

Vol. 13(33), pp. 3344-3351, 13 August, 2014
DOI: 10.5897/AJB2014.13680
Article Number: 4C4439846615
ISSN 1684-5315
Copyright © 2014
Author(s) retain the copyright of this article
http://www.academicjournals.org/AJB

African Journal of Biotechnology

Full Length Research Paper

A parallel reconfigurable platform for efficient
sequence alignment

A. Surendar1*, M. Arun2 and P. S. Periasamy3

1Research Scholar, Anna University, Chennai-600025, India.

2School of Electronics Engineering, VIT University, Vellore-632014, India.
3Department of ECE, K.S.R. College of Engineering, Tiruchengode-637215, India.

Received 31 January, 2014; Accepted 4 July, 2014

Bioinformatics is one of the emerging trends in today’s world. The major part of bioinformatics is
dealing with DNA. Analysis of DNA requires more memory and high efficient computations to produce
accurate outputs. Researchers use various bioinformatics algorithms for sequencing and pattern
detection techniques, but still now it takes enormous amount of time for computations. In our method
we are going to propose a time, memory and speed optimized algorithms for efficient repetitive finding
in genomes and proteins. Then, another major aspect is the hardware implementation. It is a platform
which reduces the complexity of process further. Therefore, we have proposed to implement the
optimized algorithm in the reconfigurable and user friendly FPGA platform. Thus, our proposal mainly
focuses on an efficient and optimized computation, analysis and sequencing of DNA pattern. The
distinct feature is reducing the time consumption from several hours to few seconds.

Key words: DNA, sequencing, bioinformatics, efficient computations, repetitive finding, optimized sequencing.

INTRODUCTION

In the world of expanding set of biological species, finding
repetitive structures in genomes and proteins is important
to understand their biological functions. DNA
sequencing is the process of determining the precise
order of nucleotides within a DNA molecule. It includes
any method or technology that is used to determine the
order of the four bases Adenine, Guanine, Cytosine
and Thymine in a strand of DNA (Surendar et al., 2013).
The advent of rapid DNA sequencing methods has
greatly accelerated biological and medical research and
discovery. If the number of maximal repeat increases,
then finding those structures becomes tedious. In existing

method, Burrows Wheeler Transform and Wavelet
Coding, the major disadvantage is time consumption.
And it also needs huge computer space for processing
the structures. One of the most important thing that
decides our heredity is DNA. One of the well-known
features of DNA is its repetitive structures. Many existing
methods proposed different data compression formats to
reduce the space consumption. Even though the method
saves memory, time and speed efficiency cannot be
obtained. To obtain optimization of the bioinformatics
algorithms used: i) bloom filter; ii) content-addressable
memory; iii) Aho-Corasick algorithm are used.

*Corresponding author. E-mail: surendararavindhan@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0
International License

Figure 1. Flow of bloom filter.

TOOLS FOR OPTIMIZATION

A field-programmable gate array (FPGA)

A field-programmable gate array (FPGA) is an integrated
circuit designed to be configured by a customer or a
designer. The FPGA configuration is generally specified
using a hardware description language (HDL). FPGAs
are reprogrammable silicon chips. It provides hardware-
timed speed and reliability. FPGAs are truly parallel in
nature. Previously, a design may have included 6 to 10
ASICs, the same design can now be achieved using only

Surendar et al. 3345

one FPGA (Surendar et al., 2013).

Altium - 3000 nanoboard-XILINX variant

Altium - 3000 nanoboard-XILINX variant is a perfect
entry-point to discover and explore the world of soft
design. It is a programmable hardware platform. Rapid
and interactive implementation and debugging of digital
designs can be achieved. It has a fixed user FPGA’s on
the motherboard and so, speed of processing is
increased. Circuit can be probed, analyzed and
debugged interactively using an array of virtual
instruments and JTAG-based monitoring features.

Bloom filter

Bloom filter (Arun and Krishnan, 2011) is a space-
efficient probabilistic data structure that is used to test
whether an element is a member of a set (Figure 1). This
compact representation is the payoff for allowing a small
rate of false positives in membership queries; that is,
queries might incorrectly recognize an element as
member of the set which can be made negligible by the
intensive design effort. It consists of number of hash
tables and hash functions that easily store and handle the
incoming strings. Each hash table entry stores only a
single bit of data, thus a hash table of size M would be
made up of M entries, each of size one bit. A bloom filter
must be trained with a dictionary of malicious strings
before it can be used in a system. All hash table entries
are initialized to 0 before training begins. During the
training phase malicious strings are fed one at a time to
the bloom filter. Each of the k hash functions then acts on
every incoming dictionary string (Table 1) and computes
an output in the range 0 to M − 1. Entries corresponding
to these k outputs are set to 1 in the hash table. The
bloom filter reports the current string in its window as a
member of the dictionary on which the bloom filter was
trained. If a non dictionary input string (Table 2) is such
that it hashes to k hash table entries, each of which was
set to 1 by one or more dictionary elements during the
training phase, the bloom filter will erroneously report this
string to be a member of the dictionary on which the
bloom filter was trained. The bloom filter thus reports a
false positive in this case. Though a bloom filter may
occasionally report false positives, it does not allow for
false negatives. Even though a bloom filter may
sometimes report a non member to be a part of the
dictionary set, it will never happen that a true member
goes unreported. Thus, the working of bloom filter can be
explained in following steps: 1) training the bloom filter
with various strings; 2) defining the hash functions and
building hash testing the incoming strings for the finding
of given string with the help of hash functions; 4)
determination of result using the behavior of the filter.

