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2010). 

Successful large scale microalgal cultivation systems 
rely heavily on the quality, vigour and physiological 
properties of the seed culture, cultivation system as well 
as techno-economic considerations (Jonker and Faaij, 
2013). In addition, the optimum combination of technical 
innovations in systems and processes, coupled with 
economic feasibility in the practical implementation and 
integrated scale-up for commercial production and 
marketing is also essential for successful development of 
algae based biofuels (Gendy and El-Temtamy, 2013). It 
is imperative to develop a seed culture propagation 
strategy that will result in the development of robust and 
high quality inoculum for seeding a large scale open 
raceway pond.  Raceway ponds are preferred for micro-
algae cultivation due to a number of advantages as 
compared to photobioreactors (Razzak et al., 2013; 
Mutanda et al., 2011a; Harun et al., 2010; Chisti, 2007; 
Grobbelaar, 2009; Pulz and Gross, 2004). 

Preliminary microalgal cultivation studies demonstrate 
that there are 4 fundamental steps for up scaling seed 
culture to be adequate to inoculate a large commercial 
raceway pond (Grobbelaar, 2009). The four important 
steps to full realisation of a high quality seed culture are: 
(1) bioprospecting for hyper lipid producing microalgal 
strain; (2) strain selection, isolation and purification using 
conventional and advanced methods; (3) up scaling of 
the seed culture under laboratory conditions in aspirator 
bottles and (4) seed culture propagation in a pond under 
open conditions (Grobbelaar, 2009; Mutanda et al., 
2011a). The outdoor ponds are operated as a series of 
batch reactors with inoculation volumes ranging between 
20 and 25% of the volumes of the next size cultures. 
Ambient CO2 is adequate as a carbon source for 
microalgal growth but however, pure CO2 gas is supplied 
on demand following an increase in pH above pH 9.5 
(Bechet et al., 2013; Grobbelaar, 2009). 

The production process is a stepwise increase in 
volume, always starting from pure laboratory grown 
cultures (Grobbelaar, 2009). This is done to minimise 
contaminating microalgae from taking over the target 
culture and to ensure that only the target strain is 
propagated to be the dominant population for inoculation 
of the large scale raceway pond. Finally, the entire 
contents of the small seed culture ponds are transferred 
to the next size production ponds as inoculum and 
eventually to the large scale raceway pond. However, it is 
crucial to transfer seed culture that is at the exponential 
growth phase to the same media previously used for 
seed culture proliferation so as to minimise culture shock 
and to prevent a long lag phase when the seed culture is 
transferred to the large scale raceway pond. 

The commercial cultivation of microalgae and cyano-
bacteria on an industrial scale began with the culture of 
Chlorella in Japan in the 1960s followed by the cultivation 
of Spirulina in Mexico, the USA and China in the 1970s 
(Radmann et al., 2007). Chlorella, Spirulina and Dunaliella 

 
 
 
 
are commonly cultivated since they can be easily grown 
in highly selective media and can be cultivated in open 
raceway ponds and remain relatively free from conta-
mination (Radmann et al., 2007). The main beneficial 
factor of the open raceway pond technology is its 
possible low cost microalgae cultivation system with a 
wide array of process designs ranging from single, 
multichannel and cascading systems.  

Other biotic factors that feed on microalgae such as 
invertebrates, bacteria and viruses play havoc with 
microalgal cultivation under open conditions. Protozoa 
can devour a pond of microalgae in a matter of minutes 
therefore it is crucial to closely monitor these conta-
minants. Due to unpredictable population dynamics of the 
raceway pond due to seasonal variability, it is crucial to 
monitor any succession tendencies in the ponds by non-
target microalgae. The important factors affecting 
microalgal growth are light intensity, temperature, 
nutrients, pH and salinity. These factors must be optimal 
for maximal microalgal growth and productivity. Therefore 
the aim of this study was to investigate the effect of 
physico-chemical and biotic factors on seed culture 
propagation in open ponds. 
 
