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Geranylgeraniol 18-hydroxylase (EC 1.14.13.110) that exists solely in Croton stellatopilosus Ohba 
catalyses the last committed step of plaunotol biosynthetic pathways by conversion of geranylgeraniol 
(GGOH) to plaunotol. This enzyme and its gene are an attractive target for development of plaunotol 
production and its detailed biochemical properties need to be understood.   Recently, even though the 
gene (CYP97C27) coding for GGOH 18-hydroxylase has been identified, cloned, and expressed in 
Escherichia coli system, the enzyme activity has been detected mainly in the insoluble fraction (20,000 
g). This means that biochemical and kinetic studies could not be undertaken. However, our previous 
study indicated that this enzyme activity was easily and specifically detected in the microsomal fraction 
(100,000 g) of a crude enzyme extract. Therefore, in this report we describe a comprehensive 
biochemical characterization of GGOH 18-hydroxylase activity in the microsomal fraction from C. 
stellatopilosus Ohba. The oxygen-dependent enzyme activity of GGOH 18-hydroxylase was inhibited by 
carbon monoxide and the inhibition was partially reversible upon illumination with white light. Kinetic 
studies of the GGOH 18-hydroxylase showed high affinity to GGOH and NADPH with apparent Km 
values of 0.8 and 53 µM, respectively. Furthermore, the enzyme activity was inhibited by P450 inhibitors, 
including ancymidol, metyrapone, miconazole, potassium cyanide and cytochrome c, with the IC50 
values of 428, 65, 75, 66 and 8 µM, respectively. Based on the biochemical and kinetic characteristics, 
the GGOH 18-hydroxylase in the microsomal fraction is likely a P450 encoded by CYP97C27 gene as 
previously described. 
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INTRODUCTION 
 
Plaunotol, an acyclic diterpenoid compound, has 
important chemotherapeutic activities; it exhibits an anti-
inflammatory action in association with peptic ulcers and 

antimicrobial activities against Helicobacter pylori and 
Staphylococcus aureus (Koga et al., 2002; Inoue et al., 
2004; Premprasert et al., 2013). It was originally found in 
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Figure 1. The biosynthetic pathway of plaunotol in C. 
stellatopilosus via deoxyxylulose phosphate pathway (modified 
from Nualkaew et al., 2006).  

 
 
 

leaves and stems of Croton stellatopilosus Ohba 
(Euphorbiaceae), a medicinal plant growing in tropical 
Southeast Asian countries, especially Thailand. It 
appears to be accumulated mainly in the chloroplasts 
(Wungsintaweekul and De-Eknamkul, 2005; Sitthithaworn 
et al., 2006). Previous study on plaunotol biosynthesis in 
C. stellatopilosus has revealed that biosynthesis of 
plaunotol was carried out via the deoxyxylulose 
phosphate pathway in which geranylgeranyl diphosphate 
(GGPP) and geranylgeraniol (GGOH) were the 
intermediate precursors (Nualkaew et al., 2005; 
Wungsintaweekul and De-Eknamkul, 2005). As shown in 
Figure 1, GGPP is dephosphorylated by phosphatase to 
form GGOH, then the GGOH is subsequently 
hydroxylated at the C-18 position by GGOH 18-
hydroxylase (EC 1.14.13.110) to form plaunotol, where 
the hydroxylation of GGOH exhibits the requirement of 
NADPH as a reducing equivalent of the reaction 
(Tansakul and De-Eknamkul, 1998; Nualkaew et al., 
2005; Nualkaew et al., 2006). This suggested that the 
GGOH 18-hydroxylase is a member of cytochrome P450  

 
 
 
 
monooxygenases (CYP), similar to other P450 
hydroxylases involved in plant secondary metabolisms 
(Collu et al., 2001; Jennewein et al., 2003). As yet, there 
are no more details with regard to the biochemical and 
kinetic properties of GGOH 18-hydroxylase although the 
corresponding gene (CYP97C27) has been identified, 
cloned and expressed in an Escherichia coli system 
(Sintupachee et al., 2014). The expressed GGOH 18-
hydroxylase protein was highly detectable in the insoluble 
fraction of the crude enzyme, however it was difficult to 
obtain in highly purified solubilized form and thus it was 
not amenable to detailed characterization. However, all 
P450 enzymes in plants have been reported to be 
localized to the microsomal fraction (Schuler, 1996) and 
the activity of our enzyme of interest (GGOH 18-
hydroxylase) has been shown to exist in the 100,000 g 
microsomal pellet fraction of crude enzyme extract. 
Therefore, in this work, we investigated the biochemical 
and kinetic properties of GGOH 18-hydroxylase in the 
100,000 g microsomal fraction. 
 
