Effect of root-knot nematode and two species of crown gall on antioxidant activity of grape leaves

1Biochemistry Department, Faculty of Agriculture, Cairo University, Giza– Egypt.
2Zoology and Agricultural Nematology Dept., Faculty of Agriculture, Cairo University, Giza– Egypt.
3Plant Pathology Dept., Faculty of Agriculture, Cairo University, Giza– Egypt.

Accepted 1 July, 2011

Agrobacterium tumefaciens and Agrobacterium vitis significantly reduced the entire criteria (galls, embedded stages, final population, Pi/Pi and egg production) of the root-knot nematode, Meloidogyne incognita, when they were in concomitance with grape (Vitis vinifera var) superior roots. Greater suppression in such criteria was observed with high inoculum levels (5X10^7 cfu/pot) than with lower (2.5X10^7 cfu/pot) ones. All treatments resulted in the increase of leaves contents of H_2O_2 and lipid peroxidation (TBARS) dramatically, which were considered the most damaging stresses in plant cells. The contents of AsA, GSH, TPH and PAL specific activity increased as a strongly antioxidant defense compound against induced oxidative damage. In addition, the increase in the activity of various antioxidant defense specific enzymes (SOD, APX, CAT and GST) represented the protective activity used to counteract the oxidative injury promoted by nematode and nematode-bacteria infections. The rate of the chemical increase was significantly higher in interaction treatments than in the leaves of plants treated singly with M. incognita. Moreover, higher inoculum levels resulted in higher values of the measured chemicals. Symptoms appearance at low levels of nematode and bacterial treatments were significantly preceded by significant induction of AsA, GSH and TPH contents, and APX, CAT, SOD, GST and PAL activities in grape leaves. However, under high levels of nematode and bacteria, an obvious depletion at all non-antioxidants enzymes’ levels and antioxidants enzymes’ activities was observed. It is supposed that stimulated antioxidative processes contributed to the suppression of necrotic symptom development in grape leaves depending on the level of pathogen inoculum.

Key words: Meloidogyne incognita, grape, crown gall, Agrobacterium tumefaciens, Agrobacterium vitis, antioxidant activity.

INTRODUCTION

Exposure of plants to certain environmental stresses leads to the generation of reactive oxygen species (ROS), including superoxide anion radicals (O_2^-), hydroxyl radicals (OH), hydrogen peroxide (H_2O_2) and singlet oxygen (^1O_2). Injury caused by ROS, known as oxidative stress, is one of the major damaging factors in plants exposed to environmental stresses such as pathogens (Mehdy, 1994). The rapid production and accumulation of reactive oxygen species (ROS), the oxidative burst, has been shown to occur in a variety of plant/bacteria or nematode (Low and Merida, 1996). ROS are cytotoxic and can seriously disrupt normal metabolism through oxidative damage to lipids (Fridovich, 1986; McKersie and Leshem, 1994), nucleic acids and protein (Imlay and Linn, 1988; Davis, 1987), resulting
in mutation, protein destruction and peroxidation of membrane lipids, respectively.

Plants have evolved a wide range of enzymatic and non-enzymatic mechanisms to scavenge ROS. Different non-enzymatic [ascorbate (AsA), glutathione (GSH), polyamines, α-tocopherol, and carotenoids] and enzymatic [superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione-S-transferase (GST), glutathione reductase (GR), and catalase (CAT)] molecules are involved in scavenging excess ROS in plant cells (Yoshimura et al., 2004). Among all the antioxidant enzymes, superoxide dismutase (SOD) and ascorbate peroxidase (APX) play key roles in ROS detoxification in cells. Some GSTs presumably function to protect the cell from oxidative damage by quenching reactive molecules with the addition of GSH (Mc Gonigle et al., 2000). Certain plant GSTs have secondary activities as glutathione peroxidase (GPx) and are purported to be able to protect cells from cytotoxicity by reducing organic hydroperoxides to their corresponding less toxic alcohols (Cummins et al., 1999). These enzymes play a crucial role in the protection of the plant cell from oxidative damage at the sites of enhanced ROS generation (Saylu et al., 2003; Kuzniak and Sklodowska, 2001). Phenolic compounds have been shown to protect the plant cell wall during times of UV, salt, or pathogenic stress (Shetty et al., 1996). Plant stress response involves the synthesis of several secondary metabolites of the phenylpropanoid pathway. Phenolics are intermediates in the phenylpropanoid pathway and they play important roles in flavonoid production and lignin biosynthesis (Shetty et al., 1996; Lewis et al., 1998). Phenolic compounds are cross-linked into the cell wall matrix by the activity of peroxidase enzymes (Brunow et al., 1998) Peroxidases are free radical scavengers that utilize hydrogen peroxide as a substrate during the cross-linking of monomers and dimers. Peroxidase activity can be induced under stress to accommodate lignin biosynthesis and other stress response pathways (McDougall, 1991; Ebermann and Pichorner, 1989); thus, some indicators of stress response can be measured using biochemical assays for total phenolics and peroxidase enzyme activity. The activation of PAL activity is a common response of plant cells to biotic and abiotic stresses and may also function as antioxidants because of their free-radical trapping properties (Haslam, 1998).

