academic Journals

Vol. 14(40), pp. 2836-2845, 7 October, 2015 DOI: 10.5897/AJB2014.14245 Article Number: 991E60655698 ISSN 1684-5315 Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB

African Journal of Biotechnology

Full Length Research Paper

Gene mining a marama bean expressed sequence tags (ESTs) database: Embryonic seed development genes and microsatellite marker identification

Emilia N. Sheehama and Percy M. Chimwamurombe*

Department of Biological Sciences, University of Namibia, P. Bag 13301, Windhoek, Namibia.

Received 14 October, 2014; Accepted 30 September, 2015

Tylosema esculentum (marama bean) is one of the underutilized legumes that have potential to provide protein and fatty acids to ensure food security in dry parts of Southern Africa. In order to establish rapid domestication programs for the plant, it is important to explore the plant's genome and identify functional genes molecular markers like microsatellites in order to develop molecular tools. With the advent of high-throughput sequencing technologies and associated bioinformatics methods, expressed sequence tags (ESTs) have been developed for many plant species. These are being developed as an economic means of obtaining large numbers of gene sequences. The aim of this study was to identify genes with important roles for valuable agronomic traits and microsatellite sequences for marama bean. The authors reported the identification of genes associated with embryonic development and microsatellite sequences. The future direction will entail characterization of these genes using gene over-expression and mutant assays.

Key words: Namibia, simple sequence repeats (SSR), data mining, homology searches, bioinformatics, *Tylosema esculentum*.

INTRODUCTION

In order to meet the future food and nutrition demands of an increasing population in southern Africa, and to make optimal use of marginal land, there is need to start research on little known edible plant species that offer great potential. *Tylosema esculentum* (Marama bean) is one of those research neglected plants. Marama bean is found in Namibia and Botswana in large populations and small populations in Gauteng, South Africa (Chingwaru et al., 2011). Marama bean is a species in the legume family that produces pods and bean-like seeds perennially. It is native to dry areas of Kalahari agroecological zones with little seasonal rainfall. It is particularly important in subsistence agriculture (Müseler and Schönfeldt, 2006). These neglected crops are usually accepted by the local population and better adapted to existing environmental conditions. The potential to provide a more stable food supply for a drought stricken Africa has been reported (Müseler and Schönfeldt, 2006). The plant is a nutritional and valuable food source and can be successfully used in programs

*Corresponding author. E-mail: pchimwa@unam.na.

Author(s) agree that this article remains permanently open access under the terms of the <u>Creative Commons Attribution License 4.0</u> International License specifically aimed at improving household and food security and in programs aimed to improve protein deficiency in southern Africa.

T. esculentum is a non-nodulating, undomesticated tuber-producing legume, abundant in protein, oil and starch (Takundwa et al., 2010). The bean and tuberous root extracts of the plant have also been used as medicine (Chingwaru et al., 2011). Despite abundance of protein, oil and starch, the plant has low yields, producing one or two seeds per pod. With the advent of bioinformatics, researchers have sequenced some legume genomes. The prominent ones are soybean (Glycine max), barrel medic (Medicago truncatula) and birdsfoot trefoil (Lotus japonicus), common bean (Phaseolus vulgaris), mungbean (Vigna radiata), red bean (Vigna acutifolius), narrow-leafed lupin (Lupinus angustifolius), wild peanut (Arachis duranensis and Arachis ipaensis), pigeon pea (Cajanus cajan) and chickpea (Cicer arietinum). The impact of these assembled, annotated genomes has been enormous. These genome sequences are useful for genome comparisons and to transfer information from these biological models to other crop species and vice versa (Cannon et al., 2009). Besides the genome sequencing of some legumes, researchers have also analyzed and exploited ESTs of some plant species in order to understand them better. These powerful tools are used to gain further insight in the molecular manifestations of growth, development, ripening and survival of the organism studied. ESTs have proven to be an economically feasible alternative for gene discovery in species lacking a draft genome sequence (Matukumalli et al., 2004), such as the T. esculentum.

