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transformation of melons with antisense ACC oxidase 
gene reduces ethylene production and increases 
marketable postharvest preservation (Ayub et al., 1996; 
Silva et al., 2004; Nuñez-Palenius et al., 2007). In similar 
studies, Ayub et al. (1995) used antisense ACC oxidase 
gene from melons, that were isolated and characterized 
by Balagué et al. (1993); other authors (Silva et al., 2004) 
used a clone antisense ACC oxidase pAP4 from ‘Royal 
Gala’ apple constitutively expressed in climacteric 
ripening index. 

The ethylene-suppressed ACC oxidase gene in melons 
allows the studying of ethylene-dependent and 
independent ripening pathways. Skin coloration and 
sugar accumulation are ethylene-independent, whereas 
yellowing of the rind, flesh softening, peduncle develop-
ment abscission zone, volatile flavour compounds and 
climacteric respiration are totally or partially ethylene-
dependent (Guis et al., 1997; Bauchot et al., 1998; Bower 
et al., 2002). Climacteric and non-climacteric regulation 
coexists during climacteric fruit ripening (Pech et al., 
2008). Similar observations were made in Charentais 
cantaloupensis melons transformed with an antisense 
ACCO from apple (Silva et al., 2004). These authors 
showed prolonged fruit ripening cycle in an average of 10 
days later, which supports the highest accumulation of 
sugars, in an average of 2.5°Brix higher than untrans-
formed melons. Moreover, important phetotipics changes 
were observed; for example, vegetative cycle prolon-
gation, increased fruits size, increased extensive root 
growth and minor leaves senescence. These charac-
teristics were not described in earlier studies (Ayub et al., 
1996; Bauchot et al., 1998). 

Climacteric melons such as cantaloupensis are 
aromatic, but the ethylene suppressed to extend shelf-life 
can affect sensory qualities, especially aroma responsible 
for sensitive flavor (Pech et al., 2008). The synthesis of 
volatile compounds was significantly reduced in trans-
genic melons of Ayub et al. (1996), Bauchot et al. (1998) 
and Silva et al. (2004).  

Bauchot et al. (1998), studying the behavior of 
transgenic melons by applying ethylene, verified that 
flavor intensity was restored by increase in the production 
of volatile compounds and induction of the peduncle 
abscission zone. In comple-mentary studies, Flores et al. 
(2002) and Yahyaoui et al. (2002) verified that the 
reestablishment of the overall production of volatile 
compounds and esters, in particular, was the conse-
quence of alcohol acyltrans-ferases synthesis (AAT) 
induction and enzyme-key in the biosynthesis pathway of 
these compounds.  

As a result, four clones of AAT (Cm-AAT1, Cm-AAT2, 
Cm-AAT3 and Cm-AAT4) were isolated and partially 
characterized  in  melons.  Cm-AAT1  and  cm-AAT4  are 
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stronger and they are expressed during the ripening and 
under ethylene action (Yahyaoui et al., 2002; El-
Sharkawy et al., 2005; Lucchetta et al., 2007). 

However, in preliminary assays with transgenic melons 
(AS3 clone) (Silva et al., 2004), the responses to 
ethylene treatment were different from those observed by 
Bauchot et al. (1998), Flores et al. (2002) and Yahyaoui 
et al. (2002). The ripening was not completely re-
established, where aroma intensity restoration was 
partially complete; although the treatment conditions with 
ethylene were similar to the ones described by other 
authors. 

Some authors like Buttery and Ling (1993) and Goff 
and Klee ( 2006) state that, the improvement of plants to 
obtain a cultivar  that is more productive, resistant to 
diseases and/or with extended shelf life can generate 
physiological changes and make the product to lose 
some important qualitative attributes. Silva et al. (2004) 
found that, cantaloupensis melons transformed (AS3) 
showed extended shelf life in postharvest. However, 
there was a significant reduction of its aroma intensity 
and low succulence of the fruits compared to control 
fruits. Goff and Klee (2006) co-related the volatile 
compounds production with the nutritional and functional 
quality of fruits. Also, they cited that the emission of 
volatile compounds results in the functional quality 
potential of fruits. Buttery and Ling (1993) observed that, 
the tomatoes selected for prolongation of shelf life have 
lesser nutritional quality and volatile compounds pro-
duction than wild type tomatoes. In addition, it was 
verified that aroma, besides being the determinant of 
consumers’ preference, can be associated with the best 
nutritional quality, essentials fatty acids, vitamins, 
carotenoids, licopens, folates, and other molecules with 
antioxidants properties (Goff and Klee, 2006). 