The aim of this study was to investigate the interaction between root-knot nematode, Meloidogyne incognita and A. tumefaciens or A. vitis, on grape and their effect on antioxidants and enzyme activity in plant leaves as defense mechanisms against pathogens.

MATERIALS AND METHODS

Source of nematode

Pure culture of the root-knot nematode, M. incognita, was obtained from isolates belonging to the Nematology Research Center, Faculty of Agriculture, Cairo University. M. incognita was propagated on eggplant cv. Classic plants grown in 20 cm diameter clay pots filled with sterilized loamy soil. The culture was examined and periodically renewed in order to ensure continuous supplies of inocula for the experimental work.

Source of bacteria

A. tumefaciens and A. vitis, used as crown gall pathogens, were isolated from a viticulture farm located at 60 km Cairo-Alexandria desert road and identified at Plant Pathology Department, Faculty of Agriculture, Cairo University. The inocula of each species were prepared separately from a sterilized suspension of a single colony where it was placed in a number of Erlenmeyer flasks containing nutrient glycerol medium and was shaken at 50 rpm for 24 h at 27°C, after which the contents of the flasks were centrifuged at 10,000 g. The supernatant was discarded and the pellets were suspended in sterilized water. Concentrations of 2.5 x 10^7 and 5 x 10^7 CFU/pot of each bacterial species were prepared and used as inocula.

Glasshouse experiments

One year old seedlings of grape cultivar (Superior) with uniform size were obtained from Grape Department, Horticulture Research Institute, Agriculture Research Center and were cultivated singly in 20 cm diameter clay pots filled with steam sterilized sandy loam soil (1:1, v/v). After adaptation, seedlings were divided into two groups. The first (25 seedlings) was inoculated with 2000 J0 of M. incognita/pot (M1) and the second (25 seedlings) was inoculated with 4000 J0 of M. incognita/pot (M2) by pipetting the nematode water suspension into 4 holes around the root system which was immediately covered with soil.

One week after inoculation, two species of Agrobacterium [tumefaciens (A) and vitis (B)] were applied separately at two levels (A1 or B1 = 2.5 x 10^7 and A2 or B2 = 5 x 10^7 CFU/pot) by pipetting the inocula suspension into four holes around the root system which was immediately covered with soil. Every single treatment was replicated five times, while five seedlings were kept without any treatment as healthy check. All treatments were arranged in a fully randomized design on a clean bench in the glasshouse at 32±5°C and received similar horticultural treatments. After one year, the soil population was extracted as described by Hooper et al. (2005) and was counted using a Hawksley counting slide, under a binocular microscope. A subsample (5 g) of roots from each plant was stained and the gall numbers and embedded stages (developmental stages + eggmasses) per root were calculated, after which the final population (embedded stages + nematodes in soil), nematode build up (Pf/Pi) and average of eggs/eggmass were estimated.

Plant chemical analysis

Samples of fresh leaves of each treatment were chemically analyzed as follows:

Preparation of enzyme extracts

Samples of grape leaves (1 g) were homogenized in 3 ml of 50 mM phosphate buffer pH 7.0 containing 0.1 N NaCl, 1% PVP (Sigma) and 1 mM ascorbate (Sigma) at 4°C. After centrifugation at 15,000 x g for 15 min, the supernatant was collected.
Assay of protein content

Protein was determined by the method of Bradford (1976) with standard curves prepared using bovine serum albumin.

Determination of oxidative burst

Lipid peroxidation (TBARS contents)

Lipid peroxidation products were estimated by the formation of thiobarbituric acid reactive substances (TBARS) and quantified in terms of malondialdehyde (MDA) as described by Haraguchi et al. (1995), after which 0.5 g ground leaves were homogenized in 2 ml of 0.1% (w/v) trichloroacetic acid (TCA), followed by centrifugation at 12,000 × g for 20 min. The supernatant (1 ml) obtained was mixed with an equal volume of TCA (10%) containing 0.5% (w/v) TBARS or no TBARS as blank, and heated at 95 °C for 30 min and then cooled in ice. The reaction product was centrifuged at 12,000 × g for 15 min and the supernatant absorbance was measured at 532 and 600 nm. After subtracting the non-specific absorbance (600 nm), the MDA concentration was determined by its molar extinction coefficient of 155 mM⁻¹ cm⁻¹ and the results were expressed as µ mol/g f.w.