An expressed sequence tag (EST) is a short subsequence of cDNA derived from cellular mRNA and thus represents part of a protein-coding gene (expressed genes). ESTs are short (200-800 nucleotide bases in length); unedited, randomly selected single-pass sequence reads derived from cDNA libraries (Nagaraj et al., 2006). EST libraries have been developed for plant species such as tomato, apple, rice, grape and citrus (Gonzalez-Ibeas et al., 2007). However, amongst the comprehensive ones are Arabidopsis thaliana and Oryzae sativa which are the common models for analysis (Gonzalez-Ibeas et al., 2007). Bioinformatics tools can be used to identify and dissect biological processes that are of great technological importance such as flavor development and fruit ripening through the analysis of ESTs (Gonzalez-Ibeas et al., 2007). Gene mining can be used to select candidate genes that are associated with traits of interest (Frank et al., 2004; Higgs and Attwood, 2005). The EST collections can also be used to develop microarrays to identify genes expressed during plant developmental stages and/or responding to environmental stimuli as well as to gain deeper understanding of the common regulatory mechanisms amongst diverse fruit species and ripening physiological patterns

(Gonzalez-Ibeas et al., 2007; Fei et al., 2004). Some previous studies have used this analysis to identify genes involved in fruit ripening and pathogen defense (Gonzalez-Ibeas et al., 2007).

T. esculentum has no genome draft. Nonetheless, due to its economic and agricultural potential, it is imperative to explore what genes and microsatellites can be efficiently and rapidly mined and identified. Delayed or inefficient analysis due to tool constraints or lack thereof may impede development of potential products such as molecular markers, beneficial genes and useful biochemical pathways. The objectives of this study were to identify genes and microsatellites represented in the ESTs library developed for marama bean.

MATERIALS AND METHODS

ESTs generation and bioinformatic analyses

RNA was extracted from the embryogenic axis of germinating marama bean seeds using a Qiagen RNA extraction kit (Qiagen, Germany) and this RNA was used to construct the ESTs library using an oligo-dT primer based cDNA synthesis kit (Roche, Germany). Pyro-sequencing with 454 Sequencing technology was used to directly sequence the resultant derived cDNAs without using vectors. For the analysis of datasets, a Window 7 professional, 32-bit operating system and Intel (R) Celeron (R) CPU at 1.80 GHz computer was used together with an internet connection. *T. esculentum* ESTs datasets were analyzed using online detached programs. There were two EST datasets that were analyzed: the marama bean single reads and the marama contigs datasets. On average, the ESTs were between 50 and 276 bp for the single reads and 100 and 718 bp for the contigs.

The single reads dataset contained 13,582 sequences which were multiple aligned using ClustalW (www.clustalw.com). This was the preliminary processing to ensure minimum redundancy of sequences. Sequences (20) were aligned at a time. After multiple sequence alignment, 10,660 sequences remained. The sequences clustered as similar scored 90% or higher. The longest sequence of each batch was selected for downstream processing.

A BLASTn search was run against the non-redundant nucleotide database of NCBI's Genebank (www.ncbi.nlm.nih.gov/BLAST/). Default search parameters were used. After the BLASTn, a tBLASTx search was done on the sequences that produced significant alignment hits. Non-plant genes and similarity alignments with E-value >0.01 were disregarded.

The marama contigs were also processed similarly, multiple aligned using ClustalW and then searched against the *Arabidopsis* database, using the default TAIR BLASTn search parameters (www.arabidopsis.org/BLAST/). The sequences before and after multiple alignment were 924 contigs. The alignments with E-value < 0.5 were considered significant. Contig sequences (50) were analyzed. The single reads that gave significant similarities were scanned for SSRs using an SSR search tool (SSRIT) (www.gramene.org/db/markers/ssrtool).

RESULTS

After the analysis of 3247 out of 10660 sequences in the single reads dataset, 227 genes and proteins were identified to be of plant origin. The genes identified were

found to be involved in essential cellular and metabolic processes in other various plants (Table 1). These were classified as housing keeping genes (79% of the total predicted proteins) and those that did not exhibit high frequencies are classified as specialized (29% of the total predicted proteins) (Figure 1). It was also observed that some of the important putative marama bean genes that were identified and are worth investigating were similar to 2: disease resistance: retrotransposons rps B₃₉ yara autonomous TY1-type, glycosyltransferase CAZy family GT₄₇; tRNA-Lys (trnK) gene intron and maturase K (matK) gene; centromeric retrotransposon Pisat1-6 mutant gag-pol polyprotein gene; inverted repeat B; RING/FYVE/PHD zinc finger superfamily and transposable element gene. Tables 2 and 3 show the genes that were identified with BLASTx from the single reads data base and TAIR BLASTn from the large contigs, respectively. Table 4 shows the microsatellite repeats that could be mined in the GRAMENE database using SSRIT microsatellite search tool.

For the large contigs dataset, 50 out of 924 sequences were searched against the Arabidopsis database and 34 genes with high similarities were found. In this study, microsatellite sequences were identified and genes associated with these SSR markers were identified to be closest to CBL interacting protein kinase (MTR_2g049790) with (CT) repeats; mitochondrion like with (GA) repeats; NA Damage-repair/toleration protein DRT111 and chloroplastic gene with (TC) repeats and lastly galactosyl transferase 11-like gene with a (TTG) repeats.

