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MicroRNAs (miRNAs) are a class of non-coding RNAs that are produced from miRNA precursors (pre-
miRNAs) with stem-loop structure. At present, development of computational approach for pre-miRNA 
identification continues to be a challenging task, in which feature selection is greatly important. Here, 
we first extracted feature subsets by a hybrid algorithm of genetic algorithm (GA) and support vector 
machine (SVM) from 124 sequence and secondary structure features. Next, based on the high-
frequency features taken from the feature subsets, we proposed a novel stepwise SVM method to 
identify the optimal feature combinations. The cooperative effect was found among different features in 
our study. Finally, we obtained 10 feature combinations with strong combined effect which possessed 
high classification performance for predicting pre-miRNAs. In external validation, all the 10 
combinations could predict accurately over 13 pre-miRNAs from 16 new confirmed human pre-miRNAs 
in miRBase 14.0. The best one could reach 15 (93.75%), which significantly outperformed triplet-SVM 
(13, 81.25%) in predicting pre-miRNAs. 
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INTRODUCTION 
 
MicroRNAs (miRNAs) are a class of non-coding RNAs 
with size of 21 to 23 nt that are produced from miRNA 
precursors (pre-miRNAs) of 70 to 90 nt with stem-loop 
structure by the processing of dicer enzyme (Lim et al., 
2003; Bartel, 2004). MiRNAs have been proved to play 
an important role in post-transcriptional gene regulation in 
different parts of organisms and at different 
developmental stages (Lee  et al., 2003; Nilsen, 2007), so  
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it is greatly significant to detect miRNAs in various 
species and further to reveal their function. At present, 
there are mainly two kinds of methods applied  in  miRNA 
prediction: experimental techniques and computational 
methods. By the experimental method, we only make a 
portion of high abundance miRNAs cloned effectively, 
while a large number of low abundance miRNAs and 
tissue-specific miRNAs are difficult to detect (Bartel, 
2004; Wang et al., 2005).  

Therefore, in recent years, more and more studies tend 
to use computational biology methods to identify pre-
miRNAs. So far, many algorithms and software based on 
comparative genomics have been developed, such as 
miRscan, miRseeker and miRAlign (Lai et al., 2003; Lim 
et al., 2003; Wang et al., 2005). These approaches adopt 
sequence conservation to predict the pre-miRNAs, and 
hence they are difficult to discover the miRNAs which are 
less or non-conservative between species. In view of the 
great  limitation  of  comparative   genomics   methods   in  



 
 
 
 
predicting non-homologous new miRNAs, researchers 
began to use computational approaches, particularly 
machine learning methods to identify pre-miRNAs (Xue et 
al., 2005; Huang et al., 2007; Jiang et al., 2007). Xue et 
al. (2005) presented a support vector machine (SVM)-
based classifier called triplet-SVM, which classifies 
human pre-miRNAs from pseudo hairpins based on 32 
sequence-structure triplet features. In computational 
identification study, feature selection is greatly important. 
However, the features selected in these existing methods 
were different and would induce different performance 
(Saeys et al., 2007).  

Therefore, how to effectively select a feature subset for 
pre-miRNA prediction has been always under discussion. 
Thus we considered scientifically extracting a set of best 
features to identify pre-miRNAs. 

In this study, we obtained 124 sequence and secon-
dary structure features, and developed an algorithm 
based on R platform (Team, 2009) to perform pre-miRNA 
feature selection. We used genetic algorithm (GA) to 
optimize the features and support vector machine (SVM) 
(Cho and Hermsmeier, 2002; Li et al., 2005; Ng and 
Mishra, 2007) to classify the two-class samples of real 
and pseudo pre-miRNAs. Then we obtained the high-
frequency features from the feature subsets with high 
classification accuracy for a further detailed analysis. 
Since the features are not independent and they have 
combined effect, we proposed a stepwise SVM algorithm 
to mine the optimal feature combinations with combined 
effect from the high-frequency features.  

The results showed that the optimal feature combi-
nations we dug out possessed high classification 
contribution and the prediction accuracy of the best one 
reached 93.75% in cross validation.  
 
