Full Length Research Paper

Molecular cloning of endochitinase 33 (*ECH*33) gene from *Trichoderma* harzanium

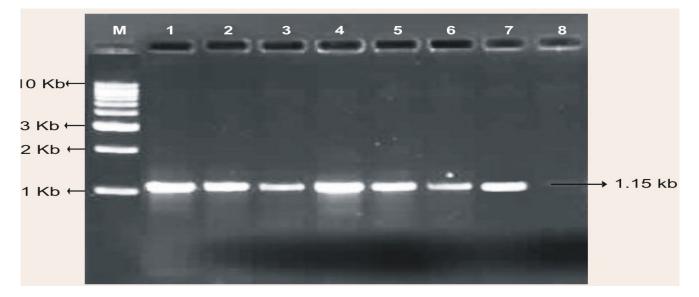
Radheshyam Sharma* and Sumangala Bhat

Institute of Agri-Biotechnolohy (IABT), College of Agriculture, University of Agricultural Sciences, AC, Dharwad-580 005 Karnataka, India.

Accepted 24 June, 2011

This study was conducted to screen for the presence of *ech*33 gene in 80 isolates of *Trichoderma*. Furthermore, using gene specific primers, *ech*33 gene were cloned into pTZ57R/T from *T. harzanium* IABT1068. The clone was confirmed through PCR amplification and restriction analysis. The clones were sequenced and analyzed for homology at nucleotide and protein level to find out conserved domain of protein. Gene encoding endochitinase from both species have 96 and 95% homology with reported sequence both at nucleotide and protein level. The cloned *ech*33 has a size of 1159 bp, of which 9 bp corresponds to the 5' untranslated region, with a 650 bp open reading frame. The amino acid sequence of gene has signal peptide sequence ranges from 1 to 19. The nucleotide sequence analysis using GENETOOL software revealed presence of three exon and four introns, and has unique restriction sites for *HindIll, BamHI* and *Sall*, at 881, 308 and 485 positions, respectively.

Key words: Trichoderma harzanium, ech33, signal peptide.


INTRODUCTION

Traditional methods used to protect crops from diseases have been largely based on the use of chemical pesticides. Applications of fungicides can have drastic effects on the environment and the consumers. Chemical methods with repeated use are not economical in the long run because they pollute the atmosphere, damage the environment, leave harmful residues and lead to the development of resistant strains among the target organisms (Naseby et al., 2000). A reduction or elimination of synthetic pesticide applications in agriculture is highly desirable. One of the most promising means to achieve this goal is by the use of new tools based on biocontrol agents (BCAs) for disease control alone or to integrate with reduced doses of chemicals in the control of plant pathogens resulting in minimal impact of the chemicals on the environment (Chet and Inbar, 1994; Harman and Kubicek, 1998). Trichoderma spp. is among the most frequently isolated soil fungi present in plant root ecosystems (Harman et al., 2004). These fungi are opportunistic, avirulent plant symbionts and function

as parasites and antagonists of many phytopathogenic fungi, thus protecting plants from disease. So far, Trichoderma spp. are the most studied fungal BCAs and commercially marketed as biopesticides, biofertilizers and soil amendments (Harman et al., 2004; Lorito et al., 2004). Depending on the strain, Trichoderma spp. (notably Hypocrea lixii/Trichoderma harzianum, Hypocrea virens/Trichoderma virens, Trichoderma atroviridis/ Trichoderma atroviride and Trichoderma asperellum) are used as biocontrol agents against various diseases of crops, vegetables and fruits (Harman et al., 2004). They have evolved numerous mechanisms that are involved in attacking other fungi. These mechanisms include competition for space and nutrients (Elad et al., 1999), mycoparasitism (Haran et al., 1996; Lorito et al., 1996a), production of inhibitory compounds (Sivasithamparam and Ghisalberti, 1998), inactivation of the pathogen's enzymes (Roco and Perez, 2001) and induced resistance (Kapulnik and Chet, 2000).

The antifungal mechanism of *Trichoderma*, an extensively studied and widely used biocontrol fungus, mainly relies on cell wall degrading enzymes such as chitinases and glucanacses (Lorito et al., 1998) and is being exploited to control a variety of plant pathogens. The genes encoding chitinases and glucanacse are

^{*}Corresponding author. E-mail: radhebiotech88@gmail.com. Tel: -91+9660235287.

