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tional value and high ash content (Jurado et al., 2003), this 
residue has limited use. Additionally, its incineration is 
questioned, given the high environmental costs of its 
combustion (Camassola and Dillon, 2009). 

Different physical and chemical treatments are used to 
transform cellulosic wastes (Sun and Cheng, 2002). As a 
clean alternative, the industry uses enzymes that convert 
the constituent polymers of the plant cell wall (lignin, 
cellulose and hemicellulose) into simple sugars (Pérez et 
al., 2002), but the high cost of these processes is an 
obstacle for their usage (Biswas et al., 2006). Conse-
quently, the use of microorganisms is gaining relevance 
because of their ability to degrade polymers such as 
cellulose and starch which are the major constituents of 
plant biomass (Ramírez and Coha, 2003). Moreover, it is 
important to highlight the role of microorganisms in the 
degradation of agro-products, for two main reasons: 1) 
the cost of producing the enzymes for the process is 50% 
(Galbe and Zacchi, 2002), and 2) the decrease in the 
inhibitory effect on fermentation processes caused by the 
preservatives and stabilizers that accompany the use of 
commercial enzymes (Fujita et al., 2004; Golias et al., 
2000).  

Different strains of fungi are used in agro-industrial waste 
degradation, especially those that have exhibited activity 
on cellulosic substrates. The Trichoderma genus was ana-
lyzed because of its ability to produce high cellulolytic 
enzymes activity (Miettinen-Oinonen and Suominen, 2002), 
that allows the transformation of plant cell-wall constituents 
or wastes, such as husk, into simple sugars that may 
become alcohols after the fermentation process. This 
leads to the conservation of non-renewable resources 
(Valverde et al., 2007). Therefore, ethanol production 
becomes relevant, given the possibility of producing 0.25 
L of 96°GL alcohol per Kg of husk, which, according to 
the per liter price Colombia (USD 0.91), could represent 
an additional income source for producers (Rojas and 
Cabanillas, 2008). The use of Penicillium echinulatum on 
sugarcane bagasse yields 1.60, 0.21 and 1.49 U mL-1 for 
endoglucanase, β-glucosidase and xylanase, respectively; 
for control cellulose, values of 1.20, 0.20 and 1.46 U mL-

1were obtained (Camassola and Dillon, 2009). Also, 
Aspergillus niger cellulases, cross linked by glutar-
aldehyde, maintain their degrading activity during a 
longer period of time, and hence, further degradation of 
rice husk at lower cost can be obtained (Sohail et al., 
2009). 

Therefore, the search for native microorganisms from 
substrates could be an alternative for obtaining fungal 
strains with high potential for a cleaner conversion of 
lignocellulosic materials, and the use of physical and 
chemical pretreatments will generate cleaner, cheaper pro-
cesses   and  without   demanding   specialized  infrastructure 
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(Llacza and Castellanos, 2012; Martínez-Anaya et al.,  
2008). In this regard, the objective of this study is to compare 
the cellulolytic activity of fungal reference strains against 
those isolated from rice husk, identifying the potential of 
converting this residue into fermentable sugars. 
 
 
MATERIALS AND METHODS 
 
Plant material 
 
Rice husk was obtained in rice mills located in El Espinal - Tolima 
Department, Colombia, during the second half of 2011 and was 
subsequently treated in an electric mill to obtain a size of 1-2 mm. 
Then, a bromatologica was performed to determine humidity, crude 
fiber, ether extract, cinder, protein, nitrogen, potassium, phosphorus, 
cooper, zinc, iron, manganese, bore, sulfur, sodium, calcium, and 
magnesium was done using the methods of AOAC (2012). Analysis 
was performed in order to determine the percentages of cellulose, 
hemicellulose, lignin and some oligoelements that could influence 
fungal growth and cellulase activity.  
 
 
Biological material 
 
Fungi isolation and identification 
 
Untreated samples (rice husk) were introduced into sterile Petri 
dishes with potato dextrose agar (PDA, Oxoid) and incubated 8 
days at 25°C to allow the growth of microorganisms. Later, 
subcultures were made in order to separate and individualize each 
fungus. Preliminary identification was performed on a microscope 
(Advanced Optical, Model XS-402) after staining the fungi with 
blue-lactophenol; and through taxonomic keys, genera identification 
was possible. 
 