 
MATERIALS AND METHODS 

 
Datasets 

 
The human pre-miRNAs in our experiment (the positive dataset) 
were downloaded from miRBase release 13.0 (Griffiths-Jones et al., 
2008), which contains 706 reported pre-miRNAs entries from Homo 
sapiens. The negative samples were obtained from the results of 
Xue et al. (2005), which contains 8494 pretreated non-miRNA 
hairpin sequences. To balance the sample size, we randomly 
selected 706 as the negative dataset. In addition, we used five-fold 
cross validation (5-fold-cv) approach to construct the training and 
testing set; we randomly divided the positive and negative datasets 
into five non-overlapping subsets of roughly equal size, 
respectively. A combination of one positive subset and one negative 
subset constitutes a testing set and the total remaining subsets are 
used as the training set (Li et al., 2005). Thus the 5-fold-cv could 
construct 25 pairs of training and testing sets. 
 
 
Feature set 

 
We took account of the sequence features and secondary structure 
features of pre-miRNAs, such as base content, triplet structure, 
helix structure, loop structure and minimum free energy. The total of  

Wang et al.         16721 
 
 
 
124 features can be divided into six categories (all the features are 
shown in Supplemental Table 1): 
 
(1) Content of one-dimensional code word (ACGU nucleotide): 
features F1 - F4; 
(2) Content of two-dimensional code word (dinucleotide): features 
F5 - F20; 
(3) Content of three-dimensional code word (trinucleotide): features 
F21 - F84; 
(4) Triplet features (Xue et al., 2005), combining sequence and 
structural information, describing the matched condition of the three 
consecutive base pairs and the type of intermediate nucleotide in 
the sequence: features F85 - F116; 
(5) Secondary structure features: features F117 - F123, including 
"Bulge loop", "External loop", "Hairpin loop", "Helix", "Interior loop", 
"Multi-loop" and "Stack"; 
(6) Minimum free energy (MFE): feature F124. 
 
We calculated the values of each feature for the training and testing 
samples with Perl program. 

 
 
Experimental methods 

 
We hybridized GA and SVM to obtain a feature subset which can 
achieve a better classification performance as shown in the left part 
of Figure 1. We repeated the process of this experiment 100 rounds 
independently (re-sampling and re-running the program). From the 
statistics and analysis of these feature subsets in 100 rounds, we 
obtained the Top20 high-frequency features, and then proposed a 
novel stepwise SVM method to mine the optimal feature 
combination which has powerful combined effect and possesses 
high classification contribution from the Top20 features as shown in 
the right part of Figure 1. 

 
 
Feature selection by GA-SVM 
 
Based on the feature values of the sequences, we derived a feature 
matrix, and then used GA-SVM to perform feature selection. GA is 
an adaptive global optimization algorithm that simulates biological 
heredity and evolution in nature. We used SVM classifier with radial 

basis function (RBF,
2

( , ) ( | | )k x y exp x yγ= − −
) as kernel 

function to classify the two types of samples, and then set SVM 
classification error rate as GA fitness, which is an individual’s 
evaluation indicator of population optimization. The different values 
of important parameters in GA have a great influence on the results, 
so we performed the analysis of variance (ANOVA) to select the 
optimal values of the three primary parameters including genetic 
generation, population size (the number of individuals in population) 
and mutation rate. Finally, we selected 100 generations, 50 
individuals in the population and mutation rate of 0.05 
(Supplemental Table 2 and 3). We randomly generated 50 
individuals (y(i), i = 1, …, 50), to construct the initial population. 
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We used SVM classifier’s error rate as GA fitness, which is used for 
individual evaluation criteria. We selected half of the population with 
lower fitness (lower classification error rate) into the next generation 
directly, then made the remaining half to generate a set of new 
individuals by crossover and mutation operations with a certain 
probability. The two parts constituted a new generation population. 

We performed this program 100 generations, and then export the 
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Figure 1. The workflow chart of integrating GA-SVM with stepwise SVM method for predicting pre-miRNAs. 

