miRNAs in Aquilegia Formosa x Aquilegia pubescens, previous known plant miRNAs 
were, plant were used for BLAST search against its expressed sequence tag (EST) database and 
following a series of filtering criteria, 12 new miRNAs belonging to 5 miRNA families were identified 
while 51 potential target genes were subsequently predicted, most of which seemed to encode 
transcription factors or enzymes participating in regulation of development, growth, metabolism and 
other physiological processes. These findings not only lay the foundation for understanding the roles 
of miRNAs in Aquilegia, but also provide a phylogenetically important dataset for plant miRNA evolution 
studies. 
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INTRODUCTION 
 
The lower eudicot genus Aquilegia represents a phylo- 
genetic midpoint between the eudicot and monocot 
models such as Arabidopsis and Oryza, and holds enor-
mous potential for investigating aspects of development, 
ecology and evolution (Kramer, 2009). Besides, species 
in this flowering plant genus have undergone a very re-
cent adaptive radiation and present a unique opportunity 
to investigate the molecular genetic changes underlying 
adaptations (Kramer, 2009; Puzey and Kramer, 2009). 

Aquilegia formosa and Aquilegia pubescens are two 
closely related species belonging to the columbine genus 
(Cooper et al., 2010). Despite their morphological and 
ecological differences, hybrid population can form when 
hybrid zone  is  established.  Though,  the  importance  of 
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hybridization in adaptive radiation and evolution has been 
debated for decades, recent molecular genetic studies 
have indicated that hybridization is surprisingly frequent 
in natural populations, which can lead to rapid genomic 
changes, including chromosomal rearrangements, geno-
me expansion, different gene expression and silencing 
and the beneficial new phenotypes (Rieseberg, 2009). 
Availability of genomic data will produce a new under-
standing of the genetic nature of species and will help 
resolve a century-old debate over the role of hybridization 
(Baack and Rieseberg, 2007). 

MicroRNAs (miRNAs) are a class of endogenous, 
small, non-coding and single-stranded RNAs that act as 
post-transcriptional regulators in eukaryotes (Unver et al., 
2009). They can control many important aspects of plant 
development, suggesting that these molecules may also 
have played key roles in the evolution of developmental 
processes in plants (Jasinski et al., 2010). In recent 
years, the evolution and conservation of plant miRNAs 
has been the subject of significant investigation (Axtell 
and Bowman, 2008). Although the roles of miRNAs have 
been  extensively  studied,  their expression diversity and 
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evolution in closely related species and interspecific 
hybrids are poorly understood (Ha et al., 2009). 

In Aquilegia, miRNAs only have been reported in 
Aquilegia coerulea (Puzey and Kramer, 2009). Availability 
of new genetic and genomic resources, especially the 
publishing of EST database of A. formosa x A. pubescens 
(http://www.ncbi.nlm.nih.gov/) provides the chance to 
investigate the expression diversity and evolution in these 
closely related species and interspecific hybrids. Nowa-
days, two major categories of approaches have been 
applied for miRNAs investigation (Unver et al., 2009). 
Compared to the experimental approaches, computa-
tional methods have been proved to be faster, more 
affordable and more effective, contributing mostly to 
today’s plentiful storage in miRBase (Unver et al., 2009). 
Different computational miRNA finding strategies have 
been developed based on a core principle of looking for 
conserved sequences among different species that can 
fold into extended hairpins (Bonnet et al., 2004). The 
biogenesis of miRNAs suggests that it is possible to find 
miRNAs by searching expressed sequence tags (ESTs) 
with known miRNAs. There have been more and more 
reports about the identification of miRNAs by mining the 
repository of available ESTs (Lu and Liu, 2010a; Han et 
al., 2009; Zhang et al., 2009; Song et al., 2009; He et al., 
2008; Xie et al., 2007; Zhang et al., 2008). EST analysis 
makes it possible to rapidly study miRNAs and their 
functions in species whose genome sequences have not 
been well known (Zhang et al., 2006a).  

The goal of this study is to identify new miRNAs from 
the EST sequences of A. formosa x A. pubescens throu-
gh bioinformatic analysis. The findings will lay foundation 
for further research of the roles of miRNAs in Aquilegia 
and also will provide a phylogenetically important dataset 
for plant microRNA evolution studies. 
 