 
Preliminary evaluation of cellulolytic capacity 
 
With some modifications, the methodology proposed by Mikán and 
Castellanos-Suárez (2004) was used. Strains of Rhizopus oryzae, 
Aspergillus niger, Trichoderma reesei and Trichoderma sp. (five 
strains) were obtained from the microbiology laboratory of the 
Research Group of Natural Products of University of Tolima –
Colombia. They were identified as follows: T.1, T.2, T.3, T.4, and 
T.5 and determined for their cellulolytic potential. Also, a strain 
isolated from rice husk was used. These fungi were placed into a 
solid culture medium that contained agar-agar and CMC (1 and 2% 
w/v). Inoculation was performed by placing in the CMC agar center 
a 5 mm diameter disk of potato dextrose agar (PDA, Oxoid) that 
was previously inoculated with fungal mycelium. Growth kinetics 
measurement was performed by triplicate, incubating the micro-
organisms at 25°C, until the growth of the control samples was 
observed in the entire 9 mm Petri dish. The degradative activity was 
manifested through the presence of yellow or unstained areas after 
the application of Congo red solution (Merck). 
 
 
Pre-treatment 
 
Steam explosion (SE) 
 
The methodology proposed by Sun and Cheng (2002) was used,

 
*Corresponding author. E-mail: diofgo@outlook.com, wmurillo@ut.edu.co. 
 
Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 
International License 



4238         Afr. J. Biotechnol. 
 
 
 

Table 1. Experimental design and treatments. 
 

Pre-treatment 
Fungi 

Trichoderma sp. Aspergillus sp. Rhizopus oryzae 

SE  T.SE A.SE R.SE 
LIME  T.LIME A.LIME R.LIME 
BLANCK T.WT A.WT R.WT 

 

SE: Steam explosion; LIME: Alkaline hydrolysis; Blank: rise husk without pre-treatment. 
 
 
 
with some modifications. The lignocellulosic material (rice husk) 
was treated with high-pressure saturated steam and then the 
pressure was swiftly reduced. The process was performed under 
autoclave conditions (120°C, 15 psi) during an interval of 45 and 60 
min. 
 
 
Alkaline hydrolysis (LIME) 
 
For this assay, the methodology described by Sun and Cheng (2002) 
was used. 100 g of the rice husk was treated with saturated solution 
of calcium hydroxide diluted (2 L) in 1:20 ratio, at 60°C for 24 h. 
Finally, rice husk was washed with distilled water three times.  
 
 
Fermentation 
 
The material was exposed to a fermentation that included a pre-
treatment (SE or LIME) coupled with the subsequent degradation of 
one of the fungal strains used. The total number of treatments was 
6, with 3 replicates for each one, wherein blank was included (rise 
husk without pre-treatment).  

The fermentation process of 3 fungi [Trichoderma sp., Aspergillus 
sp. (isolated from rice husk)  and Rhizopus oryzae] with the best 
performance from the CMC assay was developed in bioreactors of 
500 mL, containing 10 g of husk, 18 mL of sterile water and 2 mL of 
spore suspension (5x106 conidia mL-1). Finally, the pH was adjusted 
to 6.5 with 0.1 N HCl and 0.1 N NaOH, and the solution was 
incubated at room temperature (25°C) with constant stirring (150 
rpm) for 30 days. Finally, the leachate samples from the bioreactors 
were taken every 7 days for a month, whereupon they were 
vacuum filtered in order to quantify total and reducing sugars. 
 
 
Quantification of carbohydrates 
 
Total carbohydrates were quantified by a spectrophotometer (UV-V 
Thermo Scientific Helios Gamma UVG154501 model), using the 
anthrone method described by Witham et al. (1971). Moreover, 
reducing sugars were quantified by the 3.5-dinitrosalicylic method, 
described by Miller (1959). Calibration curves were made from 10 to 
100 µg mL-1 for DNS method and 120-2000 µg mL-1 for anthrone 
method, and validated according to Quattrocchi et al.  (1992). 
 