 
 
 

best individual of the last population (see the workflow in Figure 1). 
Moreover, from the results, we found that there are more than one 
individuals attaining minimal fitness in the last population; that is, 
there are many best individuals being able to achieve the minimal 
classification error rate. Therefore, we extracted a best individual 
set, including all the best individuals with the minimal fitness from 
the last population. We supposed that there are N best individuals 
in the best individual set and define a 

vector
( (1) / , (2) / , , (124) / )adjustedF F N F N F N ′= L

,  

where
( ),  1, 2, 124F i i = L

, reflects the times of the feature i 
selected in the N individuals. Then we set this frequency vector 
Fadjusted as the adjusted best individual which would reflect the 
relative importance of features in a certain extent. 

We repeated the experiments 100 rounds independently, and 
then we calculated the frequency of each feature that appeared in 
the adjusted best individual and accumulated these 100 result. 

From the result of each round, we found there are almost 20 
features in the last generation. So we took out the highest 20 
features by the accumulated frequency which we call Top20 high-
frequency features to a further detailed analysis. 
 
 
Stepwise SVM method to mine optimal feature combination 

 
To mine the optimal feature combination, we used the Top20 
features forementioned as candidates and used stepwise method to 
insert or delete a feature at each step. 

Step1: We defined two discriminate functions Iin(Fi) = ACC (S + Fi) – 
ACC (S) and Iout(Fj) = ACC(S) – ACC(S – Fj), where S is a set of 
features in the model from previous step, ACC ( ) represents the 
classification accuracy of SVM classifier with features in the 
brackets, and two threshold values αin and αout. Here, we set αin and 
αout = 0.001. 
Step 2: Calculate ACC(Fi), i = 1, 2,…, 20, respectively. If ACC (Fi)= 
max (ACC(Fk)), we would firstly add feature Fi into the training 
model. 

Step 3: Suppose there are 
(1 20)m m< ≤

 features in the model, 

we mark these features as a set S, and then calculate
( )

in i
I F

for 

each i
F

not in S. If 
( ) max( ( ))

k

in i in k
F S

I F I F
∉

=
 and

( )
in i in

I F α>
, we 

would add the feature i
F

 into the training model and turn to step4, 
otherwise turn to step5. 

Step 4: Suppose there are 
(1 20)n n< ≤

 features in the model, 

we mark these features as a set S and calculate 
( )out jI F

 for each 

jF
 in S. If 

( ) min( ( ))
k

out j out k
F S

I F I F
∈

=
 and

( )out j outI F α<
, we 

would remove the feature jF
 from the training model. And then turn 

to step3. 
Step 5: We obtained a feature combination without adding or 
removing any features. Then we do 5-fold-cv to evaluate prediction 
performance. All the programs are developed on R platform. 



 
 
 
 
Prediction performance assessment 

 
For a prediction problem, a classifier can classify an individual 
instance into the following four categories: true positive (TP), false 
positive (FP), true negative (TN) and false negative (FN). The 
specificity (SP), sensitivity (SE) and total prediction accuracy (ACC) 
are the popular indices for assessment of the prediction system 
(Jiang et al., 2007; Hand, 2009). They are given by: 
 

/( ) 100%SP TN TN FP= + ×
 

 

/( ) 100%SE TP TP FN= + ×
 

 

( ) /( ) 100%ACC TP TN TP FN TN FP= + + + + ×
 

 
 
RESULTS AND DISCUSSION 
 
Feature subsets extracted by GA-SVM method 
 
With the optimization of each generation, the 
classification accuracy increases  gradually  as  shown  in 
Figure 2. Within about 20 generations, the changing 
speed of ACC is very rapid, after that it changes slowly 
and fluctuates slightly in a lesser extent, but the general 
trend still gradually rises. Further, to take account of the 
stability of the feature subsets, we repeated the 
procedure 100 rounds independently (re-sampling and 
running the program). As a result, the feature subsets in 
different rounds were different. From each round, we 
could get an adjusted best individual. Then we 
accumulated  these  100  results  to   get   the   frequency 
diagram of each feature. The results are shown in Figure 
3. We sorted the features in descending order of the 
frequency and took out Top20 high-frequency features as 
shown in Figure 4. These Top20 features cover all the six 
categories (Table 1). 