The part of code to hash the values to the hash table to

3346 Afr. J. Biotechnol.

Table 1. Dictionary.

Path In dictionary Suffix link Dict. suffix link

() -

(a) + ()

(ab) + (b)

(b) - ()

(bc) + (c) (c)

(bca) + (ca) (a)

(c) + ()

(ca) - (a) (a)

(caa) + (a) (a)

Dictionary {a, ab, bc, bca, c, caa}

Table 2. Input string analysis.

Node Remaining string Output end position Transition Output

() abccab Start at root

(a) bccab A:1 () to child (a) Current node

(ab) ccab Ab:2 (a) to child (ab) Current node

(bc) cab bc:3, c:3 (ab) to suffix (b) to child (bc) Current node, Dict suffix node

(c) ab c:4 (bc) to suffix (c) to suffix () to child (c) Current node

(ca) b a:5 (c) to child (ca) Dict suffix node

(ab) ab:6 (ca) to suffix (a) to child (ab) Current node

Analysis of Input string analysis.

the filter is as:

hash1:=hash(present_state(1),d);
hash2:=hash(present_state(2),d); a<=hash1; b<=hash2;
y(hash1)<='1'; y(hash2)<='1';
if(hashd_bitvectr(hash1)='1'and
hashd_bitvectr(hash2)='1')then state<="positive";
shft_out :='0'; match<=input(pos-1 to pos+4); --
elsif(hashd_bitvectr(hash1)='1' or
hashd_bitvectr(hash2)='1')then --- state<="fals_pos"; --
shft_out :='1'; else state<="negative"; shft_out :='1'; end if
The VHDL simulation of the filter yields the waveform
shown in Figure 2.

Content addressable memory

Manuscript of content-addressable memory (CAM) was
received on July 17, 1987 and revised October 5, 1987. A
content-addressable memory (CAM) is a high speed
matching unit because it has parallel matching capability
(Yoshiki et al., 2002). It speeds up the data searching
and pattern matching. CAMs are storage devices that

allow its contents to be accessible on the basis of a
match between a specified key and the contents, a
process called "content addressing". CAM architectures
fall between two extremes: the bit serial CAM and the
fully parallel CAM. In the bit serial CAM, the matching
logic is associated with one bit position, and shared
among all the bits in a word, in effect matching one bit at-
a-time simultaneously in all the CAM words. In the fully
parallel CAM, each word has its own bit-parallel matching
logic, allowing that match of all words to process. Here,
initially the device is trained with certain 8 bit binary
database. And then the input binary parameter is given.
The number of 1’s in the parameter is extracted by
parameter extraction then it is stored in the parameter
memory. Then 1’s in the input parameter is compare with
the trained database and produce a required result else
next input parameter is given. Thus, the working of CAM
filter can be expressed in following steps. Castelo et al.,
2002

1. The device is trained with database,
2. Input is given,

Surendar et al. 3347

Figure 2. Output waveform of bloom filter.

3. The number of 1’s and 0’s is extracted by parameter
extraction,
4. It is stored in memory,
5. Compare 1’s in the given input with database,
6. Finally, it produced the required input if it is matched
(Figure 3).

The code to train CAM is given as process
(clk,fail,sram_out,ss)

begin; if rising_edge(clk) then; tcam_in.input<=input;
tcam_in.current_state<=sram_out;
end if; end process; x2:tcam port
map(tcam_in,tcam_out); x3:sram port

map(tcam_out,sram_out,fail); process(sram_out); begin;
if sram_out=2 then; output<=" pattern he matched "; elsif
sram_out=9 then; output<="pattern hers matched"; elsif
sram_out=7 then; output<="pattern his matched "; elsif
sram_out=5 then; output<="pattern she matched "; end if;
end process; The VHDL simulation of the filter yields the
waveforms shown in (Figures 4 and 5).