Assay of hydrogen peroxide concentration

Hydrogen peroxide was measured by the method described by Capaldi and Taylor (1983) with a slight modification. The ground leaves in 5% TCA (2.5 ml per 0.5 g powder) with 50 mg active charcoal at 0°C were centrifuged for 10 min at 15,000 × g. The supernatant was collected, neutralized with 4 N KOH to pH 3.6 and used for H₂O₂ assay. The reaction mixture contained 200 µl of leaf extract and 100 µl of 3.4 mM 3-methylbenzothiazoline hydrazone (MBTH). It was initiated by adding 500 µl of horseradish peroxidase solution (90 U per 100 ml) in 0.2 M sodium acetate (pH 3.6). 2 min later, 1400 µl of 1 N HCl was added and the absorbance was read at 630 nm after 15 min.

Determination of total glutathione

The ground leaves (0.5 g) were added to 2 ml ice-cold 5% (w/v) sulphosalicylic acid solution and the mixture was centrifuged for 30 min at 10,000 × g, after which the supernatants were collected and immediately assayed. Subsequently, glutathione was measured with Ellman’s reagent (Silber et al., 1992) and 300 ml of the supernatant was mixed with 1.2 ml of 0.1 M phosphate buffer solution (pH 7.4). The specific glutathione concentration was determined by the method of Aebi (1983) with 3 ml reaction mixture containing 200 µM NBT, 2 µM riboflavin, 1.0 mM EDTA and 20 µl enzyme extract. Riboflavin was added last to the mixture and the reaction was initiated by placing the tubes 30 cm below 15 W fluorescent lamps. The reaction was started by switching on the light and was allowed to run for 10 min. Switching off the light stopped the reaction and the tubes were covered with black cloth. Moreover, non-illuminated tubes served as control and the absorbance at 560 nm was read. The volume of enzyme extract corresponding to 50% inhibition of the reaction was considered as one enzyme unit.

Total ascorbate (AsA) determination

Levels of AsA followed the procedure described by Singh et al. (2006) with few modifications. A fresh leaf sample of known weight (1 g) was briefly extracted with 3 ml of 5% (w/v) trichloroacetic acid (TCA) and centrifuged at 18,000 × g for 15 min. AsA was determined in a reaction mixture consisting of 0.2 ml of the supernatant, 0.5 ml of 150 mM phosphate buffer (pH 7.4, containing 5 mM EDTA) and 0.2 ml of deionized water. Colour was developed in the reaction mixtures with the addition of 0.4 ml of 10% (w/v) TCA, 0.4 ml of 44% (v/v) phosphoric acid, 0.4 ml of α, α-dipyridyl in 70% (v/v) ethanol and 0.2 ml of 3% (w/v) FeCl₃. The reaction mixtures were incubated at 40°C for 40 min, and the absorbance was read at 532 nm.

Assay of total phenols (TPH)

The total phenols assay was conducted as per the method of Zieslin and Ben-zaken (1993). The samples were homogenized at the rate of 0.1 g per 1 ml of 80% methanol and the methanolic extract was added to 5 ml of distilled water and 250 ml of Folin-Ciocalteau reagent (1 N) was added and the solution was kept at 25°C for 30 min. Finally, 1 ml of saturated solution of Na₂CO₃ and 1 ml of distilled water was added and the reaction mixture was incubated for 1 h at 25°C. After the blue color development, the absorbance was recorded at 725 nm. Total phenols were determined with the use of an external standard curve and expressed as mg gallic acid/g fresh weight of samples.

Determination of specific activities of the antioxidant defense enzymes

Assay of SOD specific activity

The specific activity of SOD was assayed by measuring its ability to inhibit the photochemical reduction of NBT using the method of Beauchamp and Fridovich (1971). The 3 ml reaction mixture contained 50 mM phosphate buffer pH 7.8, 13 mM methionine, 75 µM NBT, 2 µM riboflavin, 1.0 mM EDTA and 20 µl enzyme extract. It was initiated by adding 500 µl of horseradish peroxidase solution (90 U per 100 ml) in 0.2 M sodium acetate (pH 3.6). 2 min later, 1400 µl of 1 N HCl was added and the absorbance was read at 532 nm.

Assay of ascorbate peroxidase (APX) specific activity

The specific activity of APX was measured by estimating the rate of ascorbate oxidation (extinction coefficient; 2.8 mM⁻¹ cm⁻¹). The 3 ml reaction mixture contained 50 mM phosphate buffer (pH 7.0), 0.1 mM H₂O₂, 0.5 mM sodium ascorbate, 0.1 mM EDTA and a suitable aliquot of the enzyme extract. The change in absorbance was monitored at 290 nm (Nakano and Asada, 1981) and the enzyme specific activity was expressed as units min⁻¹ mg⁻¹ protein.

Assay of catalase specific activity

For measurement of the catalase (CAT) specific activity, the method of Aebi (1983) was used. The 3 ml reaction mixture comprised 50 mM sodium phosphate buffer (pH 7.0), 20 mM H₂O₂ and a suitable aliquot of enzyme. Decrease in the absorbance was taken at 240 nm (the molar extinction coefficient of H₂O₂ is 0.04 mM⁻¹ cm⁻¹). Enzyme specific activity was expressed as units min⁻¹ mg⁻¹ protein.