 
Cellulose activity 
 
Endoglucanase activity 
 
The methodology used for this purpose was the one proposed by 
Gunjikar et al. (2001) and Berghem and Pettersson (1973) . A CMC 
solution (1%) was prepared in sodium acetate buffer (0.05 M, pH 5) 
and one (1) mL of this solution was incubated with 0.28 mL of the 
enzyme solution (leachate filter) and assayed at 50°C for 30 min. 
After reaction completion, DNS reagent (1%) was added. The reducing 

sugars concentration produced by the enzyme reaction was 
measured according to the equation proposed by Eveleigh et al.  
(2009) and Gunjikar et al. (2001): Endoglucanase activity (U mL-1) = 
reducing sugars released (mg) x 0.66. 
 
 
Exoglucanase activity 
 
In this assay, the methodology used was the one proposed by 
Gunjikar et al. (2001) and Berghem and Pettersson (1973) . One (1) 
mL of tested enzyme solution (leachate filter) was added to 50 mg 
of filter paper previously dipped in Buffer sodium acetate (0.05 M, 
pH 5). After 30 min of incubation at 40°C, DNS reagent (1%) was 
added and the reducing sugar concentration was measured. 
Exoglucanase activity was calculated according to the equation 
proposed by Afolabi (1997): Exoglucanase activity (U ml-1) = 
reducing sugars released (mg) x 0.185. 
 
 
β-Glucosidase activity (cellobiose)  
 
The methodology used was the one proposed by Klesov (1981). 
Three test tubes were used: the first blank tube contained 1 mL of 
each solution (cellobiose 15 mM, citrate buffer at pH 4.8 and water), 
the second blank tube contained 1 mL of the sample (filter leachate) 
and 2 mL of water, and the third tube contained 1 mL of cellobiose 
solution, buffer and test sample. All tubes were mixed and incu-
bated at 50°C for 30 min. DNS reagent (1%) was added and the 
reducing sugars concentration (glucose) was measured by the DNS 
method. The concentration measurement was obtained by sub-
tracting the absorbance sample from that of the sample blank and 
cellobiose blank. The β-glucosidase activity was determined 
according to the equation of Afolabi (1997): β -glucosidase activity 
(U mL-1) = Glucose liberation (mg) x 0.0926. 

All tests were made with leachates extracted from a submerged 
culture assay as described above. But in this case only Trichoderma 
sp.1 and Aspergillus sp. were used; moreover, a kinetics analysis 
was performed every 48 h reaching 196 h. 
 
 
Statistical analysis 
 
All variables were subjected to a Kolmogorov-Smirnov test, in order 
to obtain a normal data distribution. Then a one-way variance 
analysis (ANOVA) and a LSD test (p ≤ 0.05) were made using the 
Info Stat program (free version) (Di Rienzo et al., 2011). Treatments 
abbreviations are described in Table 1, which were employed in 
subsequent graphs. 
 
 
RESULTS AND DISCUSSION 
 
As a result of the bromatological test applied, percentages 
of  cellulose,  hemicellulose  and  lignin  were determined 



 
 
 
 

Table 2. Bromatological test results from rice husk. 
 

Parameter Value 

Cellulose (%) 37.63 
Hemicellulose (%) 10.23 
Lignin (%) 12.5 
Humidity (%) 11 
Cinder (%) 19 
Crude Protein (%) 1.7 
Ether extract (%) 2.6 
Brute protein (%) 34 
Nitrogen (%) 0.27 
Potassium (%K) 0.31 
Phosphorus (%P) 0.56 
Cooper (mg Kg-1 Cu) 1.2 
Zinc (mg Kg-1 Zn) 18 
Iron (mg Kg-1 Fe) 12 
Manganese (mg Kg-1 Mn) 39 
Bore ND 
Sulfur (%S) 0.20 
Sodium (mg Kg-1 NA) 46 

 
 
 

 (Table 2). These results were used in the calculation of 
the material conversion into total carbohydrates and 
reducing sugars. These findings were compared with 
reports from other authors regarding the same waste 
(rice husk), and similar results to those reported were 
obtained by Sánchez (2009) and Valverde et al. (2007). 