 
 
Optimal feature combination mined by stepwise SVM 
method 
 
We used stepwise SVM method to mine the optimal 
feature combination. The whole process was repeated 10 
times and the results are shown in Table 2. As shown in 
Table 2, we found that the optimal combinations extracted 
from these 10 rounds were variously different, but we 
discovered some commonness of these combinations.  

Feature F124 (MFE) and F3 (G content) were 
extremely stable, appearing in all the rounds, and their 
ranks are quite high. This is consistent with previous 
correlative conclusion. The feature F124 is MFE which is 
ranked first of the Top20 high-frequency features. It 
appears in each optimal feature subset and has strong 
classification ability. A large number of studies also point 
out that MFE is an important feature in the distinction 
between pre-miRNAs and ordinary hairpin sequences 
(Hofacker, 2003; Jiang et al., 2007). The feature F3 is the  
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content of guanine (G) which is one of DNA's four bases, 
possessing the smallest adiabatic ionization potential of 
the four, so the oxidation of DNA usually occurs in 
Guanine. The guanine and cytosine content may 
influence the thermodynamic stability of a pre-miRNA 
molecule (Koparde et al., 2010). 

Feature F100 (C+++) or F2 (C content) will certainly 
appears, but generally the two do not appear at the same 
time (only simultaneously appearing in the fifth round). 
F100 is the structure feature C+++, which describes the 
number of triplet structure that three consecutive base 
pairs are fully matched and the middle base is cytosine. It 
is ranked 15th in Xue et al.’s (2005) and 18th in Jiang et 
al.’s (2007) reports. 

 However, in our study it was ranked first in the 32 
triplet features (6th in the Top20 features). Xue et al. 
(2005) used only these 32 triplet features and Jiang et al. 
(2007) used two more features about MFE, but we used 
much more other types of features. We know that there 
are certain influence and interaction between the 
features, so our results are much more believable and 
demonstrate that the C+++ is a crucial feature and plays 
an important role in the classification. 

Feature F123 (Stack statistic) will generally be the first 
selected and rarely removed in the end (only be removed 
once in the eighth round). Feature F123 is stack, and it 
ranked 8th in the Top20 features. The two contiguous 
base pairs stacking together formed a stack. Nucleic 
acids are stabilized by base stacking (Gabb et al., 1996). 
The various loops and the stacks constitute the secondary 
structure of  pre-miRNAs.  The  energy  of  the secondary 
structure is assumed to be the sum of the energy 
contributions of loops and stacks (Hofacker et al., 1994, 
2004). The base stacking could improve the thermal 
stability (Chen et al., 2005). 

The frequency of trinucleotide feature F41 (GCA 
content) is extremely high. There are 7 combinations (a 
total of 10) including this feature. The phenomenon was 
also found in previous experiments as shown in Figure 4. 
In particular, we noticed that GCA content was ranked 
third in front of GC content (the best in dinucleotide 
features) which is ranked 7th. Thus, it can be seen that 
this feature has a very strong ability in classification.  

Although, we did not get a unique feature combination, 
we discovered some regularity among them. Each 
combination has almost included these six classes of 
features and just needed to select one or two special 
features from each class to identify pre-miRNAs and can 
obtain a very good classification result. In particular, the 
smallest combination only contains 5 features from four 
categories. Such discovery is significant to research the 
characters of miRNAs. We can get a classification 
accuracy of 92.92% using only 6 features in our best 
combination, 92.07% using the Top20 features and 
89.01% using all the 124 features (Figure 5, Table 2). We 
obtained the higher accuracy with the fewer features by 
our stepwise SVM method, thus indicating that it was 
powerful.  
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Table 1. The summary of Top20 features belonging to six categories. 
 

Feature category Included / Total Included features list 

Nucleotide 2 / 4 G, C 

Dinucleotide 6 / 16 GC, UA, GG, UC, GU, GA 

Trinucleotide 5 / 64 GCA, UUA, AAC, GGC, UAA 

Triplet 4 / 32 C+++, U+++, A+++, G.++ 

Secondary structure 2 / 7 Stack, Interior-loop 

Minimum free energy 1 / 1 MFE 
 
 
 
Table 2. The combinations mined from Top20 features. 

