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Water temperature can affect many physiological processes during plant growth and development. 
Temperatures below or above optimum levels may influence plant metabolic activities positively or 
negatively. This may include accumulation of different metabolites such as phenolic compounds, 
reactive oxygen species (ROS), nutrient uptake, chlorophyll pigment formation, the photosynthesis 
process and finally the growth and development of the plant. The optimum temperature of the growth 
medium can contribute to improving and optimising the earlier mentioned plant physiological 
processes. Information on how the temperature of hydroponic solution influences certain flowering 
plant production in glasshouses during the winter period is limited. This review suggests the possible 
benefits of regulating temperatures of the hydroponic solution with the aim of optimising production of 
flower in the glasshouse during winter periods. 
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INTRODUCTION 
 
Temperature is the major environmental factor that 
influences the vegetative growth processes in plants from 
the initial stages of development to flower formation (Roh 
and Hong, 2007). During growth, optimum temperature is 
required below and above which may impair plant 
development (Summerfield et al., 1989). Very low or high 
temperatures in the growth environment may be detri-
mental to various metabolic processes in plant tissues 
such as nutrient uptake, chlorophyll formation and photo-
synthesis (Taylor and Rowley, 1971; Rhee and Gotham, 
1981; Markwell et al., 1986). Studies have shown that, 
when temperatures are lowered, the nutrient uptake, 
chlorophyll pigmentation and photosynthesis rate are 
negatively affected. However, at optimum levels the 
metabolism rates in plants are improved (Taylor and 
Rowley, 1971; Macduff et al., 1986; Engels et al., 1992; 
Kurek et al., 2007) and increase plant growth (Went, 1953 
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Gonzàlez-Meler et al., 1999; Frantz et al., 2004). Further-
more, stress due to very low temperature may induce 
plants to produce different species of reactive oxygen 
species (ROS) such as, superoxide (O2-), hydrogen 
peroxide (H2O2), oxygen (O2) and HO (hydrogen oxide) 
which may ultimately culminate into oxidative stress, 
thus, damaging the plant cells. Generally, an increase or 
decrease in temperature above or below the optimum 
level is known to alter several physiological processes in 
plants and damage the plant cells, thus, altering the 
growth (Wahid, 2007; Yang et al., 2009). 

The accumulation of other metabolites such as antho-
cyanins and flavonoid in plants may be influenced by 
temperature (Kleinhenz et al., 2003; Ling et al., 2007). 
Studies have shown that, in several plants, increasing 
thermal stress slightly above or below the optimum range 
may induce the production and accumulation of phenolic 
compounds such as flavonoids and anthocyanins (Rivero 
et al., 2001; Taulavuori et al., 2004; Guy et al., 2008; 
Padda and Picha, 2008), a defensive mechanism em-
ployed by plants against this type of stress. In several 
plants,    thermal    regulation    of    hydroponic    solution  



 

 
 
 
 
temperature may optimise the plant physiological proces-
ses mentioned earlier, thus, affecting the quality of the 
plant. 

Due to a decrease in temperature, commercial growers 
experience a lower level of ornamental plant production 
during winter than in summer (Olivier, 1974; Mills et al., 
1990). However, there is a high demand for flowers 
during winter season when temperatures are below 
optimum for flower production. During this period, the 
production levels are lower due to lowered temperature 
(Olivier, 1974; Mills et al., 1990). By modifying irrigation 
water temperature to optimum levels, specific ornamental 
plants can be grown hydroponically in greenhouses 
during the winter period. Heating of hydroponic solution in 
greenhouse production has shown success in other parts 
of the world in a variety of crops (Moorby and Graves, 
1980; Rovira, 2005; Kozai, 2006; Sethi and Sharma, 
2007). This review exploits the potential of increasing 
production of flowers during winter season by regulating 
temperatures in the hydoponic solution to optimize plant 
growth. 
 