Plate 1. PCR amplification of *ech33* gene (1.15 kb). M = 1 KB DNA ladder; 1. *T. atroviride;* 2 *T. harzianum;* 3. *H. virens;* 4. *T. harzinum;* 5. *T. harzinum;* 6. *T. harzinum;* 7.*T. harzinum.*

isolated from Trichoderma and transferred to plants to impact resistance to several fungal plant pathogens. Chitinase encoding genes are being used to improve plant defense against fungal pathogens. These enzymes are capable of degrading the linear homopolymer of B-1, 4-N-acetyl- D-glucosamine, the main cell wall component of most phytopathogenic fungi, showing strong inhibitory activity in vitro on germination and hyphal growth (Lorito et al., 1996a). Plants do have chitinases, but are not as effective as microbial chitinases. Therefore, cloning and characterization of genes from biocontrol microbes such as Trichoderma is very important. There are many evidences to show that fungal chitinases alone has increased the resistance of transformed plants against pathogenic fungus. The rice plant transformed with an endochitinase gene (ech33) from the biocontrol fungus T. atroviride increased the resistance to sheath blight caused by Rhizoctonia solani and rice blast caused by Magnaporthe grisea (Liu Mei et al., 2004).

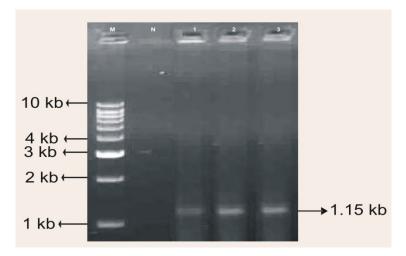
Efforts have also been made to produce transgenic plants expressing either plant or microbial chitinase. In recent years, considerable progress has been made in producing disease-resistant and high-yielding transgenic plants. It may be necessary to integrate different resistance genes together in order to extend the host defense.

MATERIALS AND METHODS

Isolation of genomic DNA from fungus

The *T. harzanium* IABT1068 strain were inoculated in100 ml potato dextrose broth at 30 °C in room temperature. The complete growth occurred within 2 to 5 days depending upon the species. About 100 mg of fungus mycelium was taken in 1.5 ml micro centrifuge tube

and 500 µl of lysis buffer was added. Mycelium was finely macerated using micro-pestle and vortexed for 5 min. The suspension was extracted with equal volume of phenol: chloroform: IAA (25:24:1) and centrifuged at 10,000 rpm for 10 min. The supernatant was taken into a fresh tube and RNase at the rate of 100 µg per ml was added and this solution was incubated for 20 min at 55 °C on water bath and then equal volume of isopropanol was added at room temperature, mixed by gentle inversion and kept for 10 min at room temperature. The DNA was recovered by centrifugation at 10,000 rpm for 10 min at 4°C. The DNA pellet was washed with 70% ethanol, air dried and resuspended in 50µl of T₁₀E₁ (10 mM Tris-Cl and 1 mM EDTA, pH 7.5). Concentration of DNA was estimated using ethidium bromide spotting method as described by Sambrook and Russel (2001).


Polymerase chain reaction amplification (PCR) amplification

PCR was carried out from *T. harzanium genomic* DNA. For PCR amplification, two gene specific primer were used- FP 5'<u>ATG</u>CCTTCATTGACTGCTCTT 3' and RP 3'TTACCTCAAA GCATTGACAACC5'.

Reaction mixture for PCR (20 μ I) contained 10 mM Tris-HCI (PH 8.3), 50 mM KCI, 1.5 mM MgCl2, 10 mM each of dATP, dCTP, dGTP and dTTP, 5 pM primer, 1 μ I genomic DNA (100 ng) and one unit of Taq polymerase. Amplification was performed in 0.2 mI tube using thermocycler (Eppendorf 2231, Hamburg, Germany). Initial denaturation was carried out at 94 °C for 5 min. Thirty five cycles of the following programme were used for amplification; denaturation at 94 °C for 2 min, annealing at 41 °C for 2 min and extension at 72 °C for 10 min. The amplified products were separated by electrophoresis on 1.2% gel stained in ethidium bromide. The gel was observed and photographed using UV transilluminator. The amplification showed ~1.15 kb amplicon (Plate 1).

Cloning of endochitinase gene

The specific eluted bands (~1.15 kb) corresponding to *ech33* from *T. harzanium* IABT1068, were ligated to pTZ57R/T vector (2886 bp)

Plate 2. PCR confirmation of *ech*33 cloned gene. M = 1 KB DNA ladder. 1. *T. Harzianum;* 2 *T. harzianum;* 3. *H. harzianum.*

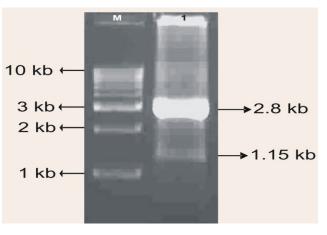
as described in InsT/A clone[™] PCR product cloning kit (#k1214) from MBI Fermentas USA. The ligation products were used to transform *Escherichia coli* DH5α.

Transformation of Escherichia coli DH5 α with recombinant construct

The competent cells of *E. coli* DH5 α were prepared following the protocol mentioned by Sambrook and Russell (2001). About 100 µl of freshly prepared competent cells were taken in a chilled centrifuge tube and 10 µl of ligated mixture was added into the tube and was mixed gently. The mixture was chilled in ice for 45 min. Later, heat shock was given by shifting the chilled mixture to preheated 42°C water bath for exactly 2 min. Immediately, it was transferred onto ice to chill for 5 min. To this, 800 µl of Luria broth was added and incubated at 37°C at 200 rpm for 45 min, to allow bacteria to recover and express the antibiotic marker encoded by plasmid. The culture was centrifuged at 13,000 rpm for 1 min and about 700 µl of supernatant was discarded and the pellet was dissolved in the remaining supernatant and spread on the plates having Luria agar with Amp₁₀₀, X-gal IPTG and incubated overnight at 37°C.

The recombinant clones were identified by blue/white assay. After incubation, only white colonies were picked up and streaked on plates having Luria agar with Amp₁₀₀, X-gal, IPTG and incubated at 37 $^{\circ}$ C overnight and checked further for the presence of construct through PCR and restriction confirmation.

Sequencing and in silico analysis of the clones


The recombinant plasmid was sequenced using M13 universal forward and reverses primers at Bangalore Genei Private Ltd., Bangalore. The sequence was subjected for analysis after removing vector sequence, through vecscreen service available in NCBI website. The available sequence information from cloned fragments was subjected to analysis using BLAST algorithm available at http://www.ncbi.nlm.nih.gov. *In silco* translation was done using GENETOOL software. Dual and multiple alignments for homology search were performed using the Clustral W algorithm in BioEdit software (Hall, 1999). The general features of the protein (amino acid composition) were assessed using the GENETOOL

and the presence of a putative signal sequences was predicted using Signal P 3.0 Verson (Bendtsen et al., 2004; http://www.cbs.dtu.dk/services/SignalP/). All other bioinformatics like searching domain and catalytic active sites were performed using tools that are accessible via different links on the proteomics service of the Swiss Institute of Bioinformatics (Zdobnov and Apweiler, 2001; http://www.ebi.ac.uk/InterProScan/).

RESULTS

The cloned *ech*33 gene from *T. harzanium* (IABT1068), 17 colonies were observed on selection medium of which 15 were white. Further, these colonies were screened for the presence of *ech*33 and only three clones showed the presence of ~1.15 kb insert when checked through PCR with specific primers and restriction analysis(Plates 2 and 3).

One of the clones corresponding to ech33 was named as pBRS-20. The clone was sequenced using M13 forward and reverse primers at Bangalore Genie Pvt. Ltd. The complete sequence of nucleotides (Figure 1) was found after removing vector sequence through vecscreen service of the NCBI website. The available sequence information from cloned gene was subjected to analysis available BLAST algorithm using at http://www.ncbi.nlm.nih.gov. It showed homology with conserved domain of CHI-18, chitinase like superfamily (Figure 4). The nucleotide sequence of ech33 showed 96% homology with the published *H. virens* chitinase 33 (chi33) (FJ358733.1), 86% with T. viriens chitinase 2 (GQ303455.1), 86% with H. virens class III chitinase precursor (cht2) (AF395754.1). The cloned ech33 has a size of 1159 bp, of which 9 bp corresponds to the 5' untranslated region, with open reading frame present in the DNA (Figure 7). The nucleotide sequence was translated to amino acid using GENETOOL software and code for 258 amino acids containing stop codon. The

Plate 3. Restriction confirmation of *ech*33 gene. M =1KB DNA ladder; 1. *T. Harzinum.*

Contig

Figure 1. Complete nucleotide sequence of cloned endochitinase gene (ech33) from T. harzanium (IABT1068).

amino acid sequence of gene is shown in Figure 5. It has signal peptide sequence ranges from 1 to 19. The nucleotide sequence analysis using GENETOOL software revealed presence of three exon and four introns (Figure 6).