 
MATERIALS AND METHODS 

 
Sequences and softwares 

 
The known plant miRNA sequences from Arabidopsis, Brassica, 
Glycine, Saccharum, Sorghum, Vitis, Solanum, Oryza, Triticum, 
Chlamydomonas and other plant species were downloaded from 
the miRNA database miRBase (http://www.mirbase.org) (Release 
14: September 2009). After removal of the repeated sequences, 
2177 items were left as the reference set. The 85041 EST 
sequences of A. formosa x A. pubescens and 12313 GSS 
sequences of A. formosa and Aquilegia vulgaris were downloaded 

from GenBank (http://www.ncbi.nlm.nih.gov/), Blast-2.2.21-ia3 was 
downloaded from NCBI (http://www.ncbi.nlm.nih.gov/Ftp/) and set 
up locally. RNA secondary structure and the free energy were 
calculated by web server mfold (http://mfold.bioinfo.rpi.edu/) (Zuker, 
2003). The software MiRNAassist was applied to improve the 
analysis efficiency (Xie et al., 2007). 

 
 
Prediction of A. formosa x A. pubescens miRNAs  

 
The prediction procedure is shown in Figure 1. The sequences of 
known  plant  miRNAs  were  used  as  query  sequences  for  Basic  

 
 
 
 
Local Alignment Search Tool (BLAST) search against the EST 
database, with the BLASTN parameters Evalue being 1000 and 
word-match size between the query and database sequences being 
7. Mature miRNA sequences should be no less than 16 nt and the 
mismatches should be less than 4. Wherever available, precursor 
sequences of 400 nt were extracted (200 nt upstream and 200 nt 
downstream to the BLAST hits) and used for the hairpin structure 
prediction. If the length of a sequence was less than 400 nt, the 
entire available sequence was used as a miRNA precursor 
sequence. These precursor sequences were screened by BLASTx 
online to reject the protein coding sequences 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The retained precursor 
sequences underwent hairpin structure prediction through web 

server mfold. Only those meeting the following criteria were 
designated as miRNA homologs: (1) RNA sequence folding into an 
appropriate stem-loop hairpin secondary structure; (2) a mature 
miRNA sequence located in one arm of the hairpin structure; (3) 
predicted mature miRNAs with no more than 3 nt substitutions as 
compared with the known miRNAs; (4) miRNAs having less than 6 
mismatches with the opposite miRNA* sequence in the other 
strand; (5) no loop or break in miRNA* sequences; (6) predicted 
secondary structures having higher minimal folding free energy 

index (MFEI)(absolute value), which usually being over 0.85 (Zhang 
et al., 2006b). Also, the AU content of pre-miRNA should be 
between 30 and 70% (Xie et al., 2007).  
 
 
Prediction of miRNA targets  

 
The near-perfect complementarity of plant miRNAs for their targets 
allows for very accurate prediction of miRNA targets (Fahlgren et 

al., 2010). MiRNA targets prediction was performed by aligning the 
predicted miRNA sequences with EST sequences of A. formosa x 

A. pubescens via the BLASTN program. The targets were screened 
according to these criteria: the number of mis-matches should be 
less than 4 and no gaps were allowed at the binding site. The 
predicted target ESTs for each miRNA family were also aligned 
against one another in order to eliminate redundancies (ESTs that 
shared greater than 98% sequence identity, usually due to separate 

annotations of alternative splicing products of the same locus). After 
removal of the repeated sequences, the function of the potential 
target genes were predicted by BLASTX against non-redundant 
protein sequences database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 
(Identity > 25%). 
 
 
Phylogenetic analysis of the new miRNAS 

 
Considering the conservation of miRNAs and their precursors, the 
precursor sequences of the novel and the known miRNAs in the 
same family were aligned and phylogenetically analyzed by 
ClustalW online to investigate their evolutionary relationships 
(http://www.clustal.org/).  
 
 

RESULTS AND DISCUSSION 
 
Identification of A. formosa x A. pubescens miRNAs 
 
Sequence and structure homologies are the main theory 
behind the computer-based approach for miRNAs 
prediction. As described in Materials and Methods, after 
BLASTN searches, all BLAST hits except coding 
sequences were maintained for secondary structure 
analysis, only those in line with the screening criteria 
were  selected  as  candidates. At the end, 12 potential A.  
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Figure 1.  Flowchart of miRNA prediction.  
 

 
 

Table 1. New miRNAs identified in A. formosa x A. pubescens. 