Assay of glutathione-s-transferase specific activity

Glutathione-S-transferase (GST) was assayed by using 1-chloro-2,4-dinitrophenylhydrazine (CDNB) as substrate in absorbance at 334 nm
Effect of *M. incognita* and *A. tumefaciens* or *A. vitis* treatments on grape leaves contents of lipid peroxidation (TBARS) and H$_2$O$_2$

Results showed that the contents of both lipid peroxidation (TBARS) and H$_2$O$_2$ were significantly increased in all treatments against healthy plants. It is known that infection leads to the generation of superoxide radicals and H$_2$O$_2$ in plant tissues which generate oxidative burst. H$_2$O$_2$ content showed marked induction after the treatments by *M. incognita* (low and high levels) or double treatments by *M. incognita* and *Agrobacterium* species (*tumefaciens* or *vitis*) at lower or higher levels (Table 2). In addition, significant accumulation of TBARS was observed in infected plants by different levels of both *M. incognita* and *Agrobacterium* species. These results clearly indicated that production of TBARS correlated with the generation of ROS caused by pathogen infections or other abiotic stresses.

Effect of *M. incognita* and *A. tumefaciens* or *A. vitis* treatments on grape leaves contents of GSH, TAA and TPH

Data in Table 2 indicated that *M. incognita* at two levels (M1 and M2), that is, low levels of *M. incognita* and two *Agrobacterium* species (M1A1 and M1B1), significantly enhanced the contents of non-enzymatic antioxidant [total glutathione (GSH), ascorbate (AsA) and total phenols (TPH)] while M1A2, M2A1, M1B2 and M2B1 showed an obvious increase in GSH, AsA and TPH as compared to the healthy plants; they showed low levels than nematode infections only, but the low levels of nematode coincided with the two *Agrobacterium* species infections. In contrast, high levels of nematode and both bacterial species (M2A2 and M2B2) caused dramatic inhibition in non-enzymatic antioxidant contents.

RESULTS

Effect of *A. tumefaciens* or *A. vitis* treatments on *M. incognita* reproductivity and plant response

The data in Table 1 indicated that all nematode criteria (gall formation, embedded stages, final population, nematode build up, and egg production) were significantly reduced in all nematode-bacteria co-inhabited treatments when compared with the control (nematode only). High levels of both bacterial species were more suppressive to nematode development and reproduction. Moreover, *A. tumefaciens* was more effective and significantly reduced by *M. incognita* galling, maturity and reproductivity than *A. vitis* either at low or high levels of bacterial inoculations.

Visual examination of roots for xylem sap demonstrated that the bacteria became systemic in plant vessels. Most of the feeder roots were found dead at points of secondary root branching, while dark lesions were also observed in all nematode-bacteria co-inhabitant treatments. In many cases, the infection stopped the growth of the main or secondary roots.
Table 1. Effect of *A. tumefaciens* or *A. vitis* on *M. incognita* reproductivity of grape roots.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose/pot</th>
<th>Gall</th>
<th>Embedded Stage (D.S. + Eggmasse)</th>
<th>Final population (E.S. + In soil)</th>
<th>Pf/Pi</th>
<th>Egg/eggmass</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. incognita (M1)</td>
<td>2000 J₂</td>
<td>522<sup>c</sup></td>
<td>1101<sup>b</sup></td>
<td>10501</td>
<td>5.25<sup>b</sup></td>
<td>174<sup>b</sup></td>
</tr>
<tr>
<td>M. incognita (M2)</td>
<td>4000 J₂</td>
<td>648<sup>a</sup></td>
<td>1445<sup>a</sup></td>
<td>32115</td>
<td>8.03<sup>a</sup></td>
<td>216<sup>a</sup></td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M1A1)</td>
<td>2000 J₂ + 2.5 × 10<sup>7</sup> cfu</td>
<td>313<sup>n</sup></td>
<td>551<sup>b</sup></td>
<td>6181</td>
<td>3.09<sup>e</sup></td>
<td>105<sup>f</sup></td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M1A2)</td>
<td>2000 J₂ + 5 × 10<sup>7</sup> cfu</td>
<td>209<sup>j</sup></td>
<td>301<sup>i</sup></td>
<td>4061</td>
<td>2.03<sup>d</sup></td>
<td>78<sup>h</sup></td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M2A1)</td>
<td>4000 J₂ + 2.5 × 10<sup>7</sup> cfu</td>
<td>389<sup>f</sup></td>
<td>716<sup>i</sup></td>
<td>7716</td>
<td>1.93<sup>i</sup></td>
<td>129<sup>c</sup></td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M2A2)</td>
<td>4000 J₂ + 5 × 10<sup>7</sup> cfu</td>
<td>259<sup>j</sup></td>
<td>453<sup>j</sup></td>
<td>5118</td>
<td>1.28<sup>d</sup></td>
<td>97<sup>g</sup></td>
</tr>
<tr>
<td>M. incognita + A. vitis (M1B1)</td>
<td>2000 J₂ + 2.5 × 10<sup>7</sup> cfu</td>
<td>470<sup>d</sup></td>
<td>776<sup>e</sup></td>
<td>9236</td>
<td>4.62<sup>c</sup></td>
<td>122<sup>d</sup></td>
</tr>
<tr>
<td>M. incognita + A. vitis (M1B2)</td>
<td>2000 J₂ + 5 × 10<sup>7</sup> cfu</td>
<td>365<sup>g</sup></td>
<td>628<sup>g</sup></td>
<td>7198</td>
<td>3.60<sup>d</sup></td>
<td>94<sup>g</sup></td>
</tr>
<tr>
<td>M. incognita + A. vitis (M2B1)</td>
<td>4000 J₂ + 2.5 × 10<sup>7</sup> cfu</td>
<td>583<sup>b</sup></td>
<td>974<sup>c</sup></td>
<td>11464</td>
<td>2.87<sup>f</sup></td>
<td>114<sup>e</sup></td>
</tr>
<tr>
<td>M. incognita + A. vitis (M2B2)</td>
<td>4000 J₂ + 5 × 10<sup>7</sup> cfu</td>
<td>454<sup>g</sup></td>
<td>787<sup>d</sup></td>
<td>8957</td>
<td>2.24<sup>g</sup></td>
<td>97<sup>g</sup></td>
</tr>
</tbody>
</table>