 

Rank Feature combinations (listed from left to right by the adding order)  ACC (%) 

1 F123 F3 F124 F2 F16 F41       92.92 

2 F123 F3 F124 F2 F16 F116 F81 F47 F105 F41 F121  92.81 

3 F123 F100 F3 F124 F16 F41 F47 F14     92.51 

4 F123 F2 F124 F3 F41 F105 F23      92.47 

5 F123 F2 F124 F3 F16 F116 F100 F105     92.44 

6 F123 F2 F124 F3 F121 F41       92.13 

7 F123 F2 F124 F3 F14        92.13 

8 F100 F3 F124 F16 F13 F81 F47 F41     91.84 

9 F123 F100 F3 F124 F41 F17       91.73 

10 F123 F100 F3 F124 F81        90.94 

Average  92.19 
 
 
 

 
 
Figure 2. The changing curve of the best individual’s classification accuracy and the average ACC of the whole 
population in each generation. The blue line represents the changing trend of the best individual’s classification 
accuracy in each generation, and the black line stands for the average ACC of all individuals in each generation 
population.



Wang et al.         16725 
 
 
 

 
 
Figure 3. The cumulative frequency graph of the feature subsets in 100 rounds. 

 
 
 

 
 
Figure 4. Top20 high-frequency features. 

 
 
 

Performance evaluation of optimal feature 
combinations using 5-fold-cv 

 
To evaluate the classification performance of the 
identified optimized feature  combinations,  we  compared 
our method to triplet-SVM (Xue et al., 2005). First, we 
used 706 human pre-miRNAs in miRBase13.0 as the 

positive set, and randomly selected 706 from 8494 
negative samples as the negative set. Next, 5-fold-cv 
based on SVM was performed on our 10 feature 
combinations and the feature set of triplet-SVM. Finally, 
the classification performance was evaluated by three 
indices: SP, SE and ACC. As a result, our 10 optimal 
feature combinations averagely achieved  the  higher  SP



16726        Afr. J. Biotechnol. 
 
 
 

 
 
Figure 5. The changing of ACC in stepwise SVM method. Each line represents a feature 
combination. The red dotted line (ACC=92.07%) represents the classification accuracy using the 
Top20 high-frequency features and the blue dotted line (ACC=89.01%) represents the 
classification accuracy using all the 124 features. 

 
 
 

Table 3. Performance evaluation of feature combinations using 5-fold-cv. 

 

Feature combinations SP (%) SE (%) ACC (%) 

Combination 1 96.34 89.50 92.92 

Combination 2 95.43 89.93 92.68 

Combination 3 95.49 89.70 92.60 

Combination 4 95.35 89.02 92.18 

Combination 5 95.60 89.30 92.45 

Combination 6 94.92 89.28 92.10 

Combination 7 94.72 89.48 92.10 

Combination 8 95.80 88.82 92.31 

Combination 9 94.27 89.08 91.67 

Combination 10 93.70 88.94 91.32 

Average 95.16 89.30 92.23 

Triplet-SVM 91.86 83.15 87.50 
 
 
 

(95.16%), SE (89.30%) and   ACC   (92.23%)   than   that 
of triplet-SVM (91.86%, 83.15% and 87.50%, seen in 
Table 3). Especially, the best one achieved 96.34% (SP), 
89.50 (SE) and 92.92% (ACC) as shown in Table 3. Thus, 
the optimal feature combinations were effective for 
distinguishing real pre-miRNAs from pseudo pre-miRNAs. 

Validation by the latest confirmed human pre-
miRNAs 
 
To test the predicted performance of the feature 
combinations extracted, we used the optimal feature 
combinations to predict the 16  new  human  pre-miRNAs  
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Table 4. The predicted results using the optimal feature combinations and triplet-SVM. 
 