 

New miRNA Gene ID MiRNA sequence Nm/nt Lm/nt LP/nt Location A + U (%) MFEI 

aqx-miR 160a 71715431 UGCCUGGCUCCCUGUAUGCC 1 20 80 5 0.488 1.16 

aqx-miIR 160b 71715431 UGCCUGGCUCCCUGUAUGCCA 1 21 80 5 0.488 1.16 

aqx-miR 395 71699148 CUGAAGGGUUUGGAGGAACUC   0 21 70 3 0.571 0.99 

aqx-miR414a 71689483 UCAUCUUCAUCAUCGUCAUCU 0 21 147 5 0.585 0.96 

aqx-miR414b 71708459 UCAUCUUCAUCAUCGUCAUCU 0 21 140 5 0.579 0.90 

aqx-miR414c 74523650 UCAUCAUCAUCAUCAUCAUCA 2 21 92 5 0.63 0.91 

aqx-miR1134 74541343 CAACAACAACAACAACAACAAGAU 3 24 122 3 0.664 0.90 

aqx-miR2275a 75460151 UUUGGUUUCCUCCAAUAUCUCA 0 22 104 5 0.644 0.88 

aqx-miR2275b 75460151 UUUGGUUUCCUCCAAUAUCUCA 0 22 82 3 0.622 1.07 

aqx-miR2275c 75460151 UUUAGUUUCCUCCAAUAUCUUA 3 22 79 3 0.633 1.01 

aqx-miR2275d 71720602 UUCAAUUUCCUCUAAUAUCUCA 3 22 66 3 0.682 1.37 

aqx-miR 2275e 71682697 UUCAUUUUCCUCCAAUAUCUUA 3 22 69 3 0.667 1.03 
 

NM, Number of mismatch with the known miRNA; LM, length of mature miRNA; LP, length of precursor based on its secondary structure; MFEI, 

minimal folding free energy index (absolute value); Gene ID, gene from Genbank; A + U( %), the content of A and U in the precursor. 
 
 

 

formosa x A. pubescens miRNAs belonging to 5 miRNA 
families were identified and named according to Meyers 
et al. (2008). Information on predicted miRNAs, including 
names, lengths, sources and other aspects, are listed in 
Table 1. The length of the novel miRNAs ranged from 20 
to  24 nt, while the predicted precursor sequences ranged 

in length from 66 to 147 nt, all forming into typical stem-
loop structures with the mature miRNA either on the 5’ or 
3’end (Figure 2). All the MFEIs (absolute value) of these 
hairpin structures were over 0.85, which differentiated 
them from other RNAs (Zhang et al., 2006b). 

A. formosa  x  A. pubescens  miRNA   precursors  were  



11348         Afr. J. Biotechnol. 
 
 
 

 A B C A B C 
 

 
Figure 2. Secondary structures of new miRNA precursors of A. formosa x A. 

pubescens calculated by web server mfold (http://mfold.bioinfo.rpi.edu/). A, aqx-
miR160a/b precursor; B, aqx-miR395 precursor; C, aqx-miR414a precursor; D, aqx-
miR414b precursor; E, aqx-miR414c precursor; F, aqx-miR1134 precursor; G, aqx-

miR2275a precursor; H, aqx-miR2275b precursor; I, aqx-miR2275c precursor; J, 
aqx-miR2275d precursor; K, aqx-miR2275e precursor. The red sequence in each 
precursor is the mature miRNA. 
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diverse in structure and size, even if they were from the 
same family, such as those from miR414 and miR2275 
families(Figure 2), which was consistent with the diversity 
of miRNAs in other plants (Zhang et al., 2006a).   

According to Zhang et al. (2006a), about 10000 ESTs 
contained one miRNA. The number and sorts of miRNAs 
predicted in this work showed that this software-based 
approach was as feasible and effective as  in  other  work  



11350         Afr. J. Biotechnol. 
 
 
 
 

      
 
 
 
 
 
 

 
 

Figure 2. Contd. 
 

 
 

(Lu and Yang, 2010b; Han et al., 2009; Zhang et al., 
2009;  Song  et al., 2009; He et al., 2008; Xie et al., 2007; 
Zhang et al., 2008). 
 