Means followed by the same letter(s) within a column in each block are not significantly different (*P* ≤ 0.05) according to Duncan’s multiple range test. D.S. = Developmental stages; E.S. = embedded stages.

Table 2. Effect of *M. incognita* and *A. tumefaciens* or *A. vitis* on grape leaves contents of lipid peroxidation (TBARS), hydrogen peroxide (*H₂O₂*), total glutathione (*GSH*), total ascorbate (*ASA*) and total phenols (*TPH*).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose/pot</th>
<th>TBARS (µ mol/g FW)</th>
<th>H₂O₂ (µ mol/g FW)</th>
<th>GSH (µ mol/g FW)</th>
<th>AsA (mg/g FW)</th>
<th>TPH (mg/g FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>-</td>
<td>1.55<sup>k</sup></td>
<td>62.12<sup>k</sup></td>
<td>2.48<sup>i</sup></td>
<td>3.43<sup>g</sup></td>
<td>1.43<sup>i</sup></td>
</tr>
<tr>
<td>M. incognita (M1)</td>
<td>2000 J₂</td>
<td>4.46<sup>l</sup></td>
<td>125.35<sup>l</sup></td>
<td>6.22<sup>j</sup></td>
<td>5.89<sup>f</sup></td>
<td>3.63<sup>h</sup></td>
</tr>
<tr>
<td>M. incognita (M2)</td>
<td>4000 J₂</td>
<td>6.32<sup>j</sup></td>
<td>154.06<sup>e</sup></td>
<td>8.78<sup>a</sup></td>
<td>8.75<sup>e</sup></td>
<td>4.78<sup>l</sup></td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M1A1)</td>
<td>2000 J₂ + 2.5 × 10<sup>7</sup> cfu</td>
<td>10.78<sup>g</sup></td>
<td>190.23<sup>a</sup></td>
<td>15.34<sup>a</sup></td>
<td>14.26<sup>a</sup></td>
<td>7.82<sup>e</sup></td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M1A2)</td>
<td>2000 J₂ + 5 × 10<sup>7</sup> cfu</td>
<td>15.53<sup>g</sup></td>
<td>228.13<sup>g</sup></td>
<td>10.82<sup>d</sup></td>
<td>11.87<sup>c</sup></td>
<td>6.11<sup>d</sup></td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M2A1)</td>
<td>4000 J₂ + 2.5 × 10<sup>7</sup> cfu</td>
<td>12.28<sup>g</sup></td>
<td>201.43<sup>a</sup></td>
<td>11.36<sup>c</sup></td>
<td>12.47<sup>b</sup></td>
<td>8.24<sup>a</sup></td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M2A2)</td>
<td>4000 J₂ + 5 × 10<sup>7</sup> cfu</td>
<td>22.67<sup>j</sup></td>
<td>250.71<sup>a</sup></td>
<td>3.09<sup>h</sup></td>
<td>3.05<sup>h</sup></td>
<td>4.08<sup>e</sup></td>
</tr>
<tr>
<td>M. incognita + A. vitis (M1B1)</td>
<td>2000 J₂ + 2.5 × 10<sup>7</sup> cfu</td>
<td>9.88<sup>h</sup></td>
<td>187.36<sup>g</sup></td>
<td>14.94<sup>b</sup></td>
<td>12.89<sup>b</sup></td>
<td>6.94<sup>d</sup></td>
</tr>
<tr>
<td>M. incognita + A. vitis (M1B2)</td>
<td>2000 J₂ + 5 × 10<sup>7</sup> cfu</td>
<td>14.21<sup>d</sup></td>
<td>219.04<sup>d</sup></td>
<td>10.64<sup>d</sup></td>
<td>10.04<sup>d</sup></td>
<td>5.76<sup>d</sup></td>
</tr>
<tr>
<td>M. incognita + A. vitis (M2B1)</td>
<td>4000 J₂ + 2.5 × 10<sup>7</sup> cfu</td>
<td>11.58<sup>f</sup></td>
<td>197.31<sup>f</sup></td>
<td>11.85<sup>c</sup></td>
<td>12.27<sup>b</sup></td>
<td>7.65<sup>b</sup></td>
</tr>
<tr>
<td>M. incognita + A. vitis (M2B2)</td>
<td>4000 J₂ + 5 × 10<sup>7</sup> cfu</td>
<td>20.32<sup>b</sup></td>
<td>243.52<sup>b</sup></td>
<td>4.49<sup>g</sup></td>
<td>3.28<sup>g</sup></td>
<td>4.13<sup>g</sup></td>
</tr>
</tbody>
</table>