 
MATERIALS AND METHODS 
 
Plant materials and chemicals 
 
Fresh mature leaves of C. stellatopilosus Ohba were kindly 
provided by the Institute of Biotechnology and Genetic Engineering, 
Chulalongkorn  University,  Bangkok,  Thailand,  and  maintained at 
-20°C until used. All chemicals were of the highest purity available. 

Geranylgeraniol (GGOH), -nicotinamide adenine dinucleotide 

phosphase (reduced form) tetrasodium salt (NADPH), -
mercaptoethanol, ancymidol, metyrapone, miconazole and 
cytochrome c were purchased from Sigma Chemical Co., (USA). 
Tricine and dithiothreitol (DTT) from USB (USA). 
Phenylmethylsulfonyl fluoride (PMSF) and potasium cyanide (KCN) 
from Fluka (Switzerland).  Ethyl acetate and absolute ethanol were 
of HPLC grade and purchased from Lab-Scan Asia (Thailand). 
Plaunotol was obtained from Kelnac® soft gelatin capsules (Sankyo, 
Co., Japan). 
 

 
Preparation of microsomal fraction containing GGOH 18-
hydroxylase activity 

 
All enzyme preparation steps were performed at 0 to 4°C. The 
GGOH 18-hydroxylase was prepared and purified according to the 
method as previously described (Chanama et al., 2009). Briefly, 30 
g of frozen mature leaves were ground rapidly to a powder in liquid 
nitrogen using a prechilled mortar and pestle. Then, the fine powder 
was extracted in 60 ml of extraction buffer containing 83 mM 
Tricine-NaOH (pH 7.8), 0.4 M sucrose, 10 mM EDTA, 10 mM 
MgCl2, 10 mg/ml BSA, 1 mM DTT, 0.8 mM PMSF and 5 mM β-
mercaptoethanol, and the mixture was stirred for 10 min. The 
homogenate was filtered through several layers of cheesecloth, 
centrifuged at 3,000 g for 10 min and the supernatant collected 
prior to spinning for 20 min at 20,000 g. Resulting supernatant was 
further ultracentrifuged at 100,000 g for 60 min and the microsomal 
precipitate was suspended in 3 to 5 ml of 0.1 mM Tricine-NaOH (pH 
7.8) containing 0.2 M sucrose, 1 mM EDTA, 1 mM DTT, 15% 
glycerol and 5 mM β-mercaptoethanol. The final enzyme 
preparation  containing  the  GGOH  18-hydroxylase  was stored at 
-80°C, and protein concentration of the enzyme was measured 
using the Bio-Rad protein assay (Bradford, 1976).  



 
 
 
 
GGOH 18-hydroxylase activity assays 
 
Enzyme activity of GGOH 18-hydroxylase was assayed as 
previously described (Chanama et al., 2009). The reaction mixture 
consisted of 83 mM Tricine-NaOH (pH 7.8), 0.8 mM NADPH and 57 
µM GGOH (substrate). The reaction was initiated by the addition of 
100 µl of enzyme preparation (~ 250 µg of protein) to the mixture. 
The reaction mixture was incubated at 30°C for 30 min and then 
stopped by extraction twice with an equal volume of ethyl acetate. 
The extracts were pooled and dried, and the residue was 
redissolved in ethyl acetate for analysis of plaunotol. Plaunotol 
content in the extract was determined using a TLC-densitometric 
technique as previously described. Briefly, the extract of enzyme 
product was applied onto silica gel60 F254 plates (CAMAG) using 
Linomat IV (CAMAG). The plate was developed by ethyl acetate 
and scanned at wavelength of 210 nm to obtain chromatogram of 
the sample. The plaunotol content was then estimated on the basis 
of the standard calibration curve of pure plaunotol compound. The 
assays were performed in triplicate.  The enzyme activity is 
expressed as katal unit (kat). One katal is the amount of enzyme 
required to convert GGOH substrate to one mole of plaunotol 
product per second. For kinetic studies of the GGOH 18-
hydroxylase, the maximum velocity (Vmax) and the Michaelis 
constant (Km) values were determined under the standard assay 
conditions with substrate concentrations ranging from 0.2 to 10 µM 
for GGOH and from 0.02 to 1.0 mM for NADPH.   
 