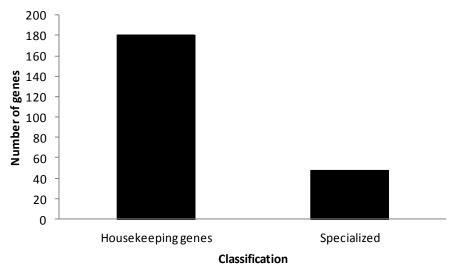
DISCUSSION

The objectives of this study were to identify genes and microsatellites from the EST single reads and contigs libraries as the first approach of identifying functional genes in marama bean at the embryonic seed stage. The plant lacks a genome draft and therefore has an unknown genome size. Due to the potential of the plant and the endeavors to domesticate it, functional genomic information is necessary to identify and map biochemical pathways and also to design primers for microsatellites. Genes (180) and proteins were identified in the single reads dataset that are involved in photosynthetic and energy processes. Genes (47) from the single reads dataset and the 34 genes identified in the contigs dataset are involved in processes such as transcription, transport, cellular communication, disease resistance and DNA repair.

Within all the genes identified in both the single reads and contig datasets, 7 genes identified have important uses in plant disease resistance as well as in plant biotechnology. For instance, rps2 gene is involved in disease resistance, while retrotransposons and transposons can be used in mutagenesis and plant evolutionary studies (Kumar and Bennetzen, 1999). In this study, the longest marker identified contains three base repeats and the rest contain two bases (dinucleotide repeats). Some genes associated with markers are involved in cellular transport and DNA repair such as DNA repair protein RAD51 homolog 2-like. It still remains to be evaluated how useful will these markers be in the selection and breeding of marama bean with desired superior traits. Similar studies have been done on plant to develop and use microsatellite markers for genetic variation analysis in the Namibian germplasm within and between populations using ESTs. The markers are now available for use in efforts of domestication and conservation. Takundwa et al. (2010) stated that it is desirable to isolate and characterize more DNA markers in the plant for more productive genetic studies such as genetic mapping, marker associated selection and gene discovery. In a study by Bombarely et al. (2010), ESTs were generated and analyzed in the evaluation of Fragaria xananassa at a genetic and molecular level. The analysis of the transcription analysis generated knowledge and molecular tools that would be essential in ongoing breeding programs and had also allowed the development of molecular markers that have been applied to germplasm characterization. ESTs have also been used in studies of plants such as tomato to understand tissue specific genes and biological responses in fruit ripening (Fei et al., 2004), and the fruit traits were studied using ESTs for melon (Cucumis melo). The genes of interest were the genes in the essential traits such as fruit development, fruit maturation and disease resistance, and to speed up the process of breeding new and better adapted melon varieties, such genes are yet to be studied in marama bean.

Conclusion

This study has demonstrated the first significant progress in the identification of genes using EST database gene mining for advancing molecular breeding and biotechnological crop improvement for this species, *T. esculentum.* If a sequence is known, microsatellites and markers can be identified, and then marama beanspecific primers can be developed. Genes that have been identified in marama bean are involved in energy generation, disease resistance, transcription, maturation and DNA repair.


There are a lot more genes to be discovered and studied beyond what this study has discovered for marama bean. In marama bean, traits of interest are, but not limited to increasing number of seeds per pod produced by the plant, selecting for early flowering and early germination (Takundwa et al., 2010). In breeding programs, traits of interest can be linked to markers, which can be used for marker associated selection which is time-saving than traditional breeding. The legumes are remarkably well positioned in the genomic era.
 Table 1. NCBI BLASTn search outputs against a NR nucleotide database: marama bean single reads dataset.

