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One thousand and forty three (1043) maize genotypes including white and yellow maize inbred lines as 
well as hybrids from the public germplasm collection were characterized with 80 microsatellite markers 
distributed throughout the genome. A total of 1874 alleles were amplified and used in the genetic 
diversity analysis. Principal coordinate analysis confirmed the geographical distribution of the breeding 
lines. Cluster analysis using Rogers distance measures placed the breeding lines in several clusters 
and corresponded well with known pedigrees. Lines with mixed origin were classified in separate 
clusters and duplicate entries in the collection were identified. These mixed lines could not be placed in 
known heterotic groups, but could rather be used to identify new groups to be used in the breeding 
program. The genetic distances determined in the study can be applied to plan a more focused 
breeding program. 
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INTRODUCTION 
 
Maize is one of the most widely grown crops worldwide 
and certainly an important staple food in the African diet. 
It is used as human food, animal feed and provides an 
important source of income and employment for a large 
proportion of the population. Maize breeding is 
monopolized by large multi-national private companies, 
with little attention given to more specific needs of local 
markets. The public sector breeding program is essential 
in breeding and providing varieties for this niche market 
as well as providing inbred lines to local private 
companies. Due to ever decreasing research funds, it is 
however, essential to scale down the amount of 
testcrosses and the size of current breeding programs.  

Several heterotic groups are currently identified and 
used in the local breeding program. The locally  
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is being used extensively in crosses. The I heterotic 
group is considered to be the most advantageous for 
yield adaptation in South Africa. In hybrid combination 
with the I-group, the US Cornbelt lines, related to the 
Lancaster line, Mo17, seems to be the preferred choice. 
Smaller heterotic groups include the K64 group. 

Genetic diversity among inbred lines has traditionally 
been based on morphological data such as endosperm 
type, pedigree record and amount of heterosis expressed 
by the hybrid. This method has several limitations as 
morphological characters do not always reliably portray 

genetic relationships due to environmental interactions. 
Testcross designs with numerous testers are extremely 
expensive, labour intensive and require large-scale field 
evaluations. Molecular analyses can lower the cost 
involved in plant breeding. It also provides a means for 
determining the purity of hybrids produced in the seed 
industry and can save seed companies and farmers 
money in terms of ensuring the quality of the seed. 

 Knowledge of the relationships among lines would also 
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help identify a set of inbreds that have maximal diversity  
for the analysis of the effects of genetic background (Liu 
et al., 2003). The ideal marker system is highly polymor-
phic, co-dominant, accurate, reproducible, high-through-
put and low cost (both in terms of capitalinvestment and 
cost per assay). For decades, simple sequence repeats 
(SSR) or microsatellites, have been the genetic markers 
of choice, because they are economical to score, have 
high allelic diversity and are usually selectively neutral 
(Smith et al., 1997). Large numbers of single nucleotide 
polymorphisms (SNPs) are already available and have 
been used extensively in genotyping maize. However, it 
is still not cost effective in South Africa to genotype large 
numbers of inbreds for the purpose of association analy-
sis and it is thus necessary to identify a set of lines that 
capture the maximum number of alleles or haplotypes 
and determine population structure. Hamblin et al. (2007) 
compared the use of SSR and SNP markers in maize. 
The different mutational properties of these two classes 
of markers resulted in differences in heterozygosities and 
allele frequencies, but SSRs performed better in clus-
tering germplasm into populations. SSRs provided more 
resolution in measuring genetic distance based on allele-
sharing. Their results suggested that large numbers of 
SNP loci would be required to replace highly polymorphic 
SSRs in studies of diversity and relatedness (Hamblin et 
al., 2007).The relationship between mid-parentheterosis 
of single-cross hybrids and the genetic distance of their 
parental inbreds, determined with molecular markers, 
were investigated both in theory (Charcosset and Essi-
oux, 1994) and numerous experiments with maize and 
other crops (Brummer, 1999). Xia et al. (2004) concluded 
from their study of CIMMYT sub-tropical maize inbreds 
that the SSR based genetic distances, calculated with a 
modified Roger’s distance measure, in combination with 
field evaluations, provided a solid basis for the detection 
of heterotic groups. 

The objectives of our research were to: 1) fingerprint 
local maize genotypes according to the most appropriate 
and cost-effective procedure for determining genetic 
distances of breeding lines and 2) compile a database of 
local maize breeding material according to DNA data. 