This study explains the hypothesis which states that, 
the transformation with antisense ACC oxidase gene 
promotes other physiological modifications in melons. 
The practical non-existence of similar studies on fruits 
suggests that studies on the possible inter-relations 
between changes in ethylene production reduced 
(greater than 99%) as well as the postharvest behavior of 
melons.  

In this work, the authors studied the effect of  ethylene 
reduction and the exogenous treatment of this hormone 
on physiochemical  characteristics, volatile compounds 
and expression of some genes with ethylene 
characteristics regulated during fruit ripening such as 
ACC oxidase (ACO), alcohol aciltransferase (AAT) 
expression and polygalacturonase genes (MPG1 and 
MPG2). Exogenous ethylene treatment was performed in 
AS3 fruits in order to verify if it was possible to restore the 
condition of ripening similar to that of WT. 

 
*Corresponding author. E-mail: lucianolucchetta@gmail.com.  Tel: +554699227791. 
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Table 1. Specific primers used for RT-PCR analysis of target genes. 
 

Gen Primers (5’ - 3’) Author 

CM-ACOO1 
(F) AAG GAT CCG CAC AAA CCA AAT CTT GTA C 

Lassère et  al., 1996 
(R) AAG GAT CCT AAG CTG AAA GTG AAT TTA AAT TA 

   

CM-AAT 
(F) GTGATGGTGTGAGTCACACTGTTC 

John 1997  
(R) CGACCAGCAAGGTCCAAAC 

   

MPG1 
(F) CTCTCATGCGCTGCAGTCTG 

 
Hadfield et al., 1998 

(R) GCTTGGGCAATTTGATCCTT 
  

MPG2 
(F) CCGCATGGAAGCAGGCTTGT 
(R) CCATGTCAACAGTAGAGCCT 

   

ACTIN 
(F) GAT GAC GCA GAT AAT GTT TGA GAC 

Bouquin et al., 1997 
(R) AAG GTC ACG ACC AGC AAG GTC C  

 
 
 
MATERIALS AND METHODS 
 
Plant material 
 
Non- transformed fruit (WT) and ACC oxidase antisense (AS3) 
Cantaloupe melons (Cucumis melo var. Cantalupensis, Naud 
cv.Vedrantais) were used (Silva et al., 2004). They were grown in a 
greenhouse under standard cultural practices for fertilization and 
pesticide treatments.  Hermadrofite flowers were tagged on the day 
and self-hand pollinated. After this step, non- transgenic fruit plants 
were monitored during the period just to get to the actual 32 days 
after day pollination (DAP). During delayed ripening, AS3 fruits 
were harvested, 42 DAP and immediately exposed to 100 µL.L-1 

ethylene for 24, 48 and 120 h in vessels of 7.2L. Vegetative root 
tissues were picked up from control and AS3 plants immediately 
after the harvesting of 2nd fruit per plant. After treating the fruits 
with ethylene, pulp firmness, total soluble solids, titratable acid and 
samples were frozen in liquid N and stored at - 80°C prior to 
analysis. 
 
 
Soluble solid content (SSC), titratable acidity (TA) and pulp 
firmness 
 
Fresh pulp firmness was determined using an 11-mm Effegi tester 
penetrometer and the results were expressed in Newton (N). 
Soluble solid content was measured by a digital refractometer 
(ATAGO PR-101, Tokyo, Japan), using filtered juice; the results 
were expressed by percentage (m/m). Titratable acidity was 
perfomed by titulometric method, using NaOH (0, 1 N) with pH 8.1. 
The results were expressed in mg citric acid g FW-1. 
 
 
Measurements of ethylene production  
 
The ethylene content was determined by gas chromatography 
(Varian® 3300). The treatments were replicated three times, and 
values represented the mean ± SE. The results were expressed in 
nL of ethylene.g-1.h-1. 
 