Means followed by the same letter(s) within a column in each block are not significantly different (*P* ≤ 0.05) according to Duncan’s multiple range test.
These results are similar with those of Waetzig et al. (1999) and Parrott et al. (2002) who found that Agrobacterium and nematode treatments increased the production of \(\text{H}_2\text{O}_2 \) in cells of Arabidopsis thaliana plant cell death. Lipid peroxidation can be assessed by monitoring the formation of TBARS and the decomposition product of polyunsaturated fatty acids (PUFAs), which are the lower ones. Many soil bacteria produce toxic metabolites to nematodes (Zavalenta, 1985). Other factors such as levels of bacterial inoculation, bacterial species and competitive conditions for space and feeding sites may also be involved (Sule et al., 1995; Karimi et al., 2000; Rubio-Cabetas et al., 2001; Eastwell et al., 2006).

Our results are inconsistent with those of El-Sherif and El-Wakil (1991) who found that A. tumefaciens enhanced M. incognita gall formation, final population and build up. Such contradiction may be due to many factors, that is, pathogen strain or inoculation level, host type or susceptibility, method of application, soil type or other environmental factors. Generally, crown gall bacteria can live for years within the vascular system of infected vines without any outward expression of disease (Eastwell et al., 2006).

A. vitis significantly precluded M. incognita development and reproduction. Such preclusion was more pronounced with A. tumefaciens treatments than A. vitis and with high inocula than the lower ones. Many soil bacteria produce toxic metabolites to nematodes (Zavalenta, 1985). Other factors such as levels of bacterial inoculation, bacterial species and competitive conditions for space and feeding sites may also be involved (Sule et al., 1995; Karimi et al., 2000; Rubio-Cabetas et al., 2001; Eastwell et al., 2006).

Our results are inconsistent with those of El-Sherif and El-Wakil (1991) who found that A. tumefaciens enhanced M. incognita gall formation, final population and build up. Such contradiction may be due to many factors, that is, pathogen strain or inoculation level, host type or susceptibility, method of application, soil type or other environmental factors. Generally, crown gall bacteria can live for years within the vascular system of infected vines without any outward expression of disease (Eastwell et al., 2006).

The toxic effects of many environmental stresses such as salt stress, Fe deficiency, cadmium stress, lead toxicity, ionizing radiation insecticide, organisms and micro-organisms (El-Beltagi et al., 2008, 2010, 2011; Salama et al., 2009; Mohamed et al., 2009; Shehab et al., 2010; El-Beltagi and Mohamed, 2010; Aly and El-Beltagi, 2010; Aify and El-Beltagi, 2011; Aify et al., 2011) are partially due to generation of ROS which is considered as the most damaging stress in plants. It attacks cellular macromolecules, causes membrane damage, and affects protein synthesis and stability. Plants respond to pathogen attack by inducing oxidative burst and increasing ROS production, which gives rise to an oxidative environment in the cells (Foyer et al., 1994). Thus, \(\text{H}_2\text{O}_2 \) plays a key role in the orchestration of a localized hypersensitive response during the expression of plant disease resistance (Levine et al., 1994). The results show higher induction in \(\text{H}_2\text{O}_2 \) content after the different treatments of nematode and Agrobacterium sp. These results are similar with those of Waetzig et al. (1999) and Parrott et al. (2002) who found that Agrobacterium and nematode treatments increased the production of \(\text{H}_2\text{O}_2 \) in cells of Arabidopsis thaliana and wheat which resulted in plant cell death.

Lipid peroxidation can be assessed by monitoring the formation of TBARS and the decomposition product of polyunsaturated fatty acids (PUFAs), which are the main components of membrane lipids. TBARS formation in plants exposed to adverse environmental conditions is a reliable indicator of cellular free-radical generation. TBARS measurements have also been used routinely in stressed plant samples as an indicator of lipid peroxidation caused by oxidative stress (Ahsan et al., 2007; El-Beltagi et al., 2008). Lipid peroxidation induced by ROS may be one of the mechanisms accounting for cell death (Jabs, 1999). In this study, cellular TBARS concentration was measured as one of the first consequences of oxidative stress, and also as an indicator of

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose/pot</th>
<th>APX (unit/mg protein)</th>
<th>SOD (unit/mg protein)</th>
<th>CAT (unit/mg protein)</th>
<th>GST (unit/mg protein)</th>
<th>PAL (unit/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>-</td>
<td>2.31h</td>
<td>85.04h</td>
<td>18.37i</td>
<td>0.52i</td>
<td>4.39i</td>
</tr>
<tr>
<td>M. incognita (M1)</td>
<td>2000 J2</td>
<td>12.64d</td>
<td>115.08d</td>
<td>33.731</td>
<td>2.16i</td>
<td>6.389</td>
</tr>
<tr>
<td>M. incognita (M2)</td>
<td>4000 J2</td>
<td>18.04e</td>
<td>146.19e</td>
<td>54.09f</td>
<td>4.74f</td>
<td>11.56e</td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M1A1)</td>
<td>2000 J2 + 2.5 x 10^7 cfu</td>
<td>25.43a</td>
<td>167.07a</td>
<td>68.16a</td>
<td>6.10a</td>
<td>12.92a</td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M1A2)</td>
<td>2000 J2 + 5 x 10^7 cfu</td>
<td>10.31g</td>
<td>100.15b</td>
<td>27.51h</td>
<td>8.89b</td>
<td>6.24g</td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M2A1)</td>
<td>4000 J2 + 2.5 x 10^7 cfu</td>
<td>12.41b</td>
<td>111.03g</td>
<td>36.16g</td>
<td>8.06e</td>
<td>7.41f</td>
</tr>
<tr>
<td>M. incognita + A. tumefaciens (M2A2)</td>
<td>4000 J2 + 5 x 10^7 cfu</td>
<td>4.06i</td>
<td>69.16e</td>
<td>14.63k</td>
<td>2.68h</td>
<td>3.05j</td>
</tr>
<tr>
<td>M. incognita + A. vitis (M1B1)</td>
<td>2000 J2 + 2.5 x 10^7 cfu</td>
<td>23.18b</td>
<td>160.17b</td>
<td>64.12b</td>
<td>7.55d</td>
<td>12.59b</td>
</tr>
<tr>
<td>M. incognita + A. vitis (M1B2)</td>
<td>2000 J2 + 5 x 10^7 cfu</td>
<td>12.42e</td>
<td>113.11e</td>
<td>29.41g</td>
<td>8.72h</td>
<td>6.61i</td>
</tr>
<tr>
<td>M. incognita + A. vitis (M2B1)</td>
<td>4000 J2 + 2.5 x 10^7 cfu</td>
<td>11.81f</td>
<td>108.03f</td>
<td>35.09e</td>
<td>8.73b</td>
<td>7.04g</td>
</tr>
<tr>
<td>M. incognita + A. vitis (M2B2)</td>
<td>4000 J2 + 5 x 10^7 cfu</td>
<td>4.73i</td>
<td>70.45j</td>
<td>15.02d</td>
<td>2.99p</td>
<td>3.60c</td>
</tr>
</tbody>
</table>

Means followed by the same letter(s) within a column in each block are not significantly different (\(P \leq 0.05 \)) according to Duncan’s multiple range test.
cellular damage. Thus, the results of this study are in agreement with these facts, which show that when comparing healthy plants, nematode and _Agrobacterium_ sp. infections enhanced the content of lipid peroxidation and (TBARS) in grape leaves. In this study, infection with nematode only at both levels of inoculation (M1 and M2) and at lower levels of both nematode _Agrobacterium_ species (M1A1 and M1B1) resulted in increasing the entire measured leaf parameters of antioxidants and antioxidative enzymes to maximum concentrations. However, other nematode and _Agrobacterium_ infections (M1A2, M2A1, M1B2 and M2B1) showed less induction against healthy plants. Plant leaves detoxify ROS by a combination of antioxidants, such as ascorbate (AsA), glutathione (GSH), phenols and α-tocopherol as well as antioxidative enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT). Antioxidative enzymes involved in the ascorbate-glutathione (AsA–GSH) pathway, mainly monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR), are considered to be of paramount importance in plant antioxidative defense mechanism (Potters et al., 2002).

The induction of the contents of GSH and AsA may be due to its important role in scavenging different types of ROS at AsA–GSH pathway (Foyer et al., 1994). GSH serves as the main storage form of reduced sulfur and plays an important role in the control of the thiol-disulfide status of the cell, in the detoxification of xenobiotics and finally in plant responses to abiotic stress and pathogens (Jimenez et al., 1997). AsA is a major antioxidant reacting directly with hydroxyl radicals, superoxide anion, and singlet oxygen (Noctor and Foyer, 1998). In addition to AsA importance as an antioxidant, it is also a cofactor of many enzymes (Smirnoff and Wheeler, 2000), a regulator of cell division and growth and a molecule for signal transduction in plants. On the other hand, the significant increase in total soluble phenols (TPH) contents may strongly affect the antioxidant natural products induced under oxidative stress condition in controlling the oxidative damage after pathogen infection (Bolwell et al., 1985). It is synthesized during secondary metabolism and has many functions in plant stress response. The activation of phenolic metabolism is known to be an important phenomenon involved in restricting pathogen growth and enhancing plant host cell survival under stress conditions (Benhamou and Nicole, 1999).

