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fermentations belongs to a family of bacteria collectively 
known as the lactic acid bacteria (LAB). Fermented milks 
are products prepared by controlled fermentation of milk 
to produce acidity and flavor to desired level. Modern 
starter cultures are selected either as single or multiple 
strains, specifically due to their adaptation to the sub-
strate or raw material (Holzapfel, 2002). The inoculation 
of milks with a starter culture composed of selected lactic 
acid bacteria that improves quality, safety, properties 
standardization, including flavor and color, and shor-
tening in the ripening time (Leroy et al., 2006; Rantsiou et 
al., 2005). On a technological standpoint, these bacteria 
are invited to play the technological part to which they 
were selected, namely; the production of lactic acid, 
aromatic compounds, and production of CO2, bacte-
riocins, resistance to phages, proteolytic activity and 
autolytic potential (Gibbs, 1987; Frey, 1993; Huang et al., 
1994; Albenzino et al., 2001; Beresford et al., 2001; 
Hassaïne et al., 2007). 

One of the most sought technological properties in lactic 
acid bacteria, is undoubtedly the production of lactic acid, 
because this activity is essential in the early stages of 
product processing and thereafter is mainly responsible 
for microbial stability of the final product through the pH 
decrease (Drosinos et al., 2007). This acid is widely 
employed as bacterial biopreservative in foods (Ray and 
Sandine, 1992) and recently, as monomer for the plastic 
polymer synthesis, solvents and oxygenated chemicals 
(Datta et al., 1982; Datta and Henry, 2006).  

These last years, the lactic acid production has received 
increased attention sanctioned by a considerable number 
of publications (Yu et al., 1997; Lei et al., 2008; Plessas 
et al., 2008; Yu et al., 2008 ; Adesokan et al., 2009; 
Cristian et al., 2009; de Lima et al., 2009 ; Yao et al., 
2009; Cristian et al., 2010; de Lima et al., 2010; Abdel-
Rahman et al., 2011; Coelho et al., 2011; Kostov et al., 
2011; Leite et al., 2012; Dwivedi et al., 2012; Tanyildizi et 
al., 2012; Ghaffar et al., 2014). In these studies, wide 
varieties of products and raw materials from the food 
and/or agriculture industries have been employed for 
microorganism growth due to their considerable 
availability and low cost. Examples include cheese whey, 
corn steep liquor, corn syrup, distillery yeast and 
molasses (Lei et al., 2008; Mussatto et al., 2008; Yu et 
al., 2008; Ben-Kun et al., 2009; Yao et al., 2009; Abdel-
Rahman et al., 2011; Gowdhaman et al., 2012). 

Biotechnological processes for the production of lactic 
acid usually include lactic acid fermentation. There have 
been numerous investigations on the development of 
biotechnological processes for lactic acid production, with 
the ultimate objectives to enable the process to be more 
efficient and economical by using strategies for 
optimization, based mainly on the modeling methodology 
(Yu et al., 2008; Cristian et al., 2009; Yao et al., 2009; de 
Lima et al., 2009; Cristian et al., 2010; de Lima et al., 
2010; Muthuvelayudham and Viruthagiri, 2010; Coelho et 
al.,   2011;  Kostov  et   al.,  2011,  Dwivedi  et  al.,  2012; 

 
 
 
 
Gowdhaman et al., 2012; Tanyildizi et al., 2012; 
Saravanan et al 2012; Leite et al., 2012). On the other 
hand, an indispensable tool for the optimization, control, 
design and analysis of the combined production of lactic 
acid to industrial scale derived the development of 
mathematical robust models, formulated with parameters 
of clear biological significance and statistically consistent 
which can be easily implemented in miscellaneous appli-
cations. Compared with conventional methods, the res-
ponse surface method, commonly called a “RSM”, is a 
time and labor saving method,  which also reveals the 
interaction between the components of a reacted medium 
and seek the physical and chemical optimum levels 
(Ghadge and Raheman, 2006; Tang et al., 2004). RSM 
mainly consisted of the central composite design, the 
box-behnken design, the one factor design, the D-optimal 
design, the user-defined design, and the historical data 
design. The central composite design (CCD) and the box-
behnken design (BBD) were the most used response 
surface design methods, which had 5 and 3 levels, 
respectively for one numeric factor. Central composite 
design (CCD) (Box and Wilson, 1951) is an experimental 
strategy for seeking the optimum conditions for a 
multivariable system, and it is an efficient technique for 
optimization. 

The method was used to evaluate the coefficients in a 
quadratic mathematical model. The main purpose of this 
study was to perform the CCD in order to investigate the 
effect of total inoculums size (% v/v), fermentation 
temperature and skimmed milk dry matter added (% w/v) 
on the lactic acid production and for optimization of these 
parameters. 
 
 
MATERIALS AND METHODS 
 
Bacterial strain and growth conditions 
 
Lactococcus lactis LCL strain, used throughout this work belonged 
to the collection of “Laboratoire de Biologie des Microorganismes et 
Biotechnologie” of Oran University (Algeria). This strain was 
maintained on M17 broth or 10% (w/v) skim milk and deep-frozen at 
-20°C. As required, this culture was thawed and reactivated by two 
transfers in 10% (w/v) skim milk (30°C, 24 h). 
 
 
Acidification activity 
 
The lactic acid concentration was measured according to the 
International Dairy Federation (IDF, 1995). After subculturing in 
M17 Broth and 10% (w/v) skim milk in succession at 30°C for 24 h, 
the microbial culture was inoculated in reconstituted sterile non-fat 
dry milk 10% (w/v) at a level described in CCD tables (Tables 1 and 
2). Titrable acidity was determined after 7 h of incubation; it is 
followed by measuring the Dornic acidity that expressed the acidity 
developed in the medium by transformation of lactose into lactic 
acid. Experiments were carried out in triplicate. 
 
 
Design of experiment (DOE) 
 
Experiment was conducted at “Laboratoire de Biologie des
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