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Salinity stress has negative effects on agricultural yield throughout the world, affecting production 
whether it is for subsistence or economic gain. This study investigates the inductive role of vitamin C 
and its application mode in mitigating the detrimental effects of irrigation with diluted (10, 20 and 30 %) 
NaCl + water on Silybum marianum L. plants. The results show that 10% of salt water exhibited 
insignificant changes, while the higher levels impaired growth by reducing seed germination, dry 
weights of shoot and root, water status and chlorophyll contents. However, irrigation with salt water 
enhanced carotenoids and antioxidant enzyme activities. The detrimental effects of salt water were 
ameliorated by application of 100 ppm ascorbic acid (vitamin C). The inductive role of vitamin was 
associated with the improvement of seed germination, growth, plant water status, carotenoids, 
endogenous ascorbic acid and antioxidant enzyme activities. Moreover, vitamin C alone or in 
combination with 30% NaCl water increased the intensity of protein bands as well as synthesized 
additional new proteins with molecular weights of 205, 87, 84, 65 and 45 kDa. This could increase 
tolerance mechanisms of treated plants towards water salinity. 
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INTRODUCTION 
 
Soil salinity is a major constraint to food production 
because it limits crop yield and restricts use of previously 
uncultivated land. Seed germination, one of the most 
critical phases in plant life, is greatly affected by salinity 
(Abo-Kassem, 2007), which either induces a state of 
dormancy at low levels or completely inhibits germination 
at higher levels (Iqbal et al., 2006). Pahlavani et al. 
(2006) proved that genetic information regarding seed 
germination could help to improve seedling emergence in 
saline soil through breeding programs. Increasing sodium 
concentration in plant tissue can increase oxidative 
stress, which causes deterioration in chloroplast structure 
and an associate lose in chlorophyll. This leads to a 
decrease in chlorophyll, while increasing carotenoids 
content (Khosravinejad and Farboondia, 2008). Further-
more, reactive oxygen species (ROS) like superoxide, 
hydrogen peroxide and hydroxyl radicals are generated 
(Wahid et al., 2007). ROS are highly reactive in the  
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absence of any protective mechanism. They can 
seriously disrupt normal metabolism through oxidative 
damage to essential membrane lipid, proteins and 
pigments (Di – Baccio et al., 2004; Çakmak, 2005). To 
scavenge ROS, Mittler (2002) showed that plants 
synthesize different types of defense system composed 
of non-enzymatic antioxidants, such as ascorbic acid and 
enzymatic antioxidants like catalase (CAT), peroxidase 
(POD), ascorbate peroxidase (AP) and glutathione 
reductase (GR). Scavenging system has a potential to 
quench ROS in stress tolerance plants (Koca et al., 2007; 
Sairam et al., 2005). Osmotic adjustment is the cellular 
response to turgor reduction. The cytosolic and 
organellar machinery of glycophytes and halophytes are 
equivalently sensitive to Na

+
 and Cl

-
 ; therefore, osmotic 

adjustment is achieved in these compartments by 
accumulation of compatible osmolytes and osmo-
protectants (Bohnert, 1995; Bohnert and Jensen, 1996). 
However, Na

+
 and Cl

- 
are energetically efficient 

osmolytes for osmotic adjustment and are compart-
mentalized into the vacuole to minimize cytotoxicity 
(Bressan et al., 1995). The adaptation to salinity stress is 
accompanied by alterations  



 
 
 
 
in the level of protein patterns. Salinity induces the 
synthesis of salt stress-specific proteins. Some of these 
proteins were suggested to protect the cell against the 
adverse effect of salt stress. Vitamins were generally 
found to affect gene expression. They induced the 
synthesis and increased the amount of the original 
proteins which were already present in the control plants, 
as well as the appearance of additional new bands 
(Azooz, 2004; Bassuony et al., 2008; Beltagi, 2008). The 
significant increase in the intensity of the original bands 
appearing in the control indicates that vitamins have 
profound effects on the qualitative and quantitative 
changes in the protein component of these plants, which 
might be linked with improvement of their growth and 
productivity.Vitamin C is a small and water-soluble 
antioxidant molecule that acts as a primary substrate in 
the cyclical pathway for detoxification and neutralization 
of superoxide radicals and singlet oxygen (Noctor and 
Foyer, 1998). Many studies reported that the optimal 
concentration of vitamin C exhibited beneficial effect on 
growth and yield of some crop plants grown under saline 
conditions (Azooz, 2004; Khan et al., 2006; Bassuony et 
al., 2008). They reported that ascorbic acid (vitamin C) 
can play an inductive role in alleviating the adverse effect 
of salinity on plant growth and metabolism in many plant. 
So, the main objective of this study was to investigate the 
inductive role of 100 ppm vitamin C solution either before 
(seed soaking) or after (shoot spraying) cultivation on 
seed germination, growth, water status, antioxidant 
enzymes and protein patterns of Silybum marianum (L) 
Gaertner plants under irrigation with diluted NaCl.  