 

Inhibition experiments 
 
The inhibition by gaseous carbon monoxide (CO) and reversal of 
CO inhibition by white light were performed in 2 ml septum-capped 
glass vials containing all the reaction components except GGOH 
and NADPH. The vials were placed on ice, and each gas (CO, N2 
or air) was bubbled through the reaction mixtures. The reactions 
were initiated by the addition of GGOH and NADPH, and then 
incubated at 30°C for 30 min in the dark or under white light (for 
light reversal of CO inhibition).  After incubation, the reaction 
products were extracted and analysed as described above. The 
control vials without the addition of inhibitors were carried out in the 
dark. The cytochrome P450 inhibitors: ancymidol, metyrapone, 
miconazole, KCN and cytochrome c were tested. The concen-
trations of ancymidol, metyrapone, miconazole and KCN were 
adjusted from 0.01 to 6.0 mM and cytochrome c from 0.003 to 0.3 
mM. The enzyme inhibition tests were carried out by addition of the 
inhibitors to the standard assay. After completion of the reactions, 
the enzyme products (plaunotol) were extracted and analysed by 
TLC. The inhibition is expressed as IC50 value, that is, the 
concentration of an inhibitor where the enzyme activity is reduced 
by 50%. 
 
 

RESULTS AND DISCUSSION 
 

The enzyme GGOH 18-hydroxylase found in C. 
stellatopilosus catalyses the conversion of GGOH to 
plaunotol by addition of hydroxyl group (-OH) to acyclic 
diterpenoid GGOH at position of C-18 and the 
hydroxylation reaction is highly specific to this acyclic 
diterpene substrate and not for other terpenoid 
compounds (C-10: geraniol, C-15: farnesol) (Tansakul 
and De-Eknamkul, 1998). In addition, the activity was 
determined 1.5-fold higher in 100,000 g microsomal 
fraction than in the 20,000 g insoluble fraction under the 
presence of NADPH and aeration (Chanama et al., 2009)  
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and also observed in other plant sources (Bolwell et al., 
1994, Pierrel et al., 1994). In this work, we studied the 
kinetic properties of the GGOH 18-hydroxylase enzyme 
in the 100,000 g microsomal fraction with its substrate 
and cofactor. The results showed that the GGOH 18-
hydroxylase was saturated at approximately 7 µM GGOH 
and 500 µM NADPH, and apparent Km values for the 
hydroxylation of GGOH and for NADPH were 0.8 and 53 
μM, respectively (Figure 2). The very low Km value of the 
hydroxylase for GGOH implies the high affinity of the 
GGOH 18-hydroxylase for the GGOH substrate, and this 
result is in good agreement with the Km values obtained 
for the hydroxylation of laurate by lauric acid (P450) 
monooxygenase from Jerusalem-Artichoke (Helianthus 
tuberosus) (0.97 µM) (Salaun et al., 1978) and from 
wheat (Triticum aestivum) (8 μM) (Zimmerlin et al., 1992). 
Interestingly, the apparent Km value of this enzyme for 
diterpenoid GGOH was 20 to 60 fold lower than those for 
the hydroxylations of other fatty acid (16-hydroxypalmitic 
acid, 50 µM), acyclic monoterpene (geraniol, 15 µM), 
cyclic monoterpene (limonene, 18 to 21 µM), cyclic 
diterpene (taxoid, 50 µM) and phenolic compound 
(cinnamic acid, 35 µM) from other plant species (Soliday 
and Kolattukudy, 1978; Karp et al., 1990; Hallahan et al., 
1992; Petersen, 1997; Jennewein et al., 2003). In 
addition, consumption of NADPH in the hydroxylation is 
essential for the enzyme activity and in a good 
agreement with the result reported by Tansakul and De-
Eknamkul (1998). The Km value observed in this study 
certainly supports the view that GGOH and NADPH are 
actual substrate and cofactor in the enzyme system.  