 
RT-PCR of ACC oxidase and CmAAT e polygalacturonase 
(MPG1 e MPG2)  
 
Total  RNA  was  extracted from 50  mg  of  frozen  melon pulp  with 

TRIZOL® Reagent (Invitrogen) buffer according to the 
manufacturer’s instruction. First strand cDNA was synthesized from 
1 µg of total RNA (DNAse treated) using a poly (T) 15 as a primer 
and Kit SuperScriptTM First-Strand System for RT-PCR (Invitrogen). 
The reaction was stopped by heating at 70°C for 10 min, and 
treated with RNAse H. Forward (F) and reverse (R) primers (50 nM) 
used for RT-PCR amplification of the target genes in each RNA 
sample are described in Table 1.  

The RT-PCR conditions were: 35 cycles at 95°C for 30 s (2 min 
for the first cycle), 47°C for Cm-AAT at 1 min and 53°C for β-Actin 
and CM-ACO1, and 72°C for 1 min (5 min for the last cycle). MPG1 
and MPG2 cycle performance was: 35 cycles at 95°C for 1min (2 
min for the first cycle), 47°C for 1:30 min and 72°C for 2 min (5 min 
for the last cycle). Actin gene was used as constitutive promoter. 
 
 
Volatile compounds (esters) 
 
All analyses were performed as described by Bauchot et al. (1998), 
with minor changes. SPME carboxen-PDMS (0.75 m × 1 cm, 
Supelco, USA) was used as the adsorbent matrix. All analyses 
were performed on a Varian 3800 gas chromatograph interfaced 
with a Shimadzu QP-50000 mass spectrometer. Volatiles were 
identified by comparing each mass spectrum with spectra from 
authentic compounds analyzed with spectra in reference collections 
(NIST/ EPA/NIH Mass Spectral database). 
 
 
Antioxidant assay activity 
 
Antioxidant activities were determined as a free radical according to 
Brand-Willams et al. (1995), by using 2, 2- Diphenyl-1-picrilhidrazil 
(DPPH) D-9132, Sigma-Aldrich, Dorset, UK. The samples analyzed 
were obtained from 100 g of fruits pulp dissolved in 250 ml of 
ultrapure water and centrifuged at 14000 × g for 15 min. The 
measurement of reduction absorbance was processed with 3.9 ml 
of free radical DPPH (100 μM) dissolved in 80% methanol. Then 
0.1 ml of sample or standard was added to homogenize the mixture 
carefully. It was left in the dark for 30 min at a wavelength of 517 
nm. The DPPH concentration in reaction was calculated by a linear 
regression obtained from calibrated curve. The results were 
expressed in TEAC activity equivalent to Trolox (acid 6-hidroxi-2, 5, 
7, 8-tetramethylcrome-2-acid carboxilic, 97%; μM g of fresh weight-
1). The antioxidant synthetic Trolox was used based on calibrated 
curve. 
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exo-poligalacturonase, β-galactosidases/β-galactanases, 
expansins, endo-1, 4-b-glucanases, and xyloglucan 
endotransglycosylases (Rose et al., 1998; Hadfield et al., 
1998). 

Earlier, Gonçalves et al. (2013) showed that PG1 
responds to ethylene treatment in pMEL1AS and 
pAP4AS cloned fruits. The regulation of gene expression 
during maturation and senescence related as wall cellular 
enzymes has generated a lot of discussion. Sitrit and 
Bennett (1998), studying polygalacturonase behavior 
gene in tomatoes expressing an ACC synthase gene with 
low ethylene production, verified that polygalacturonase 
mRNA gene was suppressed but when ethylene was 
applied, there was increase in mRNA transcripts levels of 
PG. However, in both cases, there was fruit softening. 
Regarding the gene MPG2, cited by Hadfield et al. (1998) 
as a possible exo-PG, the accumulation of mRNAs was 
gradual under the action of ethylene. 

In mango, Sane et al. (2005) describe an expansion 
gene which  correlates with the other genes of the cell 
wall metabolism during maturation induced by ethylene 
treatment. In advanced stages of ripening, endo- β-1, 4-
glucanase enzymes correlate with increased activity of 
EGase (Chourasia et al., 2008). This study overlapping 
expression of cell wall enzymes shows synergistic action 
which explains why the change of part of the plant cell 
wall metabolism is directly influenced by ethylene, while 
another part depends on physiological factors correlated. 
Quesada et al. (2009) demonstrated that PG plays an 
important role in the ripening of strawberry and is 
negatively regulated by auxin. In strawberry fruits with PG 
transformed anti sense, the behavior is similar to that of 
melons, which maintain pulp firmness and increase the 
content of soluble solids during ripening. 