Aho-Corasick

Aho-Corasick algorithm (Komodia, 2012) is a dictionary
matching algorithm that searches for elements of a finite
set of strings in the input text, developed by Alfred V. Aho

3348 Afr. J. Biotechnol.

Figure 3. Pre-computation block of CAM.

and Margaret J. Corasick. Since, it locates all patterns in
one time, the time complexity of the algorithm (Jung et
al., 2006) is proportional to sum of the length of the
patterns, length of the input text and the number of
matches. In this algorithm, a trie with suffix tree-like set of
links is established from each node representing a string
to the node corresponding to the longest proper suffix.
Since, it also consists of links from each node to the
longest suffix node that connect to a match string; all of
the matches can be traversed by going along the
resulting linked list. The trie is utilized at runtime to keep
track of the longest match and the suffix links are used to
make sure the computation is proportional to the length of
the input. For every link along the dictionary suffix linked
list and every node in the dictionary located, a match is
found. Since most of the time, the pattern database is
known ahead, program can be created to build the trie,
compile it and save it for later use. In this case, the
computational complexity in the runtime is proportional to
the sum of the length of the inputs and the number of
matched entries. Figure 6 shows an example of data
structure made up from a couple of strings. Each row
represents a node in the trie while each column indicates
the distinct order of characters from root to the node. In

every step, the current node will try to find its child
recursively if the suffix child does not exist until it reach
the root node. Steps taken when scanning “abccab” are
shown below.

Simulation on an input text

Since there may be two or more dictionary entries at a
character location in the input text, more than one
dictionary suffix link may need to be followed. The
working of Aho-Corasick can be explained as follows.

1. The data pattern to be analyzed is built as a dictionary,
2. The pattern to be find is given as input,
3. The node built based on suffix matching,
4. The input for next string is taken from previous node.

Hence, all the pattern is matched at same time. The
critical part of code to train the filter is given as,
architecture behave of aho_Corasick is

type state_node is;
(state_0,state_1,state_2,state_3,state_4,state_5,state_6,

Surendar et al. 3349

Figure 4. Output waveform of CAM.

Figure 5. Output waveform of SRAM.

3350 Afr. J. Biotechnol.

Figure 6. Output waveform of Aho-Corasick.

Figure 7. Flow of Aho-Corasick string
matching.

Surendar et al. 3351

Figure 8. Performance summary of filters.

state_7,state_8,state_9); signal g:state_node; begin;
process(clk,g,a); begin; if rising_edge(clk) then; case g is;
when state_0 =>; match_vector<="00"; pattern<='0'; if
a(1)='h' then; g<=state_1; elsif a(1)='t' then; g<=state_3;
else; -- g<=state_0; end if; The VHDL simulation of the
filter yields the below waveform (Figure 7).

Conclusion

The filter used not only reduces the execution
performance time but it stands out most in saving the
memory. The flip flops and the latches used are triggered
efficiently using perfect clocks. The total I/O ports used
for this process are very less. The time of CPU
processing is reduced very much and thus it enhances
the output processing capability. The below table shows
the requirements of optimized filters. The optimized
algorithms are implemented in reconfigurable FPGA
platform. The FPGA platform is in Altium Nanoboard
3000- Xilinx Spartan. The above proposed algorithms are
analyzed to be efficient from their performance. When it
is implemented in a reconfigurable platform it will work in
more optimized way that produces accurate outputs. The
Nano Board 3000 is a programmable design environment
so it will be efficient for analysis.

Conflict of Interests

The author(s) have not declared any conflict of
interests.

REFERENCES

Arun M, Krishnan A (2011). Functional Verification of Signature

Detection Architectures for High Speed Network Applications.
International Journal of Automation and Computing, Springer
9(4):395-402.

Arun M, Krishnan A (2011). Low Power Bloom Filter Architectures Using
Multi Stage Lookup Techniques. Aust. J. Elect. Electronics
Engineering, 8(3):1-10.

Castelo AT, Martins W, Gao GR (2002). Troll-Tandem Repeat
Occurrence Locator. Bioinformatics. 18(4): 634-636.

Jung HJ, Baker ZK, Prasanna VK (2006). Performance of FPGA
Implementation of Bit-split Architecture for Intrusion Detection
Systems.

Komodia (2012). Aho-Corasick source code. Available:
http://www.komodia.com/aho-corasick

Surendar A, Arun M, Periasamy PS (2013). Hardware Based Algorithms
for Bioinformatics Applications - A Survey. Int. J. Appl. Eng. Res.
(6):745-754.

Surendar A, Arun M, Bagavathi C (2013). Evolution of Reconfigurable
Based Algorithms for Bioinformatics Applications: An Investigation.
Int. J. Life Sci. Bt & Pharm. Res. 2(4):17-27. Symposium on
Biocomputing. 7: 271-282.

Yoshiki Y, Tsutomu M (2002). High Speed Homology Search with
FPGAs. Pacific