To investigate whether the GGOH 18-hydroxylase 
present in the microsomal fraction belongs to a member 
of cytochrome P450 monooxygenase, several of the 
following criteria, that is, a requirement for molecular 
oxygen (O2), inhibition by CO and reversal of the CO 
inhibition by light, and inhibition by specific cytochrome 
P450 inhibitors were examined (Krochko et al., 1998; Kim 
et al., 2004). To address whether molecular oxygen (O2) 
was essential for GGOH 18-hydroxylase activity, 
replacement of dissolved oxygen in the reaction mixture 
by nitrogen gas prior to initiating reaction was performed. 
The reaction exhibited a dramatic decrease in enzyme 
activity (85% inhibition) (Table 1). Moreover, carbon 
monoxide, which is known to bind effectively to Fe(II)-
heme region of the cytochrome P450 (Krochko et al., 
1998), also exhibited the strongest inhibition when it was 
introduced into the enzyme system in the dark. The 
relative activity of GGOH 18-hydroxylase inhibited by CO 
was reduced to as low as 5.87% of control (94% 
inhibition). This inhibition was partially reversible upon 
illumination with visible light (relative activity of 35%) as 
shown in Table 1. This partial reversion of CO-inhibition 
by white light (particularly at wavelength of 450 nm) could 
be due to the photolysis of Fe (II)-CO complex which 
exists in the GGOH 18-hydroxylase. The effects of 
specific cytochrome P450 inhibitors (ancymidol,
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Figure 2. Michaelis-Menten plots showing the variation of initial velocity of GGOH 18-
hydroxylase reaction as a function of GGOH (A) and NADPH (B) concentrations. The 
double reciprocal plots 1/V as a function of 1/[GGOH] and of 1/[NADPH] are shown in 

the insets. The values are means (SEM) of three separate experiments. 

 
 
 

Table 1. Effect of oxygen (air), nitrogen (N2) and carbon 
monoxide (CO), and white light on the activity of GGOH 18-
hydroxylase from C. stellatopilosus. 
 

Treatment 
Relative activity

 a
 

(% of control) 
Inhibition (%) 

Control (air, dark) 100.0 00.00 

N2 14.47 85.53 

CO (dark) 05.87 94.13 

CO (white light) 35.56 64.44 
 
a
The enzyme activity of the control was 1.77 pkat/ mg protein. 

metyrapone, miconazole, cytochrome c and KCN) were 
used in this study. All cytochrome P450 inhibitors 
inhibited the enzyme activity of GGOH 18-hydroxylase 
completely or to a lesser extent and with variable 
concentrations for half-maximal activity (IC50 values) 
(Figure 3). Ancymidol, metyrapone, miconazole and KCN 
exhibited 100% inhibitory effects on the hydroxylation 
reaction at concentrations ranging from 0.01 to 6 mM with 
IC50 values of 428, 65, 75 and 66 µM, respectively. 

On the other hand, cytochrome c which is known to 
remove electrons competitively from NADPH-cytochrome
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Figure 3. Inhibitions of GGOH 18-hydroxylase activity by cytochrome P450 inhibitors. The values are means 

(SEM) of three separate experiments. 

 
 
 
P450 reductase complex (Petersen, 1997), showed about 
75% inhibition with the lowest IC50 of 8 µM. Among these 
inhibitors tested, cytochrome c seemed to be the most 
potent inhibitor against GGOH 18-hydroxylase (IC50 of 8 
µM). These results strongly support a typical feature of 
plant cytochrome P450s of the enzyme (Friederich et al., 
1999; Yamamoto et al., 2000; Katano et al., 2001). 
According to the biochemical and kinetic properties of the 

GGOH 18-hydroxylase, that is, high affinity to GGOH 
substrate, requirement for molecular oxygen and 
NADPH, inhibition by P450 inhibitors, inhibition by CO, 
and reversal of the CO inhibition by light, it is likely that 
the GGOH 18-hydroxylase in the 100,000 g microsomal 
fraction of C. stellatopilosus is the CYP97C27 previously 
identified by RT-PCR methodology from leaves of C. 
stellatopilosus (Sintupachee et al., 2014). 
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