Protein/gene	Number of hits	ldentity (%)	EST length (bp)	E-value	Species	Accession number
Chloroplast	55	92	268	1.00E-177	Eleutherococcus senticosus	JN637765.1
Plastid	15	98	100	1.00E-11	Quercas rubra	JX970937.1
Mitochondrion (Mitochondrial DNA)	53	100	84	5.00E-06	Carica papaya	EU431224.1
ycf2	7	100	192	2.00E-72	Lacistema robustum	JX6643392.1
ATP synthase subunit α (atpA)	7	98	115	3.00E-09	Medicago truncatula	XM003638699.
Uncharacterized	5	78	269	3.00E-17	Glycine max	XM003545696.
Putative β-1,3 galactosyltransferase 11-like	1	92	240	4.00E-28	Glycine max	XM003526636.
S-adenosyl-L-homocysteine hydrolase	1	88	149	2.00E-20	Beta vulgaris	AB221012.1
Glutamic acid rich-protein-like	1	91	84	6.00E-17	Cicer arietinum	XM004498226.
GC-rich-sequence DNA- binding factor 1-like	1	96	97	2.00E-16	Glycine max	XM003528521.
Chloroplast partial PsA gene for photosystem I P700 chlorophyll a apoprotein A1	1	94	126	1.00E-24	Vitis riparia	HF585117.1
α-tubulin 7	1	100	121	3.00E-06	Salix arbutifolia	KC238445.1
Mitochondrial, ATP 1, NAD 4 genes for hypothetical protein, ATP synthase subunit 1, NADH dehydrogenase subunit	3	98	241	8.00E-61	Solanum melongena	AB762698.1
polygalacturonase-like	1	97	116	2.00E-17	Glycine max	XM003551901.
Psa B	1	98	181	3.00E-19	Erythroxylum areolatum	JX662950.1
wbABI 3 mRNA for ABI-3 homolog	2	85	231	7.00E-16	Psophacarpus tetragonolobus	AB164427.1
Serine hydroxymethyl transferase 3	3	91	163	4.00E-22	Glycine max	NM001250562.
ATP synthase subunit β (atp β)	6	98	126	9.00E-30	Averrhoa carambola	JX663789.1
Photosystem II D2 protein & photosystem II CP43 protein genes (psb D & psb C)	2	98	76	1.00E-09	Petermannia cirrosa	AY465689.1
NADH dehydrogenase subunit 5 gene (nad 5)	1	100	119	8.00E-24	Anthericum ramosum	JX182968.1
Ndh B (Ndh B)	1	94	116	5.00E-26	Drypetes roxburghii	JX664317.1
Ribulose biphosphate carboxylase large chain (rbcL) (1,5 bisphosphate)	3	99	203	2.00E-100	Tylosema esculentum	AJ584710.1
Ribosomal protein S4 mitochondrial-like (rps4)	1	99	256	7.00E-106	Cicer arietinum	XM004488640.
RNA polymerase β chain (rpo C2)	6	96	153	1.00E-41	Quillaja saponaria	EU002536.1
rpl 14	1	96	132	1.00E-27	Pera bumeliifolia	JX664267.1
18S ribosomal RNA	2	99	178	2.00E-60	Metanarthecium luteoviride	AB679366.1
rPOB subunit (RNA polymerase B)	2	95	246	7.00E-41	Podocalyx loranthoides	JX663494.1

Table 1. Contd.

trns-trnG intergenic spacer and tRNA-Gly (trnG gene)	1	95	221	1.00E-18	Cercis racemosa	JN942525.1
tRNA-Lys (trnK) gene intron and maturase K (matK) gene	1	99	255	2.00E-36	Tylosema fassoglense	JN881458.1
Photosystem I assembly protein ycf4 (ycf4) gene	1	96	252	5.00E-87	Tephrosia rhodesica	HM048910.1
Photosystem II CP43 chlorophyll apoprotein (psb C) gene	2	96	192	4.00E-56	Cornus florida	GQ998106.1
Glucan endo-1,3-beta- glucosidase 4-like	1	83	214	2.00E-32	Vitis vinifera	XM002283512.1
SRG-1-like protein	3	77	201	2.00E-14	Fragaria vesca	XM004303154.1
Cytochrome C heme attachment protein (ccsA gene)	1	94	214	1.00E-32	Berberidopsis corallina	GQ997938.1
Endoglucanase 11-like	1	85	206	1.00E-33	Glycine max	XM003518482.1
Manganese-dependent ADP- ibose/CDP-alcohol diphosphate like	1	86	154	4.00E-16	Fragaria vesca sub.sp vesca	XM004299102.1
Centromeric retrotransposon Pisat1-6 mutant gag-pol polyprotein gene	1	84	185	4.00E-27	Pisum sativum	GU136552.1
Mitogen-activated protein kinase 19-like	1	88	256	6.00E-47	Cicer arietinum	XM004488631.1
Glycosyltransferase, CAZy amily GT47	1	89	142	1.00E-08	Populus trichocarpa	XM002313394.7
Mitochondrial voltage- dependent anion-selective channel	1	93	159	1.00E-17	Phaseolus coccineus	DQ072165.1
Retrotransposon	4	00	400			1/0000700 4
339_yara_autonomous-Ty1- ype	1	89	182	5.00E-08	Arachis ipaensis	KC608799.1
PsA	1	97	69	8.00E-06	Pera bumeliifolia	JX664222.1
outative Pentatricopeptide epeat-containing protein Atg68930-like	1	89	138	8.00E-21	Fragaria vesca	XM004298286.1
5S rRNA gene	1	100	185	2.00E-16	Beta vulgaris	Z25803.1
Psb D gene	1	97	268	2.00E-60	Phyllanthus urinaria	JX662334.1
CBL-interacting protein kinase MTR_2g049790)	1	94	191	3.00E-33	Medicago truncatula	XM003595548.1
Heterogeneous nuclear ibonucleoprotein D-like	1	91	202	6.00E-22	Glycine max	NM001252787.2
Phosphoenolpyruvate- carboxylase pepc1 isoform	2	88	239	1.00E-12	Vicia faba	AJ011302.1
DNA repair protein RAD51 nomolog 2-like	1	96	201	1.00E-09	Glycine max	XM003547460.1
osb E-Pet L intergenic spacer	1	80	246	3.00E-29	Pronus virginiana	DQ826228.1
Histone-lysine N- nethyltransferase EZA1-like	1	90	165	8.00E-11	Cucumis sativus	XM004164933.1
Jridine nucleosidase 1-like	1	86	215	1.00E-18	Glycine max	NM001255381.2
Histone H3 1-like variant 1 DNA damage-repair/toleration	1	87	239	7.00E-31	Callithrix jacchus	XM002746095.1
protein DRT111, chloroplastic-like	1	85	241	8.00E-46	Vitis vinifera	XM002281707.