 
MATERIALS AND METHODS 
 
Materials and reagents 
 
Portable pools (500 L), fish pumps, tubings, lights and all 
accessories used for aerating the pools were bought from local 
suppliers. Aspirator bottles (Schott Duran, 25 L), oven and 
rotavapor were purchased from Lasec, South Africa. The 
Spectroquant ® Pharo 300UV / VIS 190 -1100 nm 
spectrophotometer was purchased from Merck, South Africa. The 
Hach pocket colorimeter (for the determination of free and total 
chlorine) and powder pillows were obtained from Universal Water 
Solutions, South Africa. The light intensity meter and the YSI probe 
were purchased from Campbell Scientific Africa and Monitoring and 
Control Laboratories Pty Ltd respectively. All the reagents used for 
media preparation were of reagent grade unless otherwise stated. 
 
 

Microalgal strain isolation and purification 
 
An extensive bioprospecting exercise for hyper-lipid producing 
microalgae was carried out in aquatic habitats in Kwa-Zulu Natal 
Province, South Africa. Subsequently, a robust high lipid producing 
C. vulgaris was isolated from a wastewater maturation pond at 
Kingsburgh wastewater treatment plant in Durban, South Africa. 
The microalgal strain was purified to monoculture using standard 
conventional protocols and identified using molecular tools to 
determine phylogenetic affiliations as previously reported in our 
laboratory (Bhola et al., 2011). Sequence results from BLAST 
searches into the GenBank databases confirmed that the obtained 
sequences were homologous to ribosomal genes of C. vulgaris with 
99% similarity and the sequences obtained were deposited to 
GenBank with the accession number HM046832 (Bhola et al., 
2011). The purified isolate was kept at 4°C in suspension and 
routinely subcultured until needed for further research. 
 
 
Growth conditions and media composition 
 
The microalgal cultures were grown and maintained in BG-11
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Effect of free chlorine on C. vulgaris 
 
The free chlorine in the 3 ponds was determined and was 
found to be 0.05 mg/L on the first day of microalgal 
growth in the 3 ponds. However on the last day of growth, 
there was a slight decrease in free chlorine to 0.03mg/L 
in the 3 ponds. 
 
 
DISCUSSION 
 
Similar work done by Grobbelaar(2009) also support the 
assumption that continued growth of microalgal cells in 
batch culture could negatively impact on their viability and 
resuscitation and rejuvenation of these cells can lead to 
failure when transferred to large scale raceway pond.  It 
was observed that settling of the cells was a major 
stumbling block and mechanical mixing of the suspension 
was only achieved by physically mixing 3 times a day 
using a hand held pump. The maximum dry weights 
achieved were 0.898, 1.09 and 1.05 g/L for pond 1, 2 and 
3, respectively (Figure 1). Free chlorine is reported to be 
a micronutrient for microalgal growth therefore initial free 
chlorine in all the 3 ponds was determined and was found 
to be 0.05 mg/L. 

pH has a major effect on microalgal growth since it 
controls all metabolic and physiological functions of the 
cell as well as influencing biomass regulation (Mayo, 
1997). The pH concentration range for the existence of 
biological life is quite narrow (typically 6-9) and an 
indication of extreme pH is known to damage biological 
processes in biological treatment units (Akpor and 
Muchie, 2011). Therefore it is imperative to closely 
monitor pH in the ponds. The pH levels above 9 are 
desirable because some contaminants such as 
protozoans and rotifers are inhibited under these 
conditions and are therefore completely eliminated from 
the ponds but however, invertebrates can easily survive 
and thrive above pH 9. The presence of these con-
taminating microorganisms can lead to disastrous 
consequences since they are known grazers and can 
therefore devour the target microalgal cells in a short 
space of time. There was a gradual decrease in pH levels 
in pond 1 for the first three days of growth (Figure 2) and 
this is attributed to accumulation of dissolved CO2 as the 
microalgal cells adjust to the new conditions in the open 
pond growth system. It is interesting to hypothesise that 
pH is strongly regulated by both CO2 concentration and 
photosynthetic rates in the pond. Using higher concen-
tration of CO2 may result in decreasing the pH since 
unutilized CO2 will be converted to H2CO3 and on the 
other hand, if there is not enough CO2 gas supply, 
microalgae will utilize carbonate to maintain its growth 
(Widjaja et al., 2009). In a similar study, the addition of 
either or both, CO2 and combined nitrogen (as KNO3 or 
NH4Cl), did not result in any increase in microalgal 
biomass productivity (Fontes et al., 1987). Optimal values  