 
 
MATERIALS AND METHODS 

 
Plant material 

 
The pedigrees of hybrids studied in this paper are commercial 
intellectual property. Therefore, detailed information is not allowed. 
Seeds from breeding lines and hybrids were obtained from plant 
breeders at ARC-GCI in Potchefstroom and Cedara, South Africa 
and planted in small pots for germination. Young leaves from 
approximately 20 plants from each line were harvested and two 
bulks made up from equal amounts of leaf material from ten plants 
each. We assumed that the bulk sample will capture all heterozygo-
sity present in the genotypes. Leaf material was freeze dried and 
ground to a fine powder.  

 
 
 
 
SSR genotyping 

 
DNA was extracted from each bulk sample using a modified CTAB 
extraction technique (Saghai-Maroof et al., 1984) and diluted to 50 
ng/µl. Microsatellite marker genotyping involved the use of 96 
fluorescently labelled SSR selected from published markers 
(www.agron.missouri.edu/ssr.html) to be evenly distributed 
throughout the maize genome (Figure 1).  

The SSR primers were labelled with four different dyes [6FAM 
(blue), HEX (green), NED (yellow) and PET (red)] and combined in 
12 multiplex groups (Table 1) with each containing seven to ten 
primer pairs according to colour and size avoiding overlapping of 
the same colour. PCR amplifications were carried out on a Techne 
384-well thermal-cycler in a final reaction volume of 5 to10 µl, con-
taining 50 ng genomic DNA, 1X multiplex PCR master mix (Qiagen, 
Valencia, USA) containing HotStarTaq DNA polymerase, multiplex 
PCR buffer, 2 mM MgCl2, 250 mM of each dNTP (dATP, dCTP, 
dGTP, dTTP), and 0.05 µM of each multiplex fluorescent primer 
mix. The PCR products were diluted 1:20 and 1 µl was added to 
HiDi-formamide (Life Technologies) containing 0.12 µl GeneScan-
LIZ500 as size standard and electrophoresed on an ABI 
Prism3130xl sequencer. Fragments were analyzed with Gene map-
per 4.0 (Applied Biosystems) software and allele sizes was verified. 
A list of microsatellite loci and their chromosomal locations is given 
in Table 1. 

 
 
Data analysis 

 
Genetic distances of breeding lines and hybrids tested were calcu-
lated with the Powermarkerver 3.25 (Liu and Muse, 2005) using the 
Rogers (1972) parameter. The polymorphic information content 
(PIC) for each marker was determined using Powermarkerver 3.25 
software. Average linkage [unweighted paired group method using 
arithmetic averages (UPGMA,)] clustering was calculated based on 
Rogers distance (RD) estimates between pairs of inbred lines for 
the yellow and white lines and hybrids separately. To evaluate the 
robustness of the UPGMA dendrogram, the cophenetic correlation 
was calculated (Sneath and Sokal, 1973) utilizing NTSYS ver 2.21 
software (Rohlf, 2009).The data was transformed with the dcenter 
module and Eigenvectors calculated. Principal coordinates analysis 
(PCoA) was carried out on the calculated distances usingNTSYS 
ver. 2.21 software (Rohlf, 2009).  

 
 
RESULTS 

 
A total of 96 SSR primer sets were used to fingerprint the 
breeding lines and hybrid samples. The SSR markers 
with more than 20% missing values were discarded and 
data from 80 markers were used in the final analysis. The 
PIC values of markers varied between 0.2 and 0.9. The 
average number of alleles per locus was 12.7 for a total 
of 1043 genotypes tested, with a total of 1874 alleles 
amplified (Table 1). The number of alleles amplified 
varied between 6 and 36 per locus for the total population 
screened. When looking at the separate populations 
tested, the mean number of alleles per locus was the 
highest for the yellow maize breeding lines, which also 
had the highest entries in the screening program (Table 
2). 

In PCoA of the RD of the breeding lines, the white and
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Figure 1. Maize genomic map indicating SSR markers used in the study (based on IBM2 2008 distances). 
 
 
 

yellow groups were clearly separated in two clus-
ters, with relatively few overlapping genotypes 
(Figure 2). When regarding the two localities 

where the breeding lines originated, it was clear 
that the white lines could be separated into three 
clearly distinguished groups, with the lines from 

Potchefstroom grouping in two separate clusters. 
The yellow breeding lines were much more 
heterogeneous between the two localities, with
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Table 1. Multiplex grouping of SSR markers. 
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M1 

umc2162 PET 6.06 (CCG)5 
                                

umc1993 6-FAM 10.06 (CT)17 
                                

phi233376 6-FAM 8.03 CCG 
                                

phi046 VIC 3.08 ACGC   
                               

phi331888 VIC 5.04 AAG 
                                

phi062 VIC 10.04 ACG 
                                

phi089 NED 6.08 ATGC 
                                

phi339017 NED 1.03 ACC   
                               

M2 

umc1256 VIC 2.09 (CAT)5 
                                

phi101049 VIC 2.10 AGAT 
                                

phi108411 NED 9.05 AGCT 
                                

phi96342 NED 10.02 ATCC 
                                

umc2217 6-FAM 1.04 (TG)6 
                                

umc1279 PET 9.00 (CCT)6 
                                

phi104127 PET 3.00 ACCG 
                                

phi96100 PET 2.00 ACCT   
                               

M3 

bnlg118 6-FAM 5.07 (AG)n 
                                

phi076 6-FAM 4.11 AGCGGG 
                                

phi032 6-FAM 9.04 AAAG 
                                

phi114 VIC 7.03 GCCT 
                                

umc1196 NED 10.07 CACACG 
                                

phi050 PET 10.03 AAGC 
                                

phi123 PET 6.07 AAAG   
                               

M4 

 

 

 

 

 

 

 

umc1304 6-FAM 8.02 (TCGA)4 
                                

phi053 6-FAM 3.05 ATAC 
                                

umc1295 VIC 7.00 (AT)6 
                                

umc1657 VIC 9.00 (GACGG(4 
                                

phi396160 VIC 5.02 AGGCG 
                                

umc1757 NED 4.01 (TCC)7 
                                

umc1109 PET 4.10 (ACG)4 
                                

phi059 PET 10.02 ACC   
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Table 1. Contd. 
 

M5 

 

 

 

 

 

 

 

 

phi308707 6-FAM 1.10 AGC 
   

      
                          

umc1644 6-FAM 3.06 (TTG)8 
       

      
                      

phi072 VIC 4.00 AAAC 
     

        
                       

phi011 VIC 1.09 AGC 
            

          
               

phi008 NED 5.03 GGC 
  

    
                            

phi079 NED 4.05 AGATG 
         

      
                    

phi093 NED 4.08 AGCT 
                    

      
         

bnlg391 PET 6.01 -         
                            

phi112 PET 7.01 AG                                                                 

M6 

phi109275 6-FAM 1.03 AGCT 
    

      
                         

phi041 6-FAM 10.00 (CAT)5 
           

      
                  

umc1399 VIC 3.07 9CTAG)5 
   

      
                          

umc1122 VIC 1.06 (CGT)7 
       

      
                      

phi034 NED 7.02 CCT 
    

        
                        

phi031 NED 6.04 GTAC 
          

            
                

umc1126 PET 2.00 ACC 
       

            
                   

phi127 PET 2.08 AGAC 
   

      
                          

M7 

 

 

 

 

 

 

 

umc1019 6-FAM 5.06 (CT)17                                                                 

umc1161 6-FAM 8.06 (GCTGGG)5 
      

        
                      

bnlg1057 6-FAM 1.00 (AG)17 
               

              
          

phi083 VIC 2.04 AGCT 
    

      
                         

phi070 NED 6.00 AGCTG 
 

              
                        

umc1545 PET 7.00 (AAGA)4       
                             

phi029 PET 3.04 AG/AGCG 
       

    
                       

phi213984 PET 4.01 ACC 
                    

      
         

M8 

 

 

 

 

 

 

 

umc1061 6-FAM 10.06 (TCG)6                                                                 

bnlg1792k8 6FAM 7.00 (AG)16 
          

                      
           

phi452693 VIC 6.04 AGCC 
   

        
                         

phi227562 VIC 1.11 ACC 
                      

        
      

phi299852 NED 6.07 AGC 
   

      
                          

phi073 NED 3.05 AGC 
          

        
                  

phi328175 PET 7.04 AGG 
  

        
                          

phi080k15 PET 8.00 AGGAG                                                                 
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Table 1. Contd. 
 

M9 

 

 

 

 

 

 

 

 

umc1407 6-FAM 7.00 (GGC)6 
 

    
                             

nc130 6-FAM 5.00 AGC 
      

    
                        

phi374118 6-FAM 3.02 ACC 
             

      
                

phi064 VIC 1.11 ATCC         
                            

phi116 VIC 7.06 ACTG/ACG 
       

      
                      

umc1143 NED 6.00 AAAAT 
 

    
                             

umc1136 NED 3.10 (GCA)5 
     

            
                     

umc1777 PET 8.00 AGCC 
   

    
                           

phi084 PET 10.04 GAA 
       

      
                      

M10 

 

 

 

 

 

 

 

phi100175 6-FAM 8.03 AAGC                                                                 

phi109642 VIC 2.00 ACGG 
    

        
                        

phi448880 VIC 9.06 AAG 
         

      
                    

bnlg2291k4 VIC 4.06 (AG)17 
                          

        
  

umc1555 NED 2.03 (TTCA)7 
 

      
                            

phi014 NED   GGC 
 

      
  

        
                      

bnlg2305k4 NED 5.06 (GA)6 
                

                  
       

phi065 PET 9.03 CACTT                                                                 

M11 

 

 

 

 

 

bnlg161k8 VIC 6.00 (AG)n 
     

                    
                 

bnlg1754w3 PET 3.09 (AG)20 
      

              
                   

umc2105k3 PET 3.00 (CCAT)4 
                    

            
      

bnlg1940k9 NED 2.08 (AG)18 
                          

            

bnlg2277 6-FAM 2.02 (AG)19 
          

        
                  

umc1932 NED 7.00 (GA)8 
        

          
                   

M12 

 

bnlg1953 NED 1.02 (AG)17                                                                 

umc1586 NED 9.03 (ATC)5 
                     

                  
  

umc1955 PET 1.08 -       
                             

umc1603 PET 1.00 (GCC)4 
       

        
                     

umc1230 PET 2.00 (TAA)8                                                                 
 
 
 

only a few lines falling in definite clusters. The 
lines originating from CIMMYT, Mexico, clustered 
together with the Cedara material for both white 
and yellow lines. These lines were used in the Ce-
dara breeding program over a long period of time 

and therefore the result was as expected. 
The white lines were compared to some anchor 

lines with known heterotic grouping (Figures 3 and 
4). The lines with known pedigrees related to K64, 
clustered together (r=0.91), with only one line with 

larger RD from the rest of the group. A large num-
ber of white lines clustered with the Lancaster line 
Mo17. The rest of the groups could be separated 
into distinguishable clusters by the UPGMA deri-
ved dendrogram (Figure 4). PCoA and cluster 
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Table 2. Average and range of number of alleles per locus for 1043 maize genotypes. 
 

Population Number of genotype Number of allele Mean alleles / locus Range allele 

White breeding lines 207 575 7.2 2-20 

Yellow breeding lines 643 770 9.5 2-24 

Hybrids 193 529 6.61 2-19 

Total 1043 1874 12.7 6-36 

 
 
 

 
 
Figure 2. Principal coordinates analysis of white and yellow breeding lines from the two localities. 

 
 
 

analysis of yellow breeding lines revealed a small group 
of lines clustering with Mo17 (Figures 5 and 6) (r=0.72), 
with the rest of the lines with mixed origin. The cluster 
analysis (Figure 6) identified several related groups of 
lines indicating close genetic relationships. These results 
show the extent to which these lines were interbred in the 
breeding program over several decades. 

One hundred and ninety three (193) hybrids were inclu-
ded in the study to explore the diversity achieved and the 
genotypes were compared to locally cultivated maize 
cultivars produced by private companies. Five distinct 
groups of ARC hybrids could be identified. No overlap 
could be seen between ARC hybrids and those from the 
private companies tested (Figure 7). Cluster analysis (not 
shown) revealed several identical hybrids included in the 
entries (r = 0.88). 

DISCUSSION  
 
Maize breeding is a never-ending challenge for develop-
ing new inbred lines and cultivars with improved yield, as 
well as tolerance to a diverse spectrum of biotic and 
abiotic stress conditions, such as diseases, pests, low 
soil fertility and drought. New cultivars must also conform 
to changing industry requirements such as grain quality 
for milling and ethanol production. Climatic changes such 
as global warming pose new challenges to breeders for 
developing cultivars that will perform well under changed 
conditions. Although seed companies produce their own 
hybrids, they remain dependent on foundation-seed sup-
pliers for inbred lines and even sometimes locally adap-
ted hybrids. 

The ARC-GCI has a large germplasm collection of
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Figure 3. Principal coordinates analysis of white breeding lines compared with anchor lines of known heterotic groups. 
 
 
 

inbred lines, containing both white and yellow lines, at its 
disposal. These lines needed to be characterized on a 
molecular level to determine close relationships or gene-
tic distances to narrow down the possibilities for utilizing 
this material in testcrosses. It also served the purpose of 
identifying duplicate lines, as well as genetic drift within 
well-known breeding lines. 

During the past decade, the technology used in finger-
printing of field crops developed from restriction fragment 
length polymorphism (RFLP) to amplified fragment length 
polymorphism (AFLP), SSR and SNP. The RFLP techni-
que was laborious and time consuming and only single 
data points could be analyzed per reaction. The AFLP 
technique was less time consuming and labour intensive 
and rendered up to 100 data points per reaction, but it 
was difficult to duplicate results over time and between 
different laboratories. The SSR technique is a simple 
polymerase chain reaction (PCR) technique, which lends 
itself to high throughput of samples when multiplex reac-
tions are used with an automatic genetic analyzer like the 
ABI3130xl. The technique is also easy to duplicate 
among different laboratories.  

Although the SNP technique can analyze thousands of 
data points per run, one has to look at the application that 
you need the analysis for. The SSR technique can be uti-
lized to give low coverage of the whole genome of maize, 
giving an overall indication of the genetic material present 

in a specific population. Knowledge of the relationships 
among lines can help identify a set of specific inbreds 
that have maximal diversity for the analysis of the effects 
of background (Liu et al., 2003), to be used further in 
experimentation and association analysis of specific 
traits.  

A similar African study was conducted by Legesse et 
al. (2007), to determine the diversity present in an African 
breeding population in Ethiopia and Zimbabwe. They 
found that they could distinguish between their inbred 
lines with as little as 27 SSR loci, which grouped their 
lines in groups corresponding to adaptation to different 
altitudes and consistent with known pedigree information. 
In our local line collection, the breeding program has 
used lines from different countries and sources and the 
end result is a totally different population from the original 
due to interbreeding between different heterotic groups. 
New grouping of the breeding lines became of vital 
importance for improvement of the crop. 

SSR markers were utilized in this study in the geno-
typing of the germplasm collection of the ARC-GCI from 
two different localities and were used at a density of eight 
markers per chromosome. The 80 markers utilized ampli-
fied a total of 1874 alleles giving an average of 23.4 alle-
les per locus, which is higher than observed by Van 
Inghelandt et al. (2010). Results were used to determine 
the genetic relationships among the inbred lines and
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Figure 4. Associations among white inbred lines revealed by average linkage (UPGMA) cluster analysis based on Rogers 
distance. 

 
 
 

 
 

Figure 5. Principal coordinates analysis of yellow breeding lines compared with anchor lines of known heterotic 
groups. 
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Figure 6. Associations among yellow inbred lines revealed by average linkage (UPGMA) cluster analysis based on 

Rogersdistance. 
 
 
 

 
 
Figure 7. Principal coordinates analysis of hybrids tested. 



 
 

 
 
 
 
hybrids. Principal coordinates analysis clearly separated 
white and yellow lines as expected from the pedigree 
data that were available from the breeding programs. 
These groups were further analysed separately. In the 
analysis of white breeding lines based on Rogers estima-
tes, the lines clearly were separated in two different 
groups with PCoA analysis. A large group of lines were 
grouped together with Mo17, a Lancaster line, in accor-
dance with pedigree data.  

All the white lines could not be grouped into specific 
heterotic groups and some were of mixed origin. These 
lines were developed through crosses between the differ-
ent groups in the breeding program and it is thus not 
possible to group them with currently known heterotic 
groups. The cluster analysis gave a more detailed group-
ing of lines (Figure 4): the K-group was derived from K64 
crosses. K64 is a Kansas inbred known for fairly good 
drought tolerance.  

The CB group derived from inbreeding US Corn belt 
hybrids clustered with Mo17, a Lancaster line. A 3rd 
group was identified as a mixed group containing combi-
nations of Corn Belt material with Sahara or I-group lines 
as well as lines with maize streak virus resistance. The 
M37W group was derived from the Australian inbred 21A. 
Lines originating from CIMMYT also clustered in this 
group as a sub-group.  

The I137TN group is the major South African group 
known for its superior combining ability for grain yield, 
especially in combination with US Corn Belt material.The 
group originated from the locally developed I137TN in-
bred. I137TN was selfed out of a yellow endosperm local 
variety cross between the two varieties Teko Yellow x.  
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