The ash (19%) indicated the presence of minerals, 
such as manganese (39 mg kg-1), iron (12 mg kg-1) and 
zinc (18 mg kg-1). Likewise, other minerals were found, 
but in smaller proportions. It is noteworthy that some of 
the minerals (manganese, iron and zinc) are part of the 
most widely culture media used in cellulose degradation 
studies. 
 
 

Growth kinetics 
 

Some of the fungal strains (R. oryzae, T. reesei and 
Trichoderma 1, 2, 3, 4, 5) were present in the micro-
biology laboratory and Aspergillus sp. was recovered 
from waste. Growth assay on one material cellulosic like 
CMC allowed the identification of the cellulolytic activity 
from the strains used as shown in Figure 1. This allowed 
the identification of R.  oryzae, Aspergillus sp. and 
Trichoderma sp.1 as the ones with the highest speed 
growth. Husk degradation tests were done with those 
strains. The fungus R. oryzae filled Petri dish in just 48 h, 
probably for its capacity to grow in different substrates. 
 
 
Quantification of carbohydrates 
 

The statistical analysis showed that there is no significant 
difference  between  the  applied pretreatments; however, 
the  best  performance  was  the  one  showed  by  steam 
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explosion. This treatment released 878.26 µg of total carbo-
hydrates, generating 2.9 (304.44 µg) and 1.4 (643.44 µg) 
more than those released from the treated (LIME) and 
untreated husk, respectively. Regarding reducing sugars, 
the untreated material was the top performer: it released 
509.56 µg, generating 1.5 (343.15 µg) and 1.3 (387.49 
µg) more than those released with the LIME and steam 
explosion pre-treatments respectively (Figure 2). 

As shown in Figures 2 and 3, the steam explosion pre-
treatment favored carbohydrate release. Probably this 
effect is due to the physical and chemical changes that 
may occur in this process, such as depolymerisation and 
breakage of fiber and links with the subsequent release 
of oligosaccharides; processes that have been previously 
described by Sun and Cheng (2002). Nonetheless, the 
performance of reducing sugar release was significantly 
lower, probably due to other factors such as substrate 
fungal colonization and their enzymatic efficiency. 

Likewise, between the two most efficient fungi 
(Aspergillus sp., and Trichoderma sp.1) statistically signi-
ficant differences were observed. Aspergillus sp. 
released more reducing sugars and Trichoderma sp. 1 
produced the largest amount of total carbohydrates 
(probably related to the β-glucosidases production, respon-
sible for monomeric sugars release). This performance 
was also observed in Trichoderma reesei strains as pre-
viously reported by Saloheimo et al. (2007) and Lynd et 
al. (2002). This will be clarified later in the enzymatic 
activity discussion. 

Figures 4 and 5 show the system performance during 
each week. In Figure 4, high total carbohydrates release 
can be observed (1489.41 µg mL-1 of total carbohydrates 
from which 610.83 µg mL-1 correspond to reducing 
sugars). However, that release decreased with time. This 
phenomenon has also been observed by other authors, 
who have highlighted that it is due to several factors, 
such as fungal demand for taking some of the produced 
sugars to continue their metabolism (Taniguchi et al., 
2005), the absorption of enzymes by cellulose and lignin 
(Garibello and Melissa, 2013), or the enzymatic activity 
inhibition due to glucose and cellobiose presence 
(produced by cellulases) in the medium (Qing et al., 
2010). 

Finally, at week 4 of the treatment, the best conversion 
ratio, starting with 10 g of husk, was that Aspergillus sp. 
had a transformation percentage of 21.06%. There was a 
sharp difference in the production of total carbohydrates 
and reducing sugars, which allowed the choosing of 
Trichoderma sp. 1, and Aspergillus sp., as the two 
microorganisms with the best performance. The cellulase 
activity was evaluated in order to differentiate their ability 
to degrade the material. 
 
 
Cellulase activity 
 
Endoglucanase activity Strains of Aspergillus sp. and 
Trichoderma sp. 1 showed similar performance during
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