 
EFFECTS OF REGULATING HYDROPONIC WATER 
TEMPERATURE ON PROFILING OF SECONDARY 
METABOLITES PRODUCTION SUCH AS FLAVONOID 
AND ANTHOCYANINS 
 
Phenolic compounds are the major molecules among 
plant secondary metabolites and they play a very impor-
tant role in plant development (Ndakidemi and Dakora, 
2003; Makoi and Ndakidemi, 2007). In the vacuole of a 
plant organ such as leaves and flowers, anthocyanins 
plays major role in flower colour and fragrance 
(Harborne, 1980; Schijlen et al., 2004). Anthocyanins and 
flavonoid accumulation in plants is influenced by 
environmental factors such as light, temperature and 
other stress levels (Kleinhenz et al., 2003; Ndakidemi and 
Dakora 2003; Ling et al., 2007; Makoi et al., 2010). Like 
all other organisms, plants may exhibit the maximum rate 
of metabolite production at an optimum temperature for 
which they have adapted (Aldred et al., 1999).  

It has been reported that, cultivation of crops under 
cold temperature decreases metabolites as a result of a 
low rate of yield (Van Der Ploeg and Heuvelink, 2005; 
Thakur et al., 2010).  Studies have shown that, the accu-
mulation of phenolic compounds such as anthocyanins 
and flavonoid by plants in winter can differ in comparison 
to summer, due to temperature variations (Mori et al., 
2005; Olsen et al., 2008; Kassim et al., 2009).  Different 
mechanisms are proposed. For example, variations in 
temperature may exert thermal stress on the plants 
tissues, consequently, interfering with the activity of the 
various plant enzymes and hence, the production of 
metabolites. In this context, significant changes in pheno-
lic compound metabolism may be affected by extended 
periods of low  temperature which  may  result  in  chilling  
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injury. Taulavuori et al. (2004) and Padda and Picha 
(2008) reported that, a plant exposed to low temperatures 
resulted in an increased content of phenolic compound in 
their tissues. Moreover, anthocyanins are highly water 
soluble and are therefore produced under different stress 
levels, such as temperature stress.   

Research evidence suggests that, plants may exhibit 
the maximum rate of metabolite production at a given 
optimum temperature. In most plants, increasing thermal 
stress slightly above the optimum range may induce the 
production and accumulation of metabolites such as 
flavonoids and anthocyanins (Rivero et al., 2001; Guy et 
al., 2008). Elevated temperatures above the optimum 
level similarly increases enzyme activity (Pearcy, 1977) 
and results in the production of different types of 
metabolites. The effect of thermal stress is often mani-
fested by the appearance of physiological injuries into the 
plant tissues thus, resulting into the excessive production 
of secondary metabolites (Revero et al., 2001), a strategy 
used to protect the plant from further stress damage. To 
verify this, Wahid (2007) reported that, accumulation of 
anthocyanins in Photinia spp. and aster (Aster amellus) 
flower were increased with exposure to high temperature. 
Other studies involving Rehmannia glutinosa have repor-
ted decreased content of phenolic compounds at very 
high temperatures (Chung et al., 2006). 

Little information is available on the influence of 
hydroponic solution temperatures on the pigment forma-
tion for plants grown under glasshouse conditions during 
winter. From this background, it is therefore important to 
establish the effects of temperature gradients on meta-
bolite production in plants grown in the hydroponic media 
with varied temperatures during the winter period. 
 
  
EFFECTS OF REGULATING HYDOPONIC WATER 
TEMPERATURE ON REACTIVE OXYGEN SPECIES IN 
DIFFERENT PLANT TISSUES 
 
Reactive oxygen species (ROS) are warning signals for 
plants subjected to stress, including cold stress (Nobuhiro 
and Ron, 2006). Reactive oxygen species such as 
superoxide (O2-), hydrogen peroxide (H2O2), oxygen (O2) 
and HO (hydrogen oxide) are toxic molecules producing 
oxidative damage to proteins, DNA and lipids, which may 
finally affect plant growth and development (Ping et al., 
2008). Excessive accumulation of ROS in plants occurs 
when stress is severe and causes oxidative injury (Ling et 
al., 2007). It is likely that, ROS produced at low tempe-
ratures can cause damage to cellular components by 
disrupting metabolic function (Anderson et al., 2005). 
Some research evidence indicates that, cold stress 
enhances the transcription of protein and activity of 
different reactive oxygen species-scavenging enzymes in 
plants (Nobuhiro and Ron, 2006).  