MPG1 and  MPG2 correspond respectively to an endo 
and exo-PG. Hadfield et al. (1998) state that both are 
involved in the reduction of  pulp firmness, but MPG1 
gene has stronger effect. This explains the quick and 
severe loss of firmness during the first 24 to 48 h of 
exposure to ethylene. It should be noted, however, that 
the interpretations of this study, which entail evaluating 
the mRNAs of genes and not enzymatic activity, give the 
assumption that the period between the transcription, 
translation, and post modification co-translational is long. 
This statement is made because in some cases, there is 
no relationship between the rate of transcription and 
enzymatic activity respectively. Like in the case of 
tomatoes, where the gene transcription PG is far above 
the máximum enzymatic activity (Sitrit and Bennett, 
1998). However, Hadfield et al. (1998) and Rose et al. 
(1998) observed that these events are simultaneous and 
co-ordinated in melon. 

The mRNAs transcription of Cm-AAT1 was strongly 
expressed in control melons than in AS3 melons. This 
behavior is based on the fact that, Cm-AAT1 gene is 
induced during the ripening and under ethylene action 
(Flores et al., 2002; Katzir et al., 2008); this is with pMEL  
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clone of ACC oxidase gene (Lassere et al., 1996). The 
WT fruits had high aroma production. When ethylene 
production was reduced, volatile compounds synthesis 
was reduced too. This behavior has been explained 
earlier by other authors (Bauchot et al., 1998; Yahyaoui 
et al., 2002; Silva et al., 2004). The ethylene treatment 
did not restor the volatile compounds production 
completely, as seen in the study of Flores et al. (2002). 
The effect was partial. This behavior is not due to 
ethylene treatment imperfections, but  because it has the 
same conditions described by other authors (Bauchot et 
al., 1998; Yahyaoui et al., 2002; Flores et al., 2002). The 
ethylene treatment induced Cm-AAT1 transcription 
(Figure 2), but there was no total response to volatile 
compounds production, which is contrary to the results 
obtained by Flores et al. (2002). 

By studying the possible causes of this behavior 
ethylene was applied to enhance ACC oxidase 
expression in the proper phytohormone biosynthesis 
pathway, Cm-AAT1 and esters. The mRNAs expression 
of these genes was stimulated (Figure 2), as  described 
by Yahyaoui et al. (2002). This behavior could have 
occurred by controlling the processes of post-transcrip-
tions phases and/or other metabolism pathways that 
reduced levels of subtrates such as Acyl CoA, organics 
acids, aldehyds, alcohols from fatty acids and amino 
acids degradation (Song and Bangerth, 2003; Fellman et 
al., 2000). In general, the metabolism is lower when 
ethylene production is low; so it suggests that the 
reserved degradation that gives substrates physiological 
events in secondary metabolism is affected (Baldwin et 
al., 2000; Bauchot et al., 1998). Moreover, the effect of 
ethylene in the processes of CoA-SH recycled; reaction 
product in the esters pathway by action of AATs 
(Lucchetta et al., 2007) is unknown. Hypothesis is not 
tested in this study. In climacteric fruit, the esters volatile 
compounds are prevalent in strawberries (Severo et al., 
2011), apple (Villatoro et al., 2008) and melon (Obando-
Ulloa et al., 2008). 

The volatile compound was quantified in these fruits. 
This has already been done by Bauchot et al. (1998). WT 
fruits have high esters production. When it was reduced, 
the ethylene produced by transformed plants was 
observed as a significant factor responsible for the low 
volatile compounds synthesis (Figure 3). This behavior 
has been explained earlier by other authors (Yahyaoui et 
al., 2002; Silva et al., 2004; Pech et al., 2008). The 
ethylene treatment did not restore the volatile compounds 
production completely, as seen in the study of Flores et 
al. (2002). It was partial, having recovered around 30% of 
volatile compounds; although this maintained the fruits 
under 120 h ethylene actions (Figure 3). This behavior is 
not due to ethylene treatments imperfections, but due to 
its concentrations and times of exposure (data not 
shown). The compounds analyzed, 2-Methylpropyl 
acetate, 1-butyl acetate, 2-methyl-1-butyl acetate, 1-hexyl 
acetate,  methyl  propanoate,  ethyl   propanoate,  methyl 
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butanoate and Ethyl butanoate were more expressive 
than the one treated with ethylene. 