 
 
 
 
for pH and temperature were 8·2 - 8·4 and 30 - 35°C, 
respectively (Fontes et al., 1987). However, the data 
generated was only for day time conditions and it will be 
interesting to monitor pH levels at night where photo-
synthesis does not take place. 

Temperature is one of the most crucial factors affecting 
biomass accumulation and lipid production by microalgal 
cells since it is pivotal in all enzymological reactions and 
physiological functions of the cells. It is well documented 
that sub-tropical freshwater microalgae require 
temperatures in the range of 25 to 30°C for optimal 
growth (Grobbelaar, 2007).In this study, the temperature 
fluctuated in the 25 to 30°C range in agreement with data 
from other researchers (Mayo, 1997). Ambient tem-
perature in this range is known to influence the biomass 
composition, nutrient requirements, nature of metabolism, 
and the metabolic reaction rates because microalgae do 
not have the ability to regulate their internal temperature 
(Carvalho et al., 2009; Mayo, 1997). 

Microalgae require illumination conditions to econo-
mically achieve maximum photosynthetic rates and consi-
dering the operating conditions, light intensity (or illumi-
nance) is one of the several parameters influencing the 
growth of photosynthetic organisms such as micro-algae 
(Zhao et al., 2013; Mata et al., 2012). Light intensity, 
quality and duration of exposure are the main driving 
forces for higher photosynthetic rates and subsequent 
high biomass and lipid productivities. It was reported that 
light intensity of around 300 µmol/m2/s is ideal for optimal 
microalgal growth although too much light intensities can 
cause photo-oxidation that is harmful to C. vulgaris 
though intermittent light fluctuations enhance microalgal 
productivity (Grobbelaar, 1989). In addition, previous 
studies have reported that varying illumination intensities 
in outdoor conditions are likely to inhibit microalgae 
growth because of the shortage in light energy, for 
example, very low light intensities during rainy days or 
the photoinhibition caused by excessive irradiance, or 
very high light intensities at noon times during summer 
(Ugwu et al., 2007). The gradual decrease in light 
intensity is explained by the biomass accumulation in the 
suspension which retarded light penetration into the 
media. Furthermore, the presence of clouds and rainy 
conditions on some days prompted the ponds to be 
covered by a plastic sheet hence lowering light intensity 
in the microalgal suspension. From our findings (Figure 
4), it is generally accepted that light intensities at this site 
are ideal for C.vulgaris cultivation and it is feasible to 
grow this culture in a large scale raceway pond. 

The additional expenditure of metabolic energy under 
stress conditions is required for maintaining ion homeo-
stasis and electrochemical gradients, for the biosynthesis 
of organic compounds which play an important role in 
protection and osmoregulation, and for supporting the 
maintenance of cellular structure (Alyabyev et al., 2007). 
In addition, salinity controls the osmotic potential of the 
suspension therefore has a  strong influence on the water 



 
 
 
 
relations of the microalgal cells. For small scale 
laboratory shake flask experiments, it is recommended to 
wash the cells with ammonium formate and deionised 
water to remove the salt residues (Chinnasamy et al., 
2010). The salinity levels recorded for the three ponds 
are ideal for C.vulgarisgrowth.  High salinity is reported to 
increase lipid production by microalgae but however, too 
high salinity levels above the threshold are detrimental to 
C.vulgaris and can lead to microalgal growth inhibition 
(Ho et al., 2010). 