Putative 3-deoxy-D-arabino- heptulosonate 7-phosphate synthase 3	1	84	266	6.00E-42	Faqus sylvatica	DQ166521.1
U-box domain-containing- protein 4-like	1	82	254	5.00E-41	Glycine max	XM003551125.1
Thylakoid structural protein (Psb B gene)	1	96	256	4.00E-91	Ceratophyllum sp SM-2010	GU902269.1
Rps 2 (rps 2 gene)	1	98	255	1.00E-08	Passiflora ciliata	JX663163.1
Magnesium transporter MRS2-1-like	1	91	191	2.00E-50	Glycine max	XM003543660.1
PetB (petB gene)	1	92	285	2.00E-87	Caloncoba echinata	JX663902.1
Nucleobase-ascorbate transporter 1-like	1	90	215	1.00E-32	Cicer arietinum	XM004501987.1
Inverted repeat B (transposon boundary in chloroplast)	1	91	258	6.00E-86	Rhodeleia championii	EF207455.1
UDP-arabinose 4-epimerase 1-like	1	89	142	6.00E-22	Glycine max	XM003546247.1
Photosystem Q (B) protein- like	1	96	247	1.00E-92	Cicer arietinum	XM004515165.1
Ndhl (ndhl)	1	93	237	2.00E-16	Vismia ferruginea	JX662090.1
Acetyl-CoA carboxylase carboxyltransferase β	1	88	260	2.00E-62	Camellia oleifera	FJ965289.1

Figure 1. The overall classification of the genes identified (in single reads dataset) as housekeeping genes or specialized.

Future perspectives

In the future, it will be important to identify and characterize more genes and traits, and to extend new genomic tools to orphan species like marama bean. Some of the most critical work does not only rely on new high-throughput sequencing or genomic technologies. This includes characterizing and managing germplasm collections and breeding lines in many species; developing mapping populations for various traits of interest in less-studied species. Working with indigenous farmers ensures that the by-product of centuries of conservation and indigenous knowledge are not lost. Investigating protocols for hybrid seed production in
 Table 2. NCBI tBLASTx search results against NR nucleotide marama bean database from single reads.