However, the exposure to low temperatures may incr-
ease the amount of reactive oxygen species (Ping  et  al.,  
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2008), an antioxidant strategic defence mechanism enab-
ling plants to adapt to heat stressed environments. The 
ROS-scavenging mechanisms have an important role in 
protecting plants against temperature stresses (Miller et 
al., 2006). 

Accordingly, ROS production is increased by oxidative 
stress under unfavourable environmental conditions such 
as those involving temperature changes to extreme limits 
(Gechev et al., 2006). The accumulation of ROS in plants 
can lead to many physiological injuries of tissues, loss of 
membrane integrity and chlorophyll bleaching (Xu et al., 
2006; Liu and Pang, 2010). Furthermore, ROS is accre-
dited for decreasing membrane stability and facilitating 
lipid peroxidation (Sairam et al., 2002).  

Generally, most plants display their antioxidative enzy-
me activities at a temperature of 25°C (Peltzer et al., 
2002). However, the exposure of plants to low tempe-
rature may increase the amount of ROS as an antioxidant 
strategic defence mechanism enabling plants to adapt in 
low temperature stressed environments (Ping et al., 
2008). Studies conducted in low temperature environ-
ments revealed reductions in enzymatic activation 
energies due to production of ROS (Peltzer et al., 2002). 

Many scholars have indicated that high temperatures 
may enhance the production of ROS including singlet 
oxygen (O2), superoxide radical (O2−), hydrogen peroxide 
(H2O2) and hydroxyl radical (OH−) (Liu and Huang, 2000; 
Suzuki and Mittler, 2006). These may cause lipid 
peroxidation and pigments membrane instability (Xu et 
al., 2006; Lopez-Vazquez et al., 2007), then, negatively 
affecting plant metabolism and limiting growth and yield 
(Sairam and Tyagi, 2004). In heated environments, the 
protection against oxidative stress is an important 
component in determining the survival of a plant under 
heat stress (Gong et al., 1997; Dat et al., 1998). Assessing 
the accumulation of ROS in glasshouse grown plants 
under different hydroponic temperature regimes will 
enable us to understanding how ROS can affect growth 
and development of such plants grown under a controlled 
environment during winter period. Further research is 
necessary to establish the mechanisms involved in the 
production of antioxidants in cells exposed to heat stress. 
 
 
EFFECTS OF REGULATING HYDROPONIC WATER 
TEMPERATURE ON NUTRIENT UPTAKE AND 
ACCUMULATION IN PLANT TISSUES 
 
Plant nutrients have a great potential for increasing yield 
and are capable of promoting plant growth (Ndakidemi 
and Semoka, 2006). Nutrient uptake and accumulation in 
plant tissues may be influenced by temperature, amongst 
various other environmental factors (Reay et al., 1999; 
Aðalsteinsson and Jensén, 2006). Calatayud et al. (2008) 
revealed that, in most plant species, nutrient uptake by 
roots decreased at low temperatures. Temperatures of 
growth  media  may influence  chemical  reaction rates  of  

 
 
 
 
nutrients in the solution, nutrient transport in the medium, 
physiological aspects related to ion uptake rate and 
functioning of soil microbial communities (Pregitzer and 
King, 2005). Therefore, it is of paramount importance to 
regulate hydroponic solution temperatures in situations 
whereby, plants are grown in a controlled environment 
during winter months. Optimizing temperature in the 
growth medium can be achieved by warming the nutrient 
solution (Morgan et al., 1980). 

Studies have shown that, elevated temperatures 
increased nutrient uptake in cucumber (Cucumis sativus 
L.) and enhanced plant growth leading to significant 
increase in yield (Daskalaki and Burrage, 1998). Experi-
ments involving Jojoba (Simmondsia chinensis) showed 
that, the uptake rate of N, P, K, Na, Fe, Mn and Zn were 
significantly reduced at low temperatures compared with 
those exposed to temperatures as high as 33°C (Reyes 
et al., 1977). Furthermore, nutrient concentrations in 
roots were similarly higher in plants grown at 33°C than 
at 21 or 27°C (Reyes et al., 1977). Studies by Hood and 
Mills (1994) and Scoltzfus et al. (1998) showed that, 
increasing temperature from 15 to 29°C increased uptake 
of P, K, Ca, Mg, Fe, Mn, Zn and B and finally, the plant 
growth. Nutrient uptake, especially N in pine (Pinus 
sylvestris L.) increased with increasing root temperature 
from 8 to 16°C (Vapaavuori et al., 1992). In cucumber (C. 
sativus L.), uptake of N, P, K, Ca and Mg was increased 
when the temperature was raised in a closed hydroponic 
system from 12 to 20°C (Daskalaki and Burrage, 1998). 

On the other hand, low temperatures are known to 
induce B deficiency and leaf damage in crop plants 
(Huang et al., 2005). For example in cucumber, low 
temperature (10°C) doubled nitrate accumulation in the 
root zone when compared with the root zone tempe-
ratures of 18 and 26°C (Kim et al., 2002). This was 
probably due to restricted mobility and volatilisation of 
nitrates at low temperatures (Thomas and Kissel, 1970), 
depending on the type of nutrients. Nutrient uptake for 
plants grown in glasshouses may be positively and 
adversely affected by manipulating the hydroponic 
solution temperature to the optimum level. Studies should 
therefore be conducted to establish the optimum tempe-
ratures to meet nutrient uptake demands of specific 
plants during winter season. 
 
 
EFFECTS OF VARYING HYDROPONIC WATER 
TEMPERATURE ON CHLOROPHYLL PIGMENTATION 
 
Colour pigmentation in plants, especially chlorophyll is 
important to their growth and development. The amount 
of chlorophyll formed in plants is strongly influenced by 
environmental factors including temperature changes 
(Hauvax and Lannoye, 1984; Tian et al., 1996; Shvarts et 
al., 1997; Yun et al., 1998; Kleinhenz et al., 2003). The 
influence of temperature on chlorophyll formation invol-
ves several mechanisms. At  optimum  temperatures,  the  



 

 
 
 
 
synthesis of metabolites such as carbohydrates may be 
enhanced, thus, leading to increased chlorophyll in the 
leaves (Reay et al., 1998; Al-Hamdani and Ghazal, 
2009). Scientific evidence points out that, plants 
subjected to various levels of stress (high temperatures) 
can damage their cells and eventually affect chlorophyll 
quality (López-Ayerra et al., 1998). Vu and Yelenosky 
(1987) reported that, the amount of chloroplast proteins 
tends to drop with increasing growth temperatures. The 
experiments involving testing of maize at various 
temperatures revealed that, their exposure to higher 
temperatures triggered membrane damage and lowered 
the chlorophyll concentration in the plant tissues (Yang et 
al., 1996). In barley (Hordeum vulgare L.), other rese-
archers (Ilík et al., 2000) reported plasmalema and 
chloroplast membrane damage, loss in cell permeability, 
thylakoids burst and the formation of condensed struc-
tures due to high temperature.  Funamonto et al. (2003) 
also showed that, in broccoli (Brassica oleracea), 
chlorophyll degradation by heat treatment was mainly 
due to the suppression of chlorophyll peroxidase activi-
ties in microsomes and cytosol.  

Low temperature treatments may also affect chlorophyll 
quality in plants as the cells are subjected to cold stress 
(López-Ayerra et al., 1998). Studies have shown that, 
orange trees (Citrus sinensis L. Osbeck) grown under low 
temperatures contained less chlorophyll than those 
grown at high temperatures (Vu and Yelenosky, 1987). In 
spinach (Spinacia oleracea L.), lipid peroxidation and 
chlorophyll levels were reduced by cold temperatures 
(López-Ayerra et al., 1998) by a mechanism which 
involved shrinking and damaging of the elastic cells due 
to cold stress. Generally, when plants are subjected to 
low temperature stress, the development of chlorotic 
bands on leaves may appear (Vu and Yelenosky, 1987). 
Under such circumstances, a decrease in chlorophyll 
content may be a consequence of oxidative stress which 
leads to chlorophyll deficiency (Bacelar et al., 2006). With 
regard to thermo regulation in hydroponic systems, no 
information is available on the influence of temperatures 
on the production of chlorophyll pigments in plants grown 
during the winter period. 
 
 
POSSIBLE EFFECTS OF REGULATING HYDROPONIC 
WATER TEMPERATURE REGIMES ON THE 
PHOTOSYNTHESIS RATE  
 
Temperature is an important environmental factor to plants, 
which directly influences their photosynthetic functions 
(Vu and Yelenosky, 1987; Collatz et al., 1991; Williams 
and Black, 1993; Ling et al., 2007). An increase in tempe-
rature to optimum levels may favourably shift electron 
transport and make the plant to synthesise adequate 
metabolites such as carbohydrates thus, leading to 
optimum growth (Piere and Urs, 2005). It is well known 
that, warm temperature conditions affect plant growth 
structures including all physiological processes  in  plants 
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such as membrane structure, stomatal conductance and 
protein synthesis. The low temperature effects on photo-
synthesis may include changes in stomatal and non-
stomatal characteristics (Pearcy, 1977; Berry and 
Bjorkman 1980; Vu and Yelenosky, 1987; Vierling, 1991; 
Calatayud et al., 2008). Studies on olive plants showed 
that, low temperatures decreased photosynthesis and 
this was correlated to its influence on stomatal closure 
(Bacelar et al., 2006). Temperatures above the optimum 
levels may also damage various cell functions, as the 
photosynthesis process is very sensitive to heat stress 
(Piere and Urs, 2005). Similarly, photosynthesis can also 
be affected negatively by low root temperature (Calatayud 
et al., 2008).  

According to Lambreva et al. (2005), stimulation of 
photosynthesis was observed at the growth temperature 
of 23°C whereas, at 39°C the effects of elevated CO2 on 
photosynthesis was induced downward. Generally, 
increased temperature above the optimum limit may 
reduce photosynthetic rate (Wahid et al., 2007). For 
instance, in a study involving rice (Oryza sativa L.) plant, 
Mohammed and Tarpely (2009) indicated that, high 
temperatures had a negative effect on photosynthesis as 
well as various enzymes involved in the process. Unifor-
mity of shoots and time to flower on plants is also 
increased by increasing photosynthetic photon flux 
(Quedado and Friend, 1978; Karlsson et al., 1989). 
However, information concerning the effects of hydroponic 
water temperature during winter on the photosynthesis 
rate on plants is rather limited in plants grown under 
glasshouse conditions.  Therefore, it is important to 
document the influence of plants photosynthetic activities 
when exposed to hydroponic media of different tempe-
rature treatments. Such information could assist in 
developing adaptable hydoponic solution temperature for 
cultivating glasshouse plants with highly functional 
substances.   
 
 
EFFECTS OF TEMPERATURE CHANGES IN 
HYDROPONIC WATER ON PLANT GROWTH AND 
DEVELOPMENT 
  
Water temperature is an important growth factor that may 
influence plant development in hydroponic systems. 
Therefore, it is beneficial to study the optimum tempe-
rature requirements for different crops grown in climates 
with adverse winter conditions. Water temperature plays 
a vital role in plant development (Chung et al., 2006).  At 
optimum temperatures, water can nourish growth while at 
lower or high levels, plant growth can be negatively 
affected (He et al., 2002). In plants, water is required to 
maintain cell turgidity so as to ensure continuous column 
of moisture in the cells (Stewart and Dwyer, 1983; 
Noguchi and Terashima, 1997; Outlaw, 2003). It is also 
indispensable to the intracellular chemical processes that 
keep the plant growing (Outlaw, 2003; Yamori et al., 
2006). Cold water may cause frost  damage  to  plants by  
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forming sharp-edged ice crystals, which puncture cell 
walls.  Studies have shown that, at lower temperatures 
(10°C), flower abortion in different plant species occurred 
because pollen and ovule fertility were highly sensitive to 
cold temperatures (Jakobsen and Martens, 1994; 
Dom´ınguez et al., 2005; Singh et al., 2008). In the flower 
industry, these effects on flower physiology can lead to a 
drastic reduction in economic yield (Diepenbrock, 2000; 
Thakur et al., 2010).  

Temperature may also affect many other growth 
physiological processes at different developmental 
stages of the plant.  Studies have shown that, most 
tender plants will grow well in temperatures ranging from 
6 to 24°C and half-hardy plants from 10 to 18°C, whereas 
hardy plants may survive in temperature range of 7 and 
16°C (Bubel, 2007; Gesch and Forcella, 2007). There-
fore, when water temperatures drop below 6°C in such 
type of plants, thermal modifications can be essential to 
sustain growth.  

The effects of temperature on vegetative plant growth 
and flower development will vary depending on the 
growth stage of the plant (Selander and Welander, 1984). 
In a glasshouse experiment the effect of temperature on 
Primula vulgaris showed that, an increasing temperature 
up to 18°C delayed flower opening and decreased the 
number of flowering shoots, whereas at a lower tempe-
rature (12°C) inhibition of flower development was 
overcome (Selander and Welander, 1984). In other studies 
involving Aeschynanthus speciosus, increasing the 
temperature from 12 to 21°C resulted in higher percen-
tage of flowering plants with increased number of leaves 
formed (Welander, 1984). In separate studies, the 
number of days to flowering of Centradenia inaequilateralis 
and flower formation was significantly affected by 
increasing temperature (Tromp, 1984; Friis and 
Christensen, 1989; Zhu et al., 1997; Roh and Hong, 
2007). Other studies conducted in the glasshouse to test 
the effect of temperature in P. vulgaris, showed that 
increasing the temperature to 18°C delayed flower 
opening and decreased the number of flowering shoots 
whereas at 12°C flower development was enhanced and 
the plant performed well (Selander and Welander, 1984; 
Roussopoulos et al.,1998). Similarly, studies on a 
different plant (Chrysanthemum) showed that, increasing 
temperature from 14 to 26°C delayed flowering for more 
than 30 days (Karlsson et al., 1989). In passion fruit 
(Passiflora edulis), temperatures ranging from 25 to 30°C 
limited flowering, while, temperatures ranging from 10 to 
15°C reduced the yield of vegetative growth (Menzel et 
al., 1987). Therefore, it is important to establish other 
possible effects of regulating temperatures in the hydro-
ponic solution on plant growth and development in the 
glasshouse during winter periods. 
 
 
CONCLUSIONS 
 
Temperature changes  in  hydroponic  media  may  affect 

 
 
 
 
the development of plants. Most plants are unable to 
grow at sub-optimum levels. When temperatures are not 
at optimum level, several physiological functions such as 
photosynthesis, chlorophyll formation and pigmentation, 
nutrient uptake, accumulation and synthesis of secondary 
metabolites in plants are affected. Thermo regulation of 
hydroponic solution in the glasshouse is a technique 
which can be used to optimise the production of flowers 
or flowering plants during winter periods. 
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