The aroma profile of the melon decreases with maturity 
and senescence. In the same species, the profile of 
volatile compounds is different between climacteric and 
non-climacteric fruits (Obando-Ulloa et al., 2008). 
Villatoro et al. (2008) demonstrated that during the 
ripening of apples, there was increased esters production 
primarily by the accumulation of substrate for the action 
of the enzyme alcohol acyltransferase. This is due to the 
action of other enzymes such as precursor lipoxygenase 
(LOX), hydroperoxide lyase (HPL), pyruvate 
decarboxylase (PDC) and alcohol dehydrogenase (ADH) 
that give rise to the substrates.  

Souleyre et al. (2005) showed that the substrate is not 
necessarily the profile of esters of fruit; this explains why 
there are no specific precursors of the esters. Severo et 
al. (2011) describe significant affinity between the 
transcription and physiological responses related to 
changes in sensory and nutritional strawberry, which 
highlights genes involved in cell wall metabolism, 
phenolic compounds biosynthesis, ascorbic acid and 
aroma (ADH and, AAT). 

In earlier study (Shan et al., 2012), melons transformed 
with antisense AAT resulted in levels of mRNA transcripts 
and lower enzymatic activity than WT fruits. This caused 
a reduction in esters production. The reduction of esters 
contributed to a greater accumulation of aldehydes and 
alcohols that normally decrease with ripening. In previous 
studies, our group of collaborators (Yahayaoui et al., 
2002; Ei-Sharkawy et al., 2005; Lucchetta et al., 2007) 
had already reported that these clones (Cm-AAT) after 
expression in yeast were active and showed different 
substrate preferences. 

One of the molecules included in the antioxidant activity 
are phenolic compounds, although they are not evaluated 
in this study. These phenollic molecules can contribute to 
increase antioxidant activity. In studies with Kiwi fruits, 
Park et al. (2008) showed a strong correlation between 
applying ethylene with phenol compounds. The same 
authors showed that there are different phenolic 
compounds interacting in different moments at fruit 
ripening stage. 

The evaluations also showed the functional/nutritional 
modifications in the melon pulp; therefore, the AS fruits 
had low accumulation of ascorbic acid (vitamin C), but 
they had a significant increased antioxidant potential. 
Ioannidi et al. (2009), studying the expression profile of 
ascorbic acid-related genes during tomato fruit develop-
ment and ripening, showed that L-Galactose-1-phosphate 
phosphatase mRNA and transduction are dependent on 
ethylene. Perhaps, in our study, this gene can be 
changed by antisense ACC oxidase gene, showing a 
small loss of AA content compared to the wild type. The 
carotenoids contents were not altered by genetic 
modification and treatment with ethylene (data not 
shown). 

 
 
 
 

The reduction of ascorbic acid contents in AS melons 
and genetic modification were on average five times the 
values found in fruits. After the harvest, in the fruits 
treated with exogenous ethylene, a stimulation of the 
maturation was verified. This led to a significant reduction 
of ascorbic acid contents, mainly in WT melons, that were 
more sensible to this phytohormone. This reduction is 
also observed in other fruits with mature stadium 
(Andrade et al., 2002) where, the oxidation of ascorbic 
acid (vitamin C) produces compounds with radical 
carbonyl that can react with amino groups and by 
polymerization produce dark pigments. The levels of 
ascorbic acid in AS fruits were practically unchanged.  

An hypothesis is linked to cell wall metabolism. Di 
Matteo et al. (2010) verified that the up- regulation of a 
pectinesterase and two polygalacturonases suggests that 
AsA accumulation in tomato fruit is mainly achieved by 
increasing flux through the L-galactonic acid pathway, 
which is driven by pectin degradation and may be 
triggered by ethylene. Otherwise, in our AS3 melons, AA 
was kept due to low production of ethylene and conse-
quently low expression of polygalacturonase as 
demonstrated in Figure 2. 