 
Prediction of A. formosa x A. pubescens miRNA 
targets 
 
In order to deduce the function of the novel miRNAs, their 

target genes were searched from the A. formosa x A. 
pubescens EST database based on the homology 
between  miRNAs and their target mRNAs via BLASTN. A 
total of 51 potential targets for 12 A. formosa x A. 
pubescens miRNAs were identified and these potential 
miRNA targets belonged to a number of gene families 
that had different biological functions. The miRNAs and 
their putative candidate targets are listed in Table 2. The 
number  of  predicted  targets  per  miRNA   varied  much,
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none were predicted for miR1134, which might be due to 
the low coverage of the database; as many as 43 were 
predicted for miR414, which indicated its vital roles in 
metabolic regulation. It was even reported in Triticum 
aestivum that 120 target genes were predicted for 
miR414 (Han et al., 2009). Many of these targets were 
transcription factors that might play roles in quite diverse 
physiological processes (Table 2). 

In addition to the transcription factors, another impor-
tant part of the predicted targets were various kinds of 
enzymes such as mannosyltransferase, sulfurylase and 
ubiquitin-protein ligase, which might participate in various 
metabolic  pathways  (Henquet et al., 2008;  Zhou  et  al., 
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2010). Target identification is an effective way to assess 
and define the putative function for a miRNA in plants. 
EST database searches play a vital role in the discovery 
of miRNA targets in plants based on the homology 
between miRNA and its target sequences (Fahlgren and 
Carrington 2010). 

In evolutionary biology, an adaptive radiation is the 
evolution of ecological and phenotypic diversity within a 
rapidly multiplying lineage (Gavrilets and Vose, 2005). 
That is, an array of species from a recent single ancestor 
exhibit different morphological and physiological traits to 
adapt to various environments. Species in the genus 
Aquilegia have spectacularly different floral morphologies 
with specializations to different pollinators. Also, they 
differ radically in their habitats ranging from shady 
woodlands to sun baked meadows. Considering the 
importance of Aquilegia in ecological and evolutionary 
studies, a much deeper understanding of the evolution of 
morphological, physiological and biochemical innovations 
at the molecular level is desirable.  

MiRNAs control many important aspects of plant 
development, so an analysis on distribution of miRNAs in 
different Aquilegia species might give an explanation to 
their distinctions. In this study, besides the miRNAs found 
in A. formosa x A. pubescens, 2 miRNAs of A. vulgaris, 
one of A. formosa were also found from GSS database 
with the same method described in materials and 
methods (Table 3, Figure 3). A. formosa is one of the 
progenitors of the hybrid A. formosa x A. pubescens, but 
the miRNA of it was not found in the hybrid, which might 
be due to genomic changes after hybridization, including 
chromosomal rearrangements or gene silencing. Cer-
tainly, the low coverage of genomic sequences of A. 
formosa x A. pubescens might be another reason.  

Sequence and expression divergence of miRNAs in 
closely related species and interspecific hybrids may 
affect miRNA accumulation and target regulation, leading 
to developmental changes and phenotypic variation, 
which has been observed in Arabidopsis and their 
interspecific hybrids (Ha et al., 2009). Though we could 
not draw the same conclusion now due to limited geno-
mic resources of Aquilegia species, with the availability of 
their complete genome sequences, a detailed miRNA 
distribution will shed light on their morphological and 
ecological differences. 
 

 
Phylogenetic analysis of the new miRNAs 
 
MiRNAs are significant phylogenetic markers because of 
their astonishingly low rate of evolution (Liu et al., 2010). 
Besides, they are being looked upon as a possible 
solution to outstanding phylogenetic problems. Conside-
ring the special phylogenetic position of Aquilegia, it is 
desirable to make an analysis with miRNAs in a 
phylogenetic context. The distribution of miRNAs in 
Aquilegia and some other models such as Arabidopsis 
thaliana,  Oryza  sativa,  Zea   mays   and  Physcomitrella  
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patens indicated that, a small group of miRNA families 
such as miR160, miR164, miR395 and miR399 appear to 
be highly conserved across these species (Table 4).  

The conservation of mature miRNAs and their precur-
sors  provides the chance to investigate their evolutionary  
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relationships. Nearly the same conclusion could be drawn 
from the phylogenetic trees that, Aquilegia occupied an 
intermediate phylogenetic position between core eudicot 
(Arabidopsis) and monocot (Oryza) model species, with 
more close relationship to Arabidopsis (Figure 4), that is 
highly consistent with the plant taxonomy (Puzey and 
Kramer, 2009). Also it could be seen that members in the 
same family of a species were usually distantly related, 
which suggested that different miRNA genes might evolve 
at different rates, but it was not always the case of 
Aquilegia, for example, members in miR395 and miR399 
families were all closely related, indicating sharing 
common ancestor, that provided cogent molecular 
evidences for adaptive radiation of this genus (Figure 4).  