Feature combinations  16 new pre-miRNAs (miRBase14.0) 

Combination index Number of features  Number of correctly identified Predict accuracy (%) 

Combination 1 6  14 87.50 

Combination 2 11  15 93.75 

Combination 3 8  13 81.25 

Combination 4 7  14 87.50 

Combination 5 8  13 81.25 

Combination 6 6  14 87.50 

Combination 7 5  13 81.25 

Combination 8 8  14 87.50 

Combination 9 6  14 87.50 

Combination 10 5  14 87.50 

Triplet-SVM 32  13 81.25 
 
 
 

confirmed in miRBase 14.0. First, the 706 pre-miRNAs in 
miRBase13.0 and the re-extracted 706 negative samples 
constituted the training set. Then the classifier model 
based on our optimal feature combinations was built to 
predict the 16 new confirmed human pre-miRNAs. Next, 
we performed triplet-SVM (Xue et al., 2005) to predict the 
16 pre-miRNAs. The results are shown in Table 4. The 
number of correctly identified of each combination can 
reach over 13, wherein six combinations reach 14. The 
best combination correctly identified 15 (93.75%) with 11 
features and triplet-SVM correctly identified 13 (81.25%) 
with 32 features. Obviously, compared with triplet-SVM, 
we obtained higher validation result based on fewer 
features. 
 
 
Conclusion 
 
In this study, we focused on the optimization of feature 
combination in predicting pre-miRNAs. We performed the 
feature selection applying GA-SVM method and further 
extracted the feature combination with strong combined 
effect and high classification performance applying a 
novel stepwise SVM method that proved to be of great 
significance. The results show that the features MFE, G 
content and GCA content are crucial to distinguish pre-
miRNAs. Although, we did not find  the  only  one  optimal 
feature combination, we discovered some regularity 
among them. Each combination has almost included 
these six categories of features, and we just needed to 
select one or two special features from each category to 
identify pre-miRNAs. Furthermore, we discovered an 
important feature “stack” that did not get enough attention 
before. Its classification performance was very strong 
which could be almost the first selected in the stepwise 
mining procedure.  

Compared to the previous study on triplet-SVM, our 
optimal feature combinations based on our stepwise SVM 
method were ~5% higher in sensitivity, specificity and 

accuracy by 5-fold-cv. Through the prediction of 16 new 
validated pre-miRNAs in miRBase 14.0, we also correctly 
identified significantly more pre-miRNAs than triplet-SVM 
(15 (93.75%) with the best combination vs. 13 (81.25%) 
with triplet-SVM). We believe that our stepwise SVM 
method effectively reduced the number of features and 
improved the classification performance. In addition, the 
optimal feature combinations we mined are effective for 
miRNAs prediction and characteristic research. 
 
 
Supplementary Material 
 
Supplemental table 1 is the list of all the 124 features, 
and supplemental table 2 and 3 represent the result of 
GA parameter optimization by ANOVA. Available at 
http://www.academicjournals.org/AJB.  
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Supplemental table 1. Feature list. 
 

Feature number Feature Feature categories 

F1 A Nucleotide (content of one-dimensional code word) 

F2 C Nucleotide (content of one-dimensional code word) 

F3 G Nucleotide (content of one-dimensional code word) 

F4 U Nucleotide (content of one-dimensional code word) 

F5 AA Dinucleotide (content of two-dimensional code word) 

F6 AC Dinucleotide (content of two-dimensional code word) 

F7 AG Dinucleotide (content of two-dimensional code word) 

F8 AU Dinucleotide (content of two-dimensional code word) 

F9 CA Dinucleotide (content of two-dimensional code word) 

F10 CC Dinucleotide (content of two-dimensional code word) 

F11 CG Dinucleotide (content of two-dimensional code word) 

F12 CU Dinucleotide (content of two-dimensional code word) 

F13 GA Dinucleotide (content of two-dimensional code word) 

F14 GC Dinucleotide (content of two-dimensional code word) 

F15 GG Dinucleotide (content of two-dimensional code word) 

F16 GU Dinucleotide (content of two-dimensional code word) 

F17 UA Dinucleotide (content of two-dimensional code word) 

F18 UC Dinucleotide (content of two-dimensional code word) 