The antioxidant activity of AS melons in the harvest 
was on average 100% more than that of WT fruits. The 
genetic modification resulted in reduction of ethylene 
production and in prolongation of maturation cycle. This 
led to high accumulation of compounds that result in 
antioxidant activity. The postharvest treatment with 
exogenous ethylene accelerated the process of 
maturation and the accumulation of compounds with 
antioxidant capacity. The effect of ethylene was more 
intense in WT fruits; however the indices of the 
antioxidant activity of AS continued to be significantly 
higher. The levels of potential antioxidant activity in 
cantaloupes melons have average good values in relation 
to some fruits commercialized; however they were lesser 
in red fruits (Kuskoski et al., 2005). The antioxidant 
capacity of fruits makes provision for some components, 
mainly phenols and the concentrations depend on 
environmental conditions, cultivar, species, etc. In this 
study, the genetic modification changed the composition 
and quantity of potential antioxidant. These differences in 
compounds can change the interaction for synergism or 
inhibitory effect (Rice-Evans et al., 1999; Robards et al., 
1999). 

To explain the behavior of WT melons and exogenous 
treatments, the possible interference of the ethylene 
production reduced can be related to cytokinins amounts 
and possible responses to the ethylene treatment 
(Zaicovski et al., 2008, Gonçalves et al., 2013). Zaicovski 
et al. (2008), evaluating different effects of depth 
irrigation on broccoli, showed that hydric stress was able 
to extend shelf life, gave high cytokinin levels and low 
ethylene production. Liu et al. (2013) transformed 
broccoli with isopentenyltransferase transformed (IPT), 
which encodes the key enzyme for cytokinin; and exoge- 



 
 
 
 
nous treatment with N6-benzylaminopurine promoted 
postharvest conservation, establishing a system of 
protection. 

The transgenic melons plants had significant phenol-
types alterations such as delaying leaves senescence, 
emission of more shoots and prolonging cycle of ripening. 
This indicates that other hormones interaction changes 
this phenotypes aspect, modifies ethylene sensibility, 
increases roots mass and more accumulation of the 
cytokinins levels in roots, pulp and rind  of fruits 
(Gonçalves et al., 2013). The high accumulation of 
transcripts of genes involved in cytokinin synthesis shows 
that cytokines could be responsible for these different 
physiological behaviors of melon. Broccoli (Chen et al., 
2001) and tomato (Martineau et al. 1995), induced to 
increase cytokinins, had significant effect on the ethylene 
responses. The irrigation management can stimulate the 
roots emission and increase the synthesis and trans-
location of cytokinins. This leads to reduction in the 
ethylene responses, leaves and flowers senescence 
(Zaicovski et al., 2008; Chang et al., 2003; Hedden and 
Philips, 2000; Martineau et al. 1995). In addition, 
cytokinins treatment in broccolis reduced the ethylene 
responses, which leads to the prevention of high green 
color degradation (Tian et al., 1995; Downs et al., 1997). 
In  the case of melon, Gonçalves et al. (2013) applied 
exogenous cytokinin. But, it did not show  any differences 
in ethylene production, firmness, soluble solids, titratable 
acidity, carotenoids, volatile ester compounds, or the 
contents of mRNA. Although the physiological mecha-
nism has not been well described, the authors suggest 
the relation of cytokinins synthesis and accumulation 
increased with shelf life prolongation. 

On the other hand, Yang et al. (2013) showed that in 
apple, the 1-MCP treatment induced changes in 
expression of genes involved in ethylene biosynthesis, 
perception and signal transduction. The 1-MCP blocked 
the system of perception and signal transduction of 
ethylene, resulting in decreased expression of genes 
involved in the ethylene response autocatalysis. In the 
case of AS3 melon, there were also changes in the 
perception and transduction system changed signal with 
low expression of related genes, causing a feeble 
response to ethylene treatment. 
 
 
Conclusion 
 
The exogenous ethylene treatments in transgenic fruits 
were reestablished and the metabolism was partially 
restored, changing fruit quality attributes. Transgenic 
melon expressing an antisense ACC oxidase under 
ethylene treatment was able to restore polygalacturonase 
genes (MPG1 and MPG2). Fruit firmness was greatly 
reduced similar to non- transgenic fruits. For CmAAT, the 
restoration of expression was similar to WT levels;  
however, there was no consistent amount of the esters 
productions,  strengthening  the  hypothesis   that,  other 
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factors influence the aromatic compounds production. 
AS3 melons showed higher total antioxidant activity than 
WT maintained throughout the treatment with exogenous 
ethylene. 
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