Protein/gene	Identity (%)	Number of positive hits	EST length (bp)	E-Value	Species	Accession
Chloroplast	81	80	260	1.00E-29	Camellia cuspidata	KF156833.1
Plastid	100	100	100	0.026	Quercus rubra	JX970937.1
PsbE-PetL Intergenic spacer	64	83	246	2.00E-08	Prunus virginiana	DQ826228.1
Plastid Genes	98	100	192	2.00E-27	Acrotrema costatum	HQ664618.1
Chloroplast	60	63	115	4.80E-02	Berberis bealei	KF176554.1
Centromeric retrotransposon PiSat 1-6 mutant gag-pol polyprotein gene	68	84	269	2.00E-25	Pisum sativum	GU136552.1
Mitochondrial sequence	100	100	268	2.00E-24	Cucumis melo subsp.melo	JF412793.1
Mitochondrial orf227, atp1, nad4 genes for hypothetical protein, ATP synthase subunit 1, NADH dehydrogenase subunit 4	86	94	241	2.00E-21	Solanum melongena	AB762698.1
Tubulin alpha- 4 chain-like	84	85	121	3.50E-02	Glycine max	XM003555953.
psaA (psaA gene)	100	100	126	5.00E-07	Turnera ulmifolia	JX664233.1
GC -rich sequence DNA- Binding Factor 1-like	89	89	97	6.00E-04	Glycine max	XM003528521.
Glutamic acid-rich protein-like	100	100	84	4.90E-02	Cicer arietinum	XM004498226.
RNA for putative adenosylhomocysteinase	97	96	149	3.00E-10	Trifolium pratense	AB236805.1
Putative beta-1,3- galactosyltransferase sqv-2	89	94	240	1.00E-14	Ricinus communis	XM002509867.
nad 5	92	95	119	2.00E-06	Lygodium flexuosum	AJ131135.1
Chloroplast	89	91	268	4.00E-47	Trachelium caeruleum	EU090187.1
Ndh B (ndh B) gene	86	86	116	1.00E-07	Drypetes roxburghii	JX664317.1
NAD(P)H-quinone oxidoreductase chain 4 chloroplastic-like	97	96	214	6.00E-13	Cicer arietinum	XM004516889.
Chloroplast	94	94	258	4.00E-26	Lotus japonicus	AP002983.1
Unknown	80	88	237	2.00E-21	Lotus japonicus	BT146355.1
18S ribosomal RNA gene	94	95	178	1.00E-23	Marine streptophyte	EU143544.1
5S ribosomal RNA and nontranscribed spacer	55	70	185	9.00E-06	Trevesia baviensis	AY304751.1
Ribosomal protein S4 mitochondrial-like	99	98	256	3.00E-42	Cicer arietinum	XM004488640.
Rpl 14 (rpl) gene	92	92	132	7.00E-10	Averrhoa carambola	JX664237.1
tRNA-Lys (trnK) gene, intron; and maturase K (matK) gene	91	93	255	2.00E-11	Bauhinia scandens	JN881423.1
Chromosome POP064-N07	89	92	191	7.00E-16	Populus trichocarpa	AC209224.1

Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit	100	100	239	5.00E-39	Caesalpinia sp.	AB586306.1
Putative Pentatricopeptide						
repeat-containing protein At1g68930-like	93	100	139	1.00E-11	Vitis vinifera	XM002267577.1
Mitogen-activated protein kinase 19-like	95	98	256	3.00E-20	Cicer arietinum	XM004488631.1
Manganese-dependent ADP- ibose/CDP-alcohol diphosphatase-like	80	87	154	3.00E-15	Cicer arietinum	XM004501808.1
Endoglucanase 11-like	80	87	206	1.00E-18	Glycine max	XM003518482.1
SRG1- like protein	68	76	201	2.00E-17	Glycine max	XM003547143.1
Protein	76	91	214	5.00E-26	Populus trichocarpa	XM002297602.1
Chloroplast	94	97	285	2.00E-36	Turbina corymbosa	KF242504.1
Chloroplast	92	96	192	3.00E-25	Operculina macrocarpa	KF242502.1
Serine nydroxymethyltransferase SHMT2)	96	100	163	1.00E-11	Populus tremuloides	EF148390.1
ATP synthase beta chain atpB) gene	88	92	126	4.00E-06	Cystopteris pellucida	JN168037.1
Photosystem II protein D1 (psb A) gene	100	100	247	6.00E-36	Chlamydomon as reinhardtii	FJ458214.1
Photosystem I assembly protein ycf4 (ycf4) gene	97	96	252	4.00E-35	Liquidambar styraciflua	GQ998510.1
Photosystem II CP47 protein (psbB) gene, Photosystem II subunit (psbT) and photosystem II subunit (psbN) and photosystem II subunit (psbH) genes	97	97	256	4.00E-40	Thalassia testudinum	HQ901410.1
RNA polymerase beta subunit <i>rpoB</i>) gene	84	88	246	3.00E-17	Urginavia altissima	JQ274454.1
RpoC2 (<i>rpoC2</i>) gene	100	100	153	6.00E-18	Scyphostegia borneensis	JX662688.1
J-box domain-containing protein 4-like	75	84	254	3.00E-29	Glycine max	XM003538281.1
Phospho-2-dehydro-3- deoxyheptonate aldolase 2, chloroplastic like	90	93	266	6.00E-20	Glycine max	XM003545637.1
Jridine nucleosidase 1-like	74	80	215	6.00E-13	Vitis vinifera	XM002283117.2
Putatative enhancer of zeste,	68	72	165	1.00E-15	Ricinus communis	XM002515233.1
Histone H3 type 2	100	100	239	3.00E-20	Culex quinquefasciat us	XM001862639.1
DNA-damage-repair/toleration protein DRT111, chloroplastic ike	81	90	241	1.00E-07	Vitis vinifera	XM0022881707.
DNA repair protein RAD51 nomolog 2-like	54	67	201	2.30E-01	Solanum lycopersicum	XM004251232.1
Phosphoenolpyruvate carboxylase (<i>PepC</i> -large) gene	92	100	239	4.00E-09	Gaertnera paniculata	AF333864.1

Table 2. Contd.