S. marianum (L) Gaertner plant, also called milk thistle, 
is an annual or biannual plant of the Asteraceae family. 
This fairly typical thistle has red to purple flowers and 
shiny pale green leaves. It is used in cases of liver 
diseases (cirrhosis, jaundice and hepatitis) and 
gallbladder disease, and is claimed to protect the liver 
against poisons. Silibinin (syn. silybin, sylimarin I) is a 
hepatoprotective (anti-hepatotoxic) antioxidant (radical-
scavenging agent), thus stabilizing and protecting the 
membrane lipids of the hepatocytes (liver cells). Silicristin 
inhibits the enzymes peroxidase and lipoxygenase. 
Silidianin is a plant growth regulator. A study imple-
mented in 2000 and making such claims by the Agency 
for Healthcare Research and Quality (AHRQ) concluded 
that "clinical efficacy of milk thistle is not clearly 
established". However, a more recent study did show the 
activity against liver cancers. Cochrane’s review in 2005 
considered 13 randomized clinical trials which assessed 
milk thistle in 915 patients with alcoholic and/or hepatitis 
B or C virus liver diseases.  

They questioned the beneficial effects of milk thistle for 
patients with alcoholic and/or hepatitis B or C virus liver 
diseases and highlighted the lack of high-quality evidence 
to support this intervention. Cochrane concluded that 
better quality of randomized clinical trials on milk thistle 
versus placebo is needed. 
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MATERIALS AND METHODS 
 
Plant material growth and treatment condition 
 

This experiment was sown in trays containing vermiculite and daily 

irrigate with different levels (10, 20 and 30%) of NaCl + water and 
100 ppm vitamin solution on seeds of S. marianum (L.) Gaertner. 
Plant transpiration rate was estimated as described by Bozcuk 
(1975). Relative water content (RWC) of leaves was determined 
according to Smart (1974). 
 
 
Photosynthetic pigments 

 
Chlorophyll (chl a and b) and carotenoids contents in leaves were 
estimated in 80% acetone extracts according to Lichtenthaler and 
Wellburn (1983). 
 
 
Analyses of antioxidant enzymes activities 
 

Assay of catalase activities 
 

The reaction mixture 1.5 mM Na- ethylenediaminetetraacetic acid 
(EDTA) consists of 50 mM phosphate buffer (pH 7.6 0.1 ml 100 mM 
H2O2 and enzyme extract at 340 nm for 1 min established as 
enzyme activity (Çakmak and Marschner, 1992). 
 

 

Assay of ascorbate peroxidase activities 

 
Total ascorbate peroxidase activity was assayed according to 
Nakano and Asada (1981). The reaction mixture (1.5 ml) contained 
50 mM phosphate buffer (pH 6.0), 0.1 µM EDTA, 0.5 mM 
ascorbate, 1.0 mM H2O2 and 50 µL enzyme extract. The reaction 
was started by the addition of H2O2 and ascorbate oxidation 
measured at 290 nm for 1 min. Enzyme activity was quantified 
using the molar extinction coefficient for ascorbate (2.8 mM 

-1
) and 

the results were expressed in µM H2O2 min
-1

g
-1

 dry mass (DM), 
taking into consideration that 2 mol ascorbate are required for 

reduction of 1 mol H2O2 (McKersie and Leshem, 1994). 
 