Though the mature miRNA sequences are almost 
invariable, the sequences outside the mature miRNAs are 
highly variable, which suggest an important role of 
secondary precursor structure in miRNA processing and 
biogenesis, allowing generation of the same miRNAs to 
take on novel spatial and temporal functions (Ha et al., 
2008). Earlier studies showed that, miR2275 was only 
found in monocots such as Z. mays and O. sativa. This 
was the first time to report it in eudicots. In A. formosa x 
A. pubescens, 3 members of miR2275 family originated 
from the same transcript, 2 of which share the same 
mature miRNA sequences but generated from different 
precursors (Figure 5). Unlike animal miRNA gene 
clusters, plant miRNA genes of the same family are often 
scattered throughout the genome, although clustering 
seems uncommon in some plants such as soybean (Zhang 
et al., 2008). The consequence of the co-transcription of 
similar or identical miRNA genes on a plant gene cluster 
would be a dosage effect (Li and Mao, 2007). 
 
 
Conclusions 
 
In this work, 12 miRNAs were identified from the EST 
database of A. formosa x A. pubescens and 51 potential 
targets of them were predicted, which were related to 
different physiological processes. Besides, 3 miRNAs 
were predicted from the GSS databases of A. formosa 
and A. vulgaris. A phylogenetic analysis provided 
evidences for the phylogenetic position of Aquilegia, as 
well as its adaptive radiation at molecular level. Above all, 
the findings from this study will contribute to further 
researches of miRNA functions and regulatory 
mechanisms in A. formosa x A. pubescens and will also 
help in the understanding the genetic basis of 
evolutionary and ecological characteristics of Aquilegia. 
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Table 2.The potential targets of novel miRNAs in A. formosa x A. pubescen. 

 

miRNA Targeted gene (ID) Targeted protein Possible function 

miR-395 75452677 ATP sulfurylase metabolism 

 71699148 hypothetical protein unknown 

miR-414 75453910 negative cofactor 2 transcriptional co-repressor transcription 

 75459757 hypothetical protein unknown 

 74560612 nuclease, putative DNA degration 

 74564613 alpha DNA polymerase, putative  DNA synthesis 

 74549977 transcription factor transcription 

 75457050 extracellular ligand-gated ion channel Metabolism 

 75459231 hypothetical protein unknown 

 74555834 pre-mRNA-splicing factor transcription 

 74552721 hypothetical protein unknown 

 74548076 hypothetical protein acetolactate synthase large subunit metabolism 

 74552769 rac gtpase signal transduction 

 74554333 aminoacyl-tRNA synthetase translation 

 74556618 transmembrane protein2; receptor signal transduction 

 74556622 zinc finger protein transcription 

 74539548 ubiquitin specific protease 39 and snrnp assembly factor metabolism 

 74528215 hypothetical protein unknown 

 74539175 hypothetical protein unknown 

 74528345 zinc finger family protein transcription 

 74529163 transcription factor transcription 

 74533837 ubiquitin-protein ligase metabolism 

 74535247 hypothetical protein unknown 

 74539939 transcription regulator transcription 

 74531934 hypothetical protein unknown 

 74533752 ubiquitin-protein ligase metabolism 

 71722564 zinc finger protein transcription 

 74523550 transcription factor transcription 

 74513475 transcription factor transcription 

 74515034 hypothetical protein unknown 

 74519639 ABC transporter family protein metabolism 

 71713603 hypothetical protein unknown 

 71718234 translation initiation factor translation 

 71708459 alpha chain of nascent polypeptide associated complex transcription 

 71683794 f-box family protein transcription 

 71681830 ribosomal protein S6 translation 

 71702073 SPla/RYanodine receptor domain-containing protein metabolism 

 71702182 hypothetical protein unknown 

 71703092 cell division protein cell division 

 71691704 hypothetical protein unknown 

 71695172 cholinephosphate; cytidylyltransferase metabolism  

 75455214 CONSTANS-like zinc finger protein transcription 

 74552739 DNA binding protein; chromatin remodeling factor subunit transcription 

 74539548 ubiquitin specific protease 39 and snrnp assembly factor, putative metabolism 

 74529163 transcription factor transcription 

 74539939 transcription regulator transcription 

 71722564 zinc finger protein transcription 

 74523550 transcription factor transcription 

 71716392 mannosyltransferase; glycosyltransferase metabolism 

 71703679 ribosomal protein S6 protein synthesis 



Lu and Zhang        11355 
 
 
 

Table 2. Cont.. 
 

miR-2275 71687376 

 

esterase/lipase/thioesterase family protein; 

hydrolase, alpha/beta fold family protein 

metabolism 

 

One ID number was listed when a targeted gene had multiple IDs due to separate annotations of alternative splicing products: ID, indicate the 
gene in Genbank. 