Heterogeneous nuclear ribonucleoprotein D-like	93	92	202	3.00E-11	Glycine max	NM001252787.2
UDP-arabinose 4-epimerase 1- like	93	92	142	5.00E-07	Glycine max	XM003546247.1
Nucleobase-ascorbate transporter 1	80	92	215	3.00E-22	Arabidopsis thaliana	NM126592.2
Magnesium transporter MRS2- 1-like	85	89	191	4.00E-20	Glycine max	XM003543660.1
probable Polygalacturonase- like	95	100	116	2.00E-03	Setaria italica	XM004951228.1
B3 domain-containing transcription factor ABI3-like	81	93	231	4.00E-10	Vitis vinifera	XM003632349.1
Uncharacterized	82	89	181	5.00E-08	Cicer arietinum	XM004496867.1

Table 3. TAIR BLASTn search outputs.

Contig number	Gene/protein	E- Value	ldentity (%)	Marama bean Contig size (bp)	Accession Number
contig00001	Unknown Protein	0.064	100	132	AT5G28910.2
contig00003	Homeo doman glabrous 2	0.026	95	203	AT1G05230.4
contig00005	RING/FYVE/PHD Zinc finger superfamily protein	0.33	100	170	AT3G47550.6
contig00008	RNA Binding (RRM/RBD/RNP motifs) family protein	0.055	100	115	AT5G16260.1
contig00009	GDP-D-mannose 3',5'-epimerase	0.24	100	445	AT5G28840.2
contig00010	thalianol synthase 1 (THAS 1)	0.45	100	225	AT5G48010
contig00013	Nucleoporin, Nup133/Nup155 - like	0.095	95	188	AT2G05120.2
contig00014	phosphotidyl serine synthase family protein	9.00E-05	96	174	AT1G15110.2
contig00015	Putatatvie lysine decarboxylase family protein (LOG 1, ATLOG 1)	0.002	100	225	AT2G28305.1
contig00016	Laccase	0.097	92	193	AT5G01190.1
contig00018	putative methyl transferase family protein	0.095	100	188	AT5G06050.1
contig00020	prenylated RAB acceptor 1.B5 (PRA1.B5)	0.45	100	221	AT5G01640.1
contig00021	Cytochrome P450 superfamily protein (CYP81D1)	0.17	100	221	AT3G28740.1
contig00024	Tudor/PWWP/MBT domain containing protein	0.33	100	412	AT2G48160.1
contig00026	photosystem II reaction center protein B (PSBB)	5.00E-51	87	203	ATCG00680.
contig00027	high affinity K+ transporter 5 (HAK5, ATHAK5)	0.011	100	229	AT4G13420.1
contig00030	Transcription factor Jumonsi (jmj) family protein/zinc finger (C5HCZ type) family protein	0.38	100	132	AT2G38950.1
contig00031	phosphatidic acid phosphohydrolase 2 (PAH 2)	0.18	100	230	AT5G42870.2
contig00032	plastid - encoded CLP p (CLPP 1, PCPLPP)	0.11	100	155	ATCG00670.
contig00033	phytoene desaturation (POS1, HPD)	0.4	100	140	AT1G06570.2
contig00034	ATP synthase subunit 1 (ATP1)	2.00E-39	95	119	ATMG01190.
contig00035	NRAMP metal ion transporter family protein (NRAMP5, ATNRAMP5)	0.092	100	128	AT4G18790.1
contig00037	F - Box and associated interaction domains- containing protein	0.41	100	143	AT5G62660.1
contig00038	Transposable element gene	0.16	100	208	AT3G44000.1
contig00040	Galactose Oxidase/ kelch repeat superfamily protein	0.037	100	193	AT1G55270.1
contig00041	lysm domain GP1-anchored protein 2 precursor (LYM2)	0.34	100	120	AT2G17120.1
contig00043	photosystem II reaction center protein N (PSBN)	0.01	87	209	ATCG00700.

contig00044	2 - oxoglutarate (20G) and Fe (II) - dependent oxygenase superfamily protein	0.17	100	219	AT3G18210.2
contig00045	Reticulon family protein	0.17	100	224	AT4G28430.1
contig00046	pseudogene, similar to NADH dehydrogenase	2.00E-59	90	219	AT2G07709.1
contig00047	F-Box/ RN1- like domains- containing protein	0.18	90	229	AT1G16930.1
contig00048	s-locus lectin protein kinase family protein	0.37	95	131	AT5G35370.1
contig00049	chloroplast ribosomal protein S14 (RPS14)	7.00E-21	93	122	ATCG00330.1

Table 3. Contd.

Table 4. SSRs identified: di- to tri-nucleotide (2-3) repeat motifs search outputs on GRAMENE database for 66 sequences in single reads.

Sequence	Motif	Number of repeats	SSR start	SSR end	Sequence length
024042_2232_1498	СТ	5	181	190	191
031209_2673_1063	GA	4	51	58	84
026256_2398_2536	TC	4	166	173	241
003796_2321_0642	TTG	4	207	218	240

various legumes; and working to maintain and develop under-studied legumes for use in diverse, challenging growing environments around the globe is a responsibility to help diversity crops for a changing world climate (Cannon et al., 2009).

The rapid increment in the information and data generation in plant science, demands for tools and methods in data management, visualization integration, analysis, modeling and prediction has also increased (Useche et al., 2001, Rhee et al., 2006; Frank et al., 2004). In this regard, bioinformatic analysis is a utility. This specific knowledge can then be used to produce stronger, more drought resistant crops and improve the quality of livestock, making them healthier, more disease resistant and more productive (Singh et al., 2011).

Conflict of interests

The authors did not declare any conflict of interest.

REFERENCES

- Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, Medina-Escobara N, Blanco-Portales R, Botella MA, Munoz-Blanco J, Sanchez-Sevilla JF, Valpuesta V (2010). Generation and analysis of ESTs from strawberry (*Fragaria xananassa*) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics 11(503):1-17.
- Cannon SB, May GD, Jackson SA (2009). Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol. 151: 970-977.

- Chingwaru W, Majinda TR, Yeboah SO, Jackson CJ, Kapewangolo PT, Kandawa-Schulz M, Cencic A (2011). *Tylosema esculentum* (Marama) tuber and bean extracts are strong antiviral agents against rotavirus infection. Evid. Based Complement. Alternat Med. Article ID 284795, 11 pages, 2011. doi:10.1155/2011/284795.
- Fei Z , Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004). Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J. 40:47-59.
- Frank E, Hall M, Trigg L, Holmes G, Witten IH (2004). Data mining in bioinformatics using Weka. Bioinformatics 20:2479-2481.
- Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, Gomez P, Deleu W, Cano-Delgado A, Arus P, Nuez F, Garcia-Mas, J, Puigdomenech P, Aranda MA (2007). MELOGEN: an EST database for Melon functional genomics. BMC Genomics 8(306):1-17.
- Higgs PC, Attwood TK (2005). Bioinformatics and Molecular Evolution. UK & USA: Blackwell Science Ltd.
- Kumar A, Bennetzen JL (1999). Plant Retrotransposons. Annu. Rev. Genet. 33:479-532.
- Matukumalli LK, Grefenstette JJ, Sonstergard TS, Van Tassell CP (2004). EST-PAGE- Managing and analyzing EST data. Bioinformatics 20(2):286-288.
- Müseler DL, Schönfeldt HC (2006). The Nutrient content of the Marama Bean (*Tylosema esculentum*), an underutilized legume from Southern Africa. Agricola 16:7-13.
- Nagaraj SH, Gasser RB, Ranganathan S (2006). A Hitchhiker's guide to expressed sequence tag (EST) analysis. Brief. Bioinform. 8(1):6-21.
- Rhee SY, Dickerson J, Xu D (2006). Bioinformatics and its applications in Plant Biology. Annu. Rev. Plant Biol. 57:335-360.
- Singh VK, Singh AK, Chand R, Kushwaha C (2011). Role of bioinformatics in agriculture and sustainable development. Int. J. Bioinform. Res. 3(2):221-226.
- Takundwa M, Chimwamurombe PM, Kunert K, Cullis CA (2010). Isolation and characterisation of microsatellite repeats in marama bean (*Tylosema esculentum*). Afr. J. Agric. Res. 5(7):561-566.
- Useche FJ, Gao G, Hanafey M, Rafalski A (2001). High-Throughput identification, database storage and analysis of SNPs in EST sequences. Genome Inform. 12:194-203.