Environmental conditions such as temperature, salinity 
and atmospheric pressure greatly affect oxygen solubility 
in water. The dissolved oxygen is an important parameter 
for microalgal respiration and therefore energy pro-
duction. The subsequent biomass and lipid yield is 
affected by the dissolved oxygen in the medium. The 
dissolved O2 saturation in freshwater under atmospheric 
pressure at 20°C is 9.1 mg/L. The elevated dissolved 
oxygen concentrations on the final day of cultivation are 
explained by continuous and cumulative oxygen evolution 
due to microalgal photosynthesis, therefore exceeding 
the DO2 concentration standard for freshwater. Elevated 
levels of dissolved oxygen are not desirable in the culture 
because it is well-known that dissolved oxygen is lethal to 
microalgal cells (Suali and Sarbatly, 2013). 

Total dissolved solids (TDS) is a measure of the 
combined content of all inorganic and organic substances 
contained in the aqueous suspension in molecular, 
ionized or micro-granular suspended form. Salinity also 
comprises some of the ions that constitute TDS. The 
most common chemical constituents of TDS are calcium, 
phosphates, nitrates, sodium, potassium and chloride 
ions.  These ions are readily found in BG-11 medium 
used in this investigation. The findings (Figure 7) 
demonstrate that TDS is a function of both salinity and 
evaporation rates.  Microalgae cultivated in raceway pond 
remove TDS as they use the organic and inorganic ions 
for their primary production (MoheimaniandBorowitzka, 
2006; Park et al., 2011). However, the TDS contributed 
by dust and clay particles cannot be eliminated by the 
microalgal cells. The presence of debris in the ponds 
could potentially lead to bacterial contamination and all 
the leaves and grass components that fell in the ponds 
were routinely removed from the ponds to alleviate this. 

Conductivity is a measure of a material’s ability to 
conduct an electrical current and due to the presence of 
electrolytes in BG-11 medium, conductivity is an 
important parameter to measure so as to establish 
general utilisation of the inorganic materials in the 
medium by the microalgal cells. Conductivity is closely 
associated with TDS and salinity and this is manifested 
by the findings obtained in this investigation (Figure 8). 
The phenomenon observed is explained by the 
bioavailability of chemical species in the BG-11 medium 
whose uptake by the microalgal cells led to a decrease in 
conductivity in the aqueous microalgal suspension. 

ORP  is a tendency  of  a  chemical species  to  acquire 
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electrons and thereby become reduced. The more 
positive the potential, the greater the species’ affinity for 
electrons and tendency to be reduced. The more 
negative values for the ORP (Figure 9) are explained by 
the evolution of O2 due to photosynthesis of the C. 
vulgaris cells and this indicate the vigour and robustness 
of the strain used with incubation time. 

It has been reported that biotic factors that may impact 
negatively on algal growth include pathogenic bacteria 
and predatory zooplankton and also that the other micro-
organisms may outcompete the target microalgal strain 
for essential nutrients (Pittman et al., 2011). Microscopic 
analysis of the cells was routinely done to check for 
contamination in the ponds.  It is documented that under 
open cultivation system, Chlorella and Scenedesmussp. 
usually coexist and are the predominant strains of the 
phytoplanktonic communities (Pittman et al., 2011). 

In conclusion, this investigation clearly demonstrated 
that for successful seed culture preparation, there is need 
to closely monitor physico-chemical and biotic factors in 
the cultivation ponds. Under optimal conditions, these 
factors can lead to high growth rates of the target 
microalgal strains.  However under the open system, it is 
very difficult to control the environmental factors and as a 
rule of thumb, population dynamics of the microalgae and 
any contaminants must be routinely monitored 
microscopically. 
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