The significant increase of antioxidant enzyme activities such as APX, SOD and CAT, GST and PAL may be driven by enhancing TBARS, ROS and H$_2$O$_2$ formation in either single nematode or low and moderate nematode and _Agrobacterium_ infections. Oxidative burst has been shown to induce the expression of a variety of defense genes (Levine et al., 1994; Baker and Orlandi, 1995). To evoke the potential damaging effects of ROS, cells have evolved with protection mechanisms, including antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), and low-molecular-weight antioxidants such as ascorbate (AsA), glutathione (GSH) and total phenols (TPH) (Foyer et al., 1994). SOD catalyses the dismutation of superoxide to hydrogen peroxide and oxygen. However, hydrogen peroxide is also toxic to cells and has to be further detoxified by CAT and/or APX to water and oxygen. The antioxidant enzymes’ activities play an important role in scavenging ROS and therefore their improvement could increase the ability of plants to tolerate ROS stress and delay its senescence (Alscher et al., 2002). These findings suggest that genes encoding antioxidative enzymes can be activated by the increased production of active oxygen derivatives in nematode and _Agrobacterium_-infected plants. It is possible that these antioxidative processes protect plant tissues from lipid peroxidation processes around the infection sites, thereby protecting them from the spread of necrotic lesions (Levine et al., 1994).

Obviously, the activation of antioxidative defense systems in plants by abiotic and biotic stresses is a general phenomenon and probably contributes to increased resistance against a subsequent stress. Our results are in agreement with Perl et al. (1996) who observed that elevated levels of antioxidant enzymes' specific activity in grape tissues correlated with _Agrobacterium_-induced necrosis in the host tissues during _Agrobacterium_-mediated transformation, and with those of Zheng et al. (2004), Wegener and Olsen (2004) and Wuyts et al. (2006a) who observed an obvious induction PAL activity in grape, potatoes' cells and banana roots after _Agrobacterium_ and nematode infections. It was shown that significant enhancement in PAL activity in _Arabidopsis_ and tobacco plants improved resistance against fungal and nematode infection (Howels et al., 1996; Shadel et al., 2003; Wuyts et al., 2006b). Therefore, it was used as indicators of plant resistance to pathogen infection.

In contrast, the higher infection levels with nematode and _Agrobacterium_ (M2A2 and M2B2) led to significant inhibition of the contents of non-enzymatic antioxidants and antioxidant enzyme activities. Such results are in agreement with Parrott et al. (2002) who reported that after _Agrobacterium_ infection, wheat cells rapidly produced hydrogen peroxide (H$_2$O$_2$), displayed altered cell wall composition and resulted in higher levels of cellular necrosis and subsequent cell death. Increased superoxide concentration was also associated with higher lipid peroxidation and membrane permeability (Dalal and Khanna-Chopra, 1999), which were the common symptoms of oxidative stress. The accumulation of superoxide anion preceding necrotic lesion formation during hypersensitive response and induction of tumor formation by wild type _A. tumefaciens_ was observed by Jabs et al. (1996) and Jia et al. (1996). The decline in CAT activity
could be an important factor in the establishment of necrosis in tobacco leaves. CAT was essential for the protection of ascorbate and glutathione pool from oxidation in maintaining the redox balance in cells (Willekens et al., 1997; Dalal and Khanna-Chopra, 2001). Thus, availability of ascorbate and reduced glutathione may become a rate-limiting step during antioxidant defense (Foyer et al., 1994).

Conclusions

A. tumefaciens and A. vitis significantly reduced the entire criteria (galls, embedded stages, final population, Pt/Pl and egg production) of the root-knot nematode, *M. incognita*, when they were in concomitance with grape, *Vitis vinifera* var. superior roots. All treatments resulted in increasing the H$_2$O$_2$ and lipid peroxidation contents in leaves (TBARS) dramatically, which were considered the most damaging stresses in plant cells. The contents of AsA, GSH, TPH and PAL specific activity increased as strong antioxidant defense compounds against induced oxidative damage. In addition, the increase in the specific activity of various antioxidant defense enzymes (SOD, APX, CAT and GST) represents the protective activity to counteract the oxidative injury promoted by nematode and nematode-bacterial infections. The rate of the chemical increase was significantly higher in interaction treatments than in leaves of plants treated singly with *M. incognita*. Moreover, higher inoculum levels resulted in higher values of the measured chemicals.

REFERENCES

Hooper DJ, Hallmann J, Subbotin SA (2005). Methods for extraction,