F19 UG Dinucleotide (content of two-dimensional code word) 

F20 UU Dinucleotide (content of two-dimensional code word) 

F21 AAA Trinucleotide (content of three-dimensional code word) 
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F22 AAG Trinucleotide (content of three-dimensional code word) 

F23 AAC Trinucleotide (content of three-dimensional code word) 

F24 AAU Trinucleotide (content of three-dimensional code word) 

F25 ACA Trinucleotide (content of three-dimensional code word) 

F26 ACG Trinucleotide (content of three-dimensional code word) 

F27 ACC Trinucleotide (content of three-dimensional code word) 

F28 ACU Trinucleotide (content of three-dimensional code word) 

F29 AGA Trinucleotide (content of three-dimensional code word) 

F30 AGG Trinucleotide (content of three-dimensional code word) 

F31 AGC Trinucleotide (content of three-dimensional code word) 

F32 AGU Trinucleotide (content of three-dimensional code word) 

F33 AUA Trinucleotide (content of three-dimensional code word) 

F34 AUG Trinucleotide (content of three-dimensional code word) 

F35 AUC Trinucleotide (content of three-dimensional code word) 

F36 AUU Trinucleotide (content of three-dimensional code word) 

F37 GAA Trinucleotide (content of three-dimensional code word) 

F38 GAG Trinucleotide (content of three-dimensional code word) 

F39 GAC Trinucleotide (content of three-dimensional code word) 

F40 GAU Trinucleotide (content of three-dimensional code word) 

F41 GCA Trinucleotide (content of three-dimensional code word) 

F42 GCG Trinucleotide (content of three-dimensional code word) 

F43 GCC Trinucleotide (content of three-dimensional code word) 

F44 GCU Trinucleotide (content of three-dimensional code word) 

F45 GGA Trinucleotide (content of three-dimensional code word) 

F46 GGG Trinucleotide (content of three-dimensional code word) 

F47 GGC Trinucleotide (content of three-dimensional code word) 

F48 GGU Trinucleotide (content of three-dimensional code word) 

F49 GUA Trinucleotide (content of three-dimensional code word) 

F50 GUG Trinucleotide (content of three-dimensional code word) 

F51 GUC Trinucleotide (content of three-dimensional code word) 
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F52 GUU Trinucleotide (content of three-dimensional code word) 

F53 CAA Trinucleotide (content of three-dimensional code word) 

F54 CAG Trinucleotide (content of three-dimensional code word) 

F55 CAC Trinucleotide (content of three-dimensional code word) 

F56 CAU Trinucleotide (content of three-dimensional code word) 

F57 CCA Trinucleotide (content of three-dimensional code word) 

F58 CCG Trinucleotide (content of three-dimensional code word) 

F59 CCC Trinucleotide (content of three-dimensional code word) 

F60 CCU Trinucleotide (content of three-dimensional code word) 

F61 CGA Trinucleotide (content of three-dimensional code word) 

F62 CGG Trinucleotide (content of three-dimensional code word) 

F63 CGC Trinucleotide (content of three-dimensional code word) 

F64 CGU Trinucleotide (content of three-dimensional code word) 

F65 CUA Trinucleotide (content of three-dimensional code word) 

F66 CUG Trinucleotide (content of three-dimensional code word) 

F67 CUC Trinucleotide (content of three-dimensional code word) 

F68 CUU Trinucleotide (content of three-dimensional code word) 

F69 UAA Trinucleotide (content of three-dimensional code word) 
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F70 UAG Trinucleotide (content of three-dimensional code word) 

F71 UAC Trinucleotide (content of three-dimensional code word) 

F72 UAU Trinucleotide (content of three-dimensional code word) 

F73 UCA Trinucleotide (content of three-dimensional code word) 

F74 UCG Trinucleotide (content of three-dimensional code word) 

F75 UCC Trinucleotide (content of three-dimensional code word) 

F76 UCU Trinucleotide (content of three-dimensional code word) 

F77 UGA Trinucleotide (content of three-dimensional code word) 

F78 UGG Trinucleotide (content of three-dimensional code word) 