 

 
Table 3. New miRNAs identified in A. formosa and A. vulgaris. 

 

New miRNA Gene ID miRNA sequence (5′3′) NM/nt LM/nt LP/nt Location A + U (%) MFEI 

aqv-miR164a 191174909 UGGAGAAGCAGGGCACGUGCA 0 21 67 5 0.552 1.22 

aqv-miR164b 191174908 UGGAGAAGCAGGGCACGUGCC 1 21 67 5 0.478 1.04 

aqf-miR399 254537223 UGCCAAAGGAGAGUUGCCCUA  0 21 80 3 0.545 1.02 
 

NM, Number of mismatch with the known miRNA; LM, length of mature miRNA; LP, length of precursor based on its secondary structure; 
MFEI, minimal folding free energy index(absolute value); Gene ID, gene from Genbank; A + U( %), the content of A and U in the precursor. 

 

 
 

 A B C A B C 
 

 
Figure 3. Secondary structures of new miRNA precursors of A. formosa and A. vulgaris 

calculated by web server mfold (http://mfold.bioinfo.rpi.edu/). A, aqv-miR164a precursor; 
B, aqv-miR164b precursor; C, aqf-miR399 precursor. The red sequence in each 
precursor is the mature miRNA 
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Table 4. Distribution of miRNAs in some plant species. 

 

Plant species 1
5
6
 

1
5
9
 

1
6
0
 

1
6
2
 

1
6
4
 

1
6
6
 

1
6
7
 

1
6
8
 

1
6
9
 

1
7
1
 

1
7
2
 

3
1
9
 

3
9
0
 

3
9
3
 

3
9
4
 

3
9
5
 

3
9
6
 

3
9
7
 

3
9
8
 

3
9
9
 

4
0
8
 

4
1
4
 

1
0
6
8
 

1
1
3
4
 

1
5
2
1
 

2
2
7
5
 

A. thaliana 8 3 3 2 3 7 4 2 14 3 5 3 2 2 2 6 2 2 3 6 1 1     

O. sativa 13 6 6 2 6 14 10 2 16 9 4 2 1 2 1 23 9 2 2 11 1 1    2 

P. patens 3  9   13 1   4  5 4   1     1 1 1    

T. aestivum  2 1  1  1   1          1 1   1   

Z. mays 9 11 8 1 8 14 10 2 17 14 5 4 2 3 2 16 8 2 2 10 2     4 

A. formosa x A. pubescens   2             1      3  1  5 

A.. coerulea 2 1 2   5 1 1 3 6 2 1   1 2 2  2 1 1      

A. vulgaris     2                      

A. formosa                    1       
 

Numbers in boxes represent the number of miRNAs present in a particular miRNA family. 
 

 
 

 

A 

 
 

Figure 4.  Phylogenetic analyses of different miRNA families. A, miR160 family; B, miR164 family; C, miR395 family; 
D, miR399 family. 
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5’gttttgtttaggtagcaaagttggtgtttgaatgtgaggattggatgaaaccaaactccactctagctatcttttagttgcaaaaagtaagagtttggtttcctccaatatc
tcaccttcaaagctacatcaactgttaatagttcattgtgatcgacactggatctattgaatgtgagaattggatgaaactaaagccttttgtatgtggtcatcaat
ggtgaaagagggtttagtttcctccaatatcttaccttcaataatctcaacttaaattctaggaggtataaattaaaaaacaattcaaatgaaatcattgtcctacattaatct
agtgatcttgatatataacagaaaaaatgtactagaacctcatatataacagaaagagatcgacaag3’ 
 

 
 

Figure 5.  Location of 3 miR2275 precursors in the transcript. The blackened indicated miR2275a precursor; the underlined indicated 
miR2275b precursor; the double-underlined indicated miR2275c precursor. 

 
 

 

MiRNAassist software. 
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