The cloned *ech*33 in Pbrs-20 has unique restriction sites for *HindIII, BamHI* and *SalI,* at 881, 308 and 485 positions, respectively. The restriction map of the sequence (pBRS-20) is presented in Figure 2. The vector map of pBRS-20 was constructed using the software VECTOR NTI and is presented in Figure 3. The gene is in reverse orientation in the pTZ vector.

The nucleotide sequence of the cloned *ech*33 was subjected for BLASTx and the homology results are presented in Figure 8. It showed 95% homology with the published *H. virens* chitinase 33 (*chi*33) (FJ358733.1), 95% with *H. lixii* chitinase (CAA56315.1), 90% with *H.*

virens chitinase (ABP96986.1) and 90% with chitinase-2 of *H. virens* (AAL78811.1) with published sequence of *T. harzanium* (accession no. FJ358733.1) endochitinase gene at amino acid levels (Figure 9).

DISCUSSION

Cloning of chitinase genes is the first step in development of transgenic resistant to fungal diseases. Therefore, cloning of endochitinase genes and transferring it toplants is a major step for development of transgenic against resistant to plant pathogen. So, in this study, for the cloning of endochitinase gene from *ech*33 from *T. harzianum* (IABT1068), sequenced functional analysis were done. The *ech*33 gene had 96% homology with reported endochitinase gene from *H. virens* chitinase 33

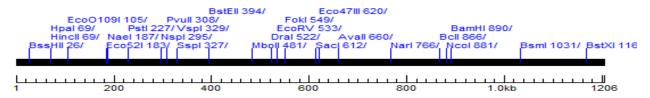
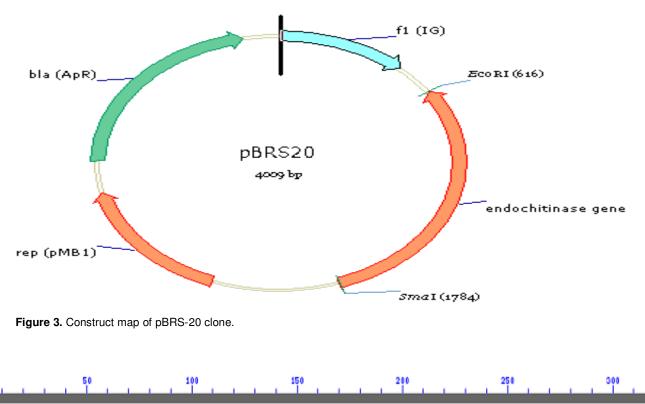
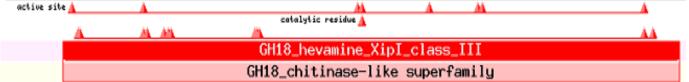




Figure 2. Restriction map of cloned endochitinase gene (*ech33*) sequences from *T. harzanium* (IABT1068) with common enzymes.

Figure 4. rps BLAST results of cloned endochitinase gene (*ech33*) sequences from *T. harzanium* (IABT1068) showing conserved domain. Description: Cd02877, GH8_hevamine_lpl_III, this conserved domain family include xylanase inhibitor lp-I and the class III plant 119356 no.

MPSLTALA SALALVPSVFAGWNVN SKQNIAVYWGKALLMSFYTIYIREN SYLT*HLYRTKLGRPAKHATA SFNLLQRYV SALFPNTASF DRPK*EKEHVESD SCHVDANINVIDIAFLNGITPPMTNFANAGDRCTPF SDNPWLSQCPEIE*VSLYEEMGV*CVCKYGLTLIHFKGRI SR LARLTARPSSFLLVVTLTPKVAGALPALLKPQPTR SGPC SVPF SPAALPSVRLAVQ SWTALISTLRPRPTT SLL SAPSSRA SPTLPGG KKYYF SAAPQCFFPDAAVGALINAVPMDWIQIQFYNNPCGV SGYTPGT S SQNNYNYQTWDTWAKT SPNPNVKLLVGIPAGPGAGRG YVSG SQLT SVFQY SKGF SSTFAGAMMWDMSQLYQNTG FEAQVVNALR*

Legend Signal peptide.....1-19

Figure 5. Deduced amino acid sequences of cloned endochitinase gene (ech33) from T. harzanium (IABT1068).

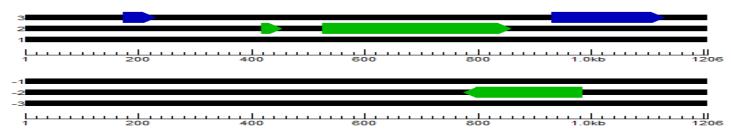
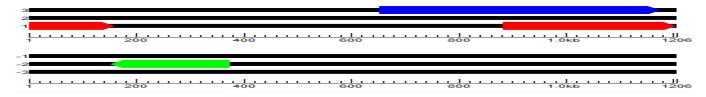



Figure 6. Exon map of cloned endochitinase gene (ech33) from T. harzanium (IABT1068).

		1 50
Test Chi 33 Assembled	(1)	ATGCCTTCATTGACTGCTCTTGCGAGCGCGCTCGCTCTTGTTCCTTCC
Test Chi Ref	(1)	ATGCCTTCATTGACTGCTCTTGCGAGCGCGCTCGCTCTTGTTCCTTCC
Consensus	(1)	ATGCCTTCATTGACTGCTCTTGCGAGCGCGCTCGCTCTTGTTCCTTCC
		51 100
Test Chi 33 Assembled	(51)	CTTTGCTGGCTGGAATGTTAACTCGAAGCAAAACATTGCTGTGTACTGGG
Test Chi Ref	(51)	CTTTGCTGGCTGGAATGTTAACTCGAAGCAAAACATTGCTGTGTACTGGG
Consensus	(51)	CTTTGCTGGCTGGAATGTTAACTCGAAGCAAAACATTGCTGTGTACTGGG
		101 150
Test_Chi_33_Assembled	(101)	GTAAGGCCCTTCTTATGAGCTTTTACACAATTTATATAAGGGAAAATAGC
Test_Chi_Ref	(101)	GTAAGGCCCTTCTTATGAGCTTTTACACAATTTATATAAGGGAAAATAGC
Consensus	(101)	GTAAGGCCCTTCTTATGAGCTTTTACACAATTTATATAAGGGAAAATAGC
		151 200
Test_Chi_33_Assembled	(151)	TATCTAACATGACATCTGTATAGGACAAAACTCGGCCGGC
Test_Chi_Ref	(151)	TATCTAACATGACATCTGTATAGGACAAAACTCGGCCGGC
Consensus	(151)	TATCTAACATGACATCTGTATAGGACAAAACTCGGCCGGC
Test Chi 33 Assembled	(201)	201 200 200 200 200 200 200 200 200 200
Test Chi Ref	(201)	CGCAACAGCGTCTTTCAACCTACTGCAGCGGTACGTTTCTGCTTTATTTC
Consensus	(201)	CGCAACAGCGTCTTTCAACCTACTGCAGCGGTACGTTTCTGCTTTATTTC
oonbenbab	(202)	300
Test Chi 33 Assembled	(251)	CCAACACTGCAAGCTTTGATCGGCCAAAATGAGAAAAAGAGCATGTTGAA
Test Chi Ref	(251)	CCAACACTGCAAGCTTTGATCGGCCAAAATGAGAAAAAGAGCATGTTGAA
Consensus	(251)	CCAACACTGCAAGCTTTGATCGGCCAAAATGAGAAAAAGAGCATGTTGAA
		301 350
Test_Chi_33_Assembled	(301)	TCTGACAGCTGCCATGTAGATGCCAATATTAATGTTATTGACATTGCTT
Test_Chi_Ref	(301)	TCTGACAGCTGCCATGTAGATGCCAATATTAATGTTATTGACATTGCTT-
Consensus	(301)	TCTGACAGCTGCCATGTAGATGCCAATATTAATGTTATTGACATTGCT
Test Chi 33 Assembled	(351)	351 400 CT <mark>TGAACGGAATTACTCCTCCCATGACCAACTTTGCCAATGC</mark> CGGTGACC
Test Chi Ref	(350)	TAACGGAATGACTCCCCCATGACCAACTTTGCCAATGCTGGTGACC
Consensus	(351)	T AACGGAAT ACTCCTCCCATGACCAACTTTGCCAATGC GGTGACC
competibub	(301)	401 450
Test Chi 33 Assembled	(401)	GATGCACGCCCTTTCAGACAACCCTTGGCTCTCGCAATGCCCCCGAAATT
Test Chi Ref	(398)	GATGCACTCCCTTCCCGACAACCCTTGGCTCCTGAGCTGCCCTGAAATT
Consensus	(401)	GATGCAC CCCTT TC GACAACCCTTGGCTC G TGCCC GAAATT
		451 500
Test_Chi_33_Assembled	(451)	GAGTAAGTTTCTCTATATGAAGAAATGGGTGTCTGATGTGTATGCAAATA
Test_Chi_Ref	(448)	GAGTAAGTTTCTCTATATGAAGAAATGGGTGTCTGATGTGTATGCAAATA
Consensus	(451)	GAGTAAGTTTCTCTATATGAAGAAATGGGTGTCTGATGTGTATGCAAATA
Test Chi 22 Assembled	(501)	501 550 TGGACTAACTTTAATTCATTTTAAAGGGCGGATATCAAGACTTGCCAGGC
Test_Chi_33_Assembled Test Chi Ref	(498)	TGGACTAACTTTAATTCATTTTAAAGGGCGGATATCAAGACTTGCCAGGC
Consensus	(501)	TGGACTAACTTTAATTCATTTTTAAAGGGCGGATATCAAGACTTGCCAGGC
oombenbab	(001)	551 600
Test Chi 33 Assembled	(551)	TAACGGCAAGACCATCCTCCTTTCTCTTGGTGGTGACTCTTACACCCAAG
Test Chi Ref	(548)	TAACGGCAAGACCATCCTCCTTTCTCTTGGTGGTGACTCTTACACCCAAG
Consensus	(551)	TAACGGCAAGACCATCCTCCTTTCTCTTGGTGGTGACTCTTACACCCAAG
		601 650
Test_Chi_33_Assembled	(601)	GTGGCTGGAGCTCTGCCAGCGCTGCTCAAGCCGCAGCCAACCAGGTCTGG
Test_Chi_Ref	(598)	GTGGCTGGAGCTCTGCCAGCGCTGCTCAAGCCGCAGCCAACCAGGTCTGG
Consensus	(601)	GTGGCTGGAGCTCTGCCAGCGCTGCTCAAGCCGCAGCCAACCAGGTCTGG
West Chi 22 Deservi 1	((5))	651 700
Test_Chi_33_Assembled Test Chi Ref	(651) (648)	GCCATGTTCGGTCCCGTTCAGTCCGGCAGCTCTGCCGAGCGTCCGTTTGG GCCATGTTCGGTCCCGTTCAGTCCGGCAGCTCTGCCGAGCGTCCGTTTGG
Consensus	(648)	GCCATGTTCGGTCCCGTTCAGTCCGGCAGCTCTGCCGAGCGTCCGTTTGG
consensus	(051)	GCCATGITCGGITCCGITCAGITCGGCAGCITIGCCGAGCGITCGITIGG

Figure 8. Nucleotide alignment of *ech*33 reference with cloned endochitinase gene (*ech*33) sequences from *T. harzanium* (IABT1068).

		701 75	50
Test_Chi_33_Assembled	(701)	CAGTGCAATCGTGGACGGCTTTGATTTCGACTTTGAGGCCACGACCAA	CA
Test_Chi_Ref	(698)	CAGTGCAATCGTGGACGGCTTTGATTTCGACTTTGAGGCCACGACCAA	CA
Consensus	(701)	CAGTGCAATCGTGGACGGCTTTGATTTCGACTTTGAGGCCACGACCAA	CA
		751 80	00
Test_Chi_33_Assembled	(751)	ACCTCGCTGCTTTCGGCGCCCAGCTCAAGAGCCTCTCCAACGCTGCC	GG
Test_Chi_Ref	(748)	ACCTCGCTGCTTTCGGCGCCCAGCTCAAGAGCCTCTCCAACGCTGCC-	
Consensus	(751)	ACCTCGCTGCTTTCGGCGCCCAGCTCAAGAGCCTCTCCAACGCTGCC (
		801 85	50
Test_Chi_33_Assembled	(801)	CGGCAAGAAGTACTACTTCTCTGCTGCTCCTCAGTGCTTCTTCCCAGA	
Test_Chi_Ref	(797)	CGGCAAGAAGTACTACTTCTCTGCTGCTCCTCAGTGCTTCTTCCCAGA	
Consensus	(801)		
			00
Test_Chi_33_Assembled	(851)	CCGCTGTCGGTGCGCTGATCAACGCCGTCCCCATGGACTGGATCCAGA	
Test_Chi_Ref	(847)	CCGCTGTCGGTGCGCTGATCAACGCCGTCCCCATGGACTGGATCCAGA	
Consensus	(851)	CCGCTGTCGGTGCGCTGATCAACGCCGTCCCCATGGACTGGATCCAGA	
	(0.01.)		50
Test_Chi_33_Assembled	(901)	CAGTTCTACAACAATCCTTGCGGCGTCAGTGGCTACACGCCCGGCACCA	
Test_Chi_Ref	(897)		
Consensus	(901)	CAGTTCTACAACAATCCTTGCGGCGTCAGTGGCTACACGCCCGGCACCA 951 10(
Test Chi 22 Decembried	(951)	951 100 CAGCCAGAACAACTACAACTACCAGACCTGGGATACCTGGGCCAAGAC	
Test_Chi_33_Assembled			
Test_Chi_Ref Consensus	(947) (951)	CAGCCAGACAACTACAACTACCAGACCTGGGATACCTGGGCCAAGACC CAGCCAGAACAACTACAACTACCAGACCTGGGATACCTGGGCCAAGACC	
Consensus	(951)	1001 105	
Test Chi 33 Assembled	(1001)	GCCCCAACCCCAACGTCAAGCTTCTTGTCGGCATTCCCGCTGGCCCAG	
Test Chi Ref	(997)	GCCCCAACCCCAACGTCAAGCTTCTTGTCGGCATTCCCGCTGGCCCAG	
Consensus		GCCCCAACCCCAACGTCAAGCTTCTTGTCGGCATTCCCGCTGGCCCAG	
consensus	(1001)	1051 11(
Test Chi 33 Assembled	(1051)	GCTGGTCGCGGCTACGTCTCTGGCTCTCAGCTCACTTCAGTCTTCCAG	
Test Chi Ref	(1047)	GCTGGTCGCGGCTACGTCTCTGGCTCTCAGCTCACTTCAGTCTTCCAG	
Consensus	(1051)	GCTGGTCGCGGCTACGTCTCTGGCTCTCAGCTCACTTCAGTCTTCCAG	
	(/	1101 115	
Test Chi 33 Assembled	(1101)	CTCGAAGGGGTTCAGCAGCACCTTTGCCGGTGCCATGATGTGGGATAT	GT
- Test Chi Ref	(1097)	CTCGAAGGGGTTCAGCAGCACCTTTGCCGGTGCCATGATGTGGGATAT	GT
Consensus	(1101)	CTCGAAGGGGTTCAGCAGCACCTTTGCCGGTGCCATGATGTGGGATAT	GT
		1151 120	00
Test Chi 33 Assembled	(1151)	CCCAGCTTTACCAGAACACTGGCTTTGAGGCCCAGGTTGTCAATGCTT	ГG
Test Chi Ref	(1147)	CCCAGCTTTACCAGAACACTGGCTTTGAGGCCCAGGTTGTCAATGCTT	ГG
Consensus	(1151)	CCCAGCTTTACCAGAACACTGGCTTTGAGGCCCAGGTTGTCAATGCTT	ТG
		1201	
Test_Chi_33_Assembled	(1201)	AGGTAA	
Test_Chi_Ref	(1197)	AGGTAA	
Consensus	(1201)	AGGTAA	

Figure 8. Continues.

		1 50
Test_Chi_33_Assembled	(1)	MTNFANAGDRCTPFSDNPWLSQCPEI <mark>DS</mark> RASPTLP
Test Chi 33 Ref	(1)	MTNFANAGDRCTPFSDNPWLLSCPEI <mark>EA</mark> DIKTCQANGKTILLSLGGDSYT
Consensus	(1)	MTNFANAGDRCTPFSDNPWL CPEIDA
		51 100
Test Chi 33 Assembled	(36)	
Test Chi 33 Ref	(51)	QGGWSSASAAQAAANQVWAMFGPVQSGSSAERPFGSAIVDGFDFDFEATT
Consensus	(51)	
		101 150
Test Chi 33 Assembled	(36)	GGKKYYFSAAPQCFFPDAAVGALINAVPMDWIQ
Test_Chi_33_Ref	(101)	NNLAAFGAQLKSLSNAA <mark>GGKKYYFSAAPQCFFPDAAVGALINAVPMDWIQ</mark>
Consensus	(101)	GGKKYYFSAAPQCFFPDAAVGALINAVPMDWIQ
		151 200
Test Chi 33 Assembled	(69)	IQFYNNPCGVSGYTPGTSSQNNYNYQTWDTWAKTSPNPNVKLLVGIPAGP
Test_Chi_33_Ref	(151)	IQFYNNPCGVSGYTPGTSSQNNYNYQTWDTWAKTSPNPNVKLLVGIPAGP
Consensus	(151)	IQFYNNPCGVSGYTPGTSSQNNYNYQTWDTWAKTSPNPNVKLLVGIPAGP
		201 250
Test_Chi_33_Assembled	(119)	GAGRGYVSGSQLTSVFQYSKGFSSTFAGAMMWDMSQLYQNTGFEAQVVNA
Test_Chi_33_Ref	(201)	GAGRGYVSGSQLTSVFQYSKGFSSTFAGAMMWDMSQLYQNTGFEAQVVNA
Consensus	(201)	GAGRGYVSGSQLTSVFQYSKGFSSTFAGAMMWDMSQLYQNTGFEAQVVNA
		251
Test_Chi_33_Assembled	(169)	LR
Test_Chi_33_Ref	(251)	LR.
Consensus	(251)	LR

Figure 9. Amino acid alignment of *ech*33 reference with cloned endochitinase gene (*ech*33) sequences from *T. harzanium* (IABT1068).

(*chi*33) (FJ358733.1) at nucleotide level and 95% at amino acid level, respectively. Similarly, 95% homology was observed in novel cloned *cry1le1* gene in *B. thuringiensis* (Song et al., 2003). The amino acid sequences of cloned *ech*33 differed from the amino acid sequences of *ech*33 used as a reference at two position including, 185th (D changed to R) and 187th (S changed to A) positions and the changes were observed in critical regions. Similarly, remarkable changes in two positions were found in *T. harzanium chi*42 gene (Kuranda and Robbins, 1991).

REFERENCES

- Bendtsen JD, Nielsen H, Von Heijne G, Brunak S (2004). Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795.
- Chet I, Inbar J, (1994). Biological control of fungal pathogens. Appl. Biochem. Biotechnol., 48 : 37-43.
- Elad Y, David DR, Levi T, Kapat A, Kirshner B, (1999). *Trichoderma harzianum* T-39-mechanisms of biocontrol of foliar pathogens. In Modern Fungicides and Antifungal Compounds II(Eds. Lyr H, Russell PE, Dehne HW and Sisler HD). Andover, Hants, UK: Intercept. pp. 459-467.
- Hall TA, (1999). Bioedit (a user friendly biological sequence 14alignment editor and analysis program for windos 95/98NT. Nuclic acid. Symp. Ser, 41: 95-98.
- Haran S, Schickler H, Oppenheim A, Chet I (1996). Differential expression of *Trichoderma harzianum* chitinases during mycoparasitism. Phytopathology, 86: 980-985.
- Harman GE, Kubicek CP (1998). *Trichoderma* and *Gliocladium*. Taylor, Francis, London, p. 278.
- Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004). *Trichoderma* species-opportunistic, avirulent plant symbionts. Nature Rev. Microbiol., 2(1): 43-56.

- Kapulnik Y, Chet I (2000). Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite *T. harzianum* strain T-203. Plant Physiol. Biochem., 38: 863-873.
- Kuranda MJ, Robbins PW (1991) Chitinase require for cell separation during growth of saccharomyces cerevisiae. J. Biol. Chem., 266: 19758-19767.
- Liu Mei, Sun Zong-Xiu, Zhu, Xu Tong, Harman GE, Lorito M (2004). Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from *Trichoderma atroviride* J. Zhejiang Univ. Sci., 5(2): 133-136.
- Lorito M, Mach RL, Sposato P, Strauss J, Peterbauer CK, Kubicek CP, (1996a). Mycoparasitic interaction relieves binding of Cre1 carbon catabolite repressor protein to promoter sequence of *ech-42* (endochitinase-encoding) gene of *Trichoderma harzianum*. Proc. Nation. Acad. Sci., USA, 93: 14868-14872.
- Lorito M, (1998). Chitinolytic enzymes and their genes in: Harman GE, Kubicek CP (Eds). *Trichoderma* and *Gliocladium*, Enzymes, Biological Control and Commercial Application, Taylor, Francis, London UK, pp. 73-99.
- Lorito M, Harman GE, Howell CR, Viterbo A, Chet I (2004). *Trichoderma* species-opportunistic, avirulent plant symbionts. Nature Rev. Microbiol., 2(1): 43-56.
- Naseby DC, Pascual JA, Lynch JM (2000). Effect of biocontrol strains of *Trichoderma* on plant growth, *Pythium ultimum* population, soil microbial communities and soil enzyme. activities. J. Appl. Microbiol., 88: 161-169
- Roco A, Perez LM (2001). *In vitro* biocontrol activity of *Trichoderma harzianum* on *Alternaria alternata* in the presence of growth regulators. //www.ejbiotechnology. info/tent/vol4/ issue2/full/1/1. pdf. Electronic J. Biotechnol. 4(2): p. 1.
- Sambrook J, Russel DW (2001). Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory, New York. A8: 52-55.
- Zdobnov EM, Apweiler R (2001). InterProScandan integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17: 847–848.