 
Assay of glutathione reductase (GR) activities 
 

Total GR activity was assayed as described by Foyer and Halliwell 
(1976) with minor modification. The reaction mixture (1.0 ml) 
consisted of 100 mM phosphate buffer (pH 7, 8) 0.1 µM EDTA, 0.05 

mM NADPH, 3.0 mM oxidized glutathione (GSSG) and 50 µL 
enzyme extract. The reaction was started by the addition of GSSG 
and the NADPH oxidation rate was monitored at 340 nm for 1 min. 
Enzyme activity was determined using the molar extinction 
coefficient for NADPH (6.2 mM

-1 
cm

-1
) and expressed as µmol 

NADPHmin
-1

mg
-1

DM. 
 
 

Assay of superoxide dismutase (SOD) activities 
 

Total SOD activity was determined by measuring its ability to inhibit 
the photochemical reduction of nitro blue tetrazolium chloride (NBT) 
as described by Gianopolitis and Reis (1977). The reaction mixture 
(1.5 ml) contained 50 mM phosphate buffer (pH 7.8), 0.1 µM EDTA, 
13 mM methionine, 75 µM NBT, 2 µM riboflavin and 50 µL enzyme 
extract. Riboflavin was added last and tubes were shaken and 
illuminated with a two 20-W fluorescent tubes. The reaction was 
allowed to proceed for 15 min after which the lights were switched 

off and the tubes covered with a black cloth. Absorbance of the 
reaction  mixture  was  read at  560 nm. One  unit  o f the  defined  
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amount of enzyme is required to cause 50% inhibition of the NBT 
photoreduction rate and results were expressed as SOD activity 
mg

-1
DM. 

 
 
Statistical analysis 

 
All the data were statistically analyzed by one-way analysis of 
variance (ANOVA). The least significant difference (LSD) method 
was used to test the difference between treatments and p≤ 0.05 
was considered statistically significant. Statistical analyses were 
performed with SPSS packet software 

 
 
RESULTS AND DISCUSSION 
 

The germination percentage seeds under different levels 
of NaCl+water irrigation (Figure 1) was unaffected at 10% 
NaCl. However, a significant decrease at the higher 
levels was recorded. The maximal germination per-
centage was 30% NaCl as compared with control. Seeds 
soaked in 100 ppm vitamin C increased their percentage 
of germination. It was noticeable that the inhibitory effect 
imposed by NaCl irrigation was completely alleviated at 
the mild (20%), while at the highest (30%) NaCl+water 
level, the maximal germination percentage was 83.3%. 
The inhibitory effect of NaCl+water on seed germination 
may be partially osmotic due to declining solute potential 
or ion toxicity due to accumulation of some ions in the 
seeds, which can alter some physiological processes 
such as enzyme activation (Croser et al., 2001; Hajer et 
al., 2006; Jaleel et al., 2007). Abo-Kassem (2007) 
reported that high salinity delayed radical emergence and 
decreased germination percentage. The improvement 
effect of vitamin C on germination proved the success of 
using vitamin C as pretreatment of S. marianum (L) 
Gaertner seeds to reduce the inhibitory effect of stress on 
their germination. These positive results of vitamin C on 
seeds germination were reported by Shaddad et al. 
(1990) and Arab and Ehsanpour (2006). Arrigoni and De 
Tullio (2000) reported that exogenous ascorbic acid 
increased the level of ascorbic acid NaCl+water uptake 
by different tissues. The additional vitamin C is 
associated with the partial inhibition of ROS production 
(Shalata and Neumann, 2001). So, it can be concluded 
that, the inductive role of vitamin C in seed germination is 
attributed to its antioxidant activity. 

Changes of protein patterns by one-dimensional 
sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE) were also analyzed in germinated 
seeds of S. marianum (L) Gaertner (Figure 2), to follow 
any possible alterations in gene expression in these 
seeds as a result of seeds treatment with 30% alone, 
NaCl + water vitamin C alone or both in comparing with 
control (seeds germinated in tap water). Protein bands 
indicated the presence of about 14 polypeptides with 
apparent molecular weights ranging from 6.5 to 205 kDa. 
Seeds germinated in 30% NaCl+water (lane 2) showed 
that NaCl+water salinity enhanced the synthesis of most 

 
 