F79 UGC Trinucleotide (content of three-dimensional code word) 

F80 UGU Trinucleotide (content of three-dimensional code word) 

F81 UUA Trinucleotide (content of three-dimensional code word) 

F82 UUG Trinucleotide (content of three-dimensional code word) 

F83 UUC Trinucleotide (content of three-dimensional code word) 

F84 UUU Trinucleotide (content of three-dimensional code word) 

F85 A... Triplet feature 

F86 A..+ Triplet feature 

F87 A.+. Triplet feature 

F88 A+.. Triplet feature 

F89 A.++ Triplet feature 

F90 A+.+ Triplet feature 

F91 A++. Triplet feature 

F92 A+++ Triplet feature 

F93 C... Triplet feature 

F94 C..+ Triplet feature 

F95 C.+. Triplet feature 

F96 C+.. Triplet feature 

F97 C.++ Triplet feature 

F98 C+.+ Triplet feature 

F99 C++. Triplet feature 

F100 C+++ Triplet feature 

F101 G... Triplet feature 

F102 G..+ Triplet feature 

F103 G.+. Triplet feature 
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F104 G+.. Triplet feature 

F105 G.++ Triplet feature 

F106 G+.+ Triplet feature 

F107 G++. Triplet feature 

F108 G+++ Triplet feature 

F109 U... Triplet feature 

F110 U..+ Triplet feature 

F111 U.+. Triplet feature 

F112 U+.. Triplet feature 

F113 U.++ Triplet feature 

F114 U+.+ Triplet feature 

F115 U++. Triplet feature 

F116 U+++ Triplet feature 

F117 Bulge-loop Secondary structural feature 
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F118 External-loop Secondary structural feature 

F119 Hairpin-loop Secondary structural feature 

F120 Helix Secondary structural feature 

F121 Interior-loop Secondary structural feature 

F122 Multi-loop Secondary structural feature 

F123 Stack Secondary structural feature 

F124 MFE Minimal folding free energy 
 
 
 

Supplemental table 2. Analysis of variance for different parameters in GA. 
 

 

Dependent Variable: Classification error rate 
*The mean difference is significant at the .05 level. 

  
 
 

Supplemental table 3. Multiple Comparison for mutation rate. 
 

 
（（（（I））））  

Mutation rate 

（（（（J））））  

Mutation rate 
Mean Difference 

（（（（I-J）））） 

Std. Error Sig. 

Tukey HSD 1.00 2.00 -.0047（*） .00131 .002 

    3.00 -.0043（*） .00131 .006 

  2.00 1.00 .0047（*） .00131 .002 

    3.00 .0004 .00131 .942 

  3.00 1.00 .0043（*） .00131 .006 

    2.00 -.0004 .00131 .942 

LSD 1.00 2.00 -.0047（*） .00131 .001 

    3.00 -.0043（*） .00131 .002 

  2.00 1.00 .0047（*） .00131 .001 

    3.00 .0004 .00131 .743 

  3.00 1.00 .0043（*） .00131 .002 

    2.00 -.0004 .00131 .743 
 

Dependent Variable: Classification error rate 
Based on observed means. 
*The mean difference is significant at the .05 level. 

Source 
Type III 
Sum of 
Squares 

 

 

df 

 

Mean 
Square 

 

 

F 

 

 

Sig. 

Corrected Model .000 11 2.77E-005 1.613 .125 

Intercept .264 1 .264 15325.367 .000 

Genetic algebra 2.25E-005 1 2.25E-005 1.308 .258 

Population size 5.75E-006 1 5.75E-006 .335 .566 

Mutation rate .000 2 .000 7.830 .001（*） 

Genetic generation * Population size 3.03E-006 1 3.03E-006 .176 .677 

Genetic generation * Mutation rate 1.66E-006 2 8.29E-007 .048 .953 

Population size * Mutation rate 2.41E-006 2 1.20E-006 .070 .933 

Genetic generation * Population size * Mutation rate 4.55E-007 2 2.28E-007 .013 .987 

Error .001 48 1.72E-005   

Total .265 60    

Corrected Total .001 59    