 
 
original proteins which were already present in control 
seeds (lane C), especially, 55, 36, 29, 24, 20, 14 and 6.5 
kDa polypeptides as well as synthesis of additional five 
new proteins with molecular weight of 205, 87, 84, 65 and 
45 kDa. Soaking of seeds in vitamin C elevated the levels 
of proteins in most bands of both seeds germinated either 
in 0 (control) or 30% NaCl+water. Further, in seeds 
germinated in 30% NaCl + water, vitamin C (lane 3) also, 
resulted in appearance of five new proteins with mole-
cular weight of 205, 87, 84, 65 and 45 kDa, respectively. 
In addition, the protein band 0 which had disappeared in 
seeds germinated in 0% NaCl+water and vitamin C; 
reappeared. Similar results were reported by Azooz 
(2004), Kassim and Dowidar (2006) and Beltagi (2008). 

The changes in protein profile may be due to 
adaptation of S. marianum (L) Gaertner seeds to 
NaCl+water stress. The new bands of proteins in 
seedlings germinated in NaCl+water or in combination 
with vitamin C may be due to de novo synthesis of new 
protein (Gopala et al. 1987; Azooz, 2004) . Bassuony et 
al. (2008) has shown that vitamin treatments induces a 
significant alterations in the enzymes related to protein 
metabolism; which indicates that vitamins might act as 
activators of protein synthesis. The new bands and the 
significant increase in the intensity of S. marianum (L) 
Gaertner as well as the original bands appearing in the 
control indicate that vitamin C has stimulatory effect on 
the protein component, which might be linked with the 
improvement of seed germination and growth. Therefore, 
it can be suggested that the new proteins which 
appeared in seedlings germinated in 30% NaCl+water 
alone or with vitamin C and did not appear in untreated 
seedlings (control), may play an inductive role in 
triggering a special system helping seeds to tolerate 
NaCl+water stress and increase their capacity to 
germinate. 

Fresh and dry weights of root and shoot (Figures 3a 
and b), and water status in terms of water content (WC), 
RWC of leaves and transpiration (Figures 4c and d) of S. 
marianum (L) Gaertner plants, exhibited variations as a 
result of NaCl+water irrigation, and compared with the 
control, no significant differences were found in growth 
parameters (fresh and dry weights of root and shoot) and 
water status of plants irrigated with 10% NaCl+water. 
Moreover, stimulation effects on dry weight of shoot 
(Figure 3d) and relative water content of leaves (Figure 
4c) were recorded. However, a significant decrease was 
observed at the higher NaCl+water levels. The growth 
parameters yields of tested plants appeared to be 
positively correlated with their WC and RWC. NaCl+water 
salinity caused more inhibition in roots growth than in 
shoots. So, root/shoot ratios (on the basis of fresh 
weight) were increased with increase of NaCl+water 
level. Kaya et al. (2003) reported that the root growth was 
more  sensitive and  adversely affected  as  compared  to 
shoot growth under salinity conditions. Reduction in plant 
growth as a result of NaCl+water stress has also been 

http://scialert.net/fulltext/?doi=ajpp.2009.38.51#f1
http://scialert.net/fulltext/?doi=ajpp.2009.38.51#f3c
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http://scialert.net/fulltext/?doi=ajpp.2009.38.51#f3c
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Figure 1. Effect of different NaCl+water levels (%) on percentage germination of Silybum marianum (L) Gaertner plants seeds after 

being soaked for 8 h in 100 ppm vitamin C and air dried. (a) 1st, (b) 2nd, (c) 3rd and (d) 4th week. Vertical bars represent ±SD.  
 
 
 

 
 
Figure 2. Analysis of protein patterns by one-dimensional SDS-PAGE extracted from 
germinated seeds of Silybum Marianum (L) Gaertner Plants in 30% NaCl + water 

and/or 100 ppm vitamin C solution. M, Marker protein (6,5 to 205 kDa); lane 1, control 
(seeds germinated in tap water only); lane 2, seeds germinated in NaCl 30%; lane 3, 
seeds soaked in 100 ppm vitamin C and seeds germinated in tap water (0.0% NaCl + 

water); lane 4, seeds soaked in 100 ppm vitamin C and germinated in 30% NaCl + 
water. Least significant difference (LSD) = 5%. SDS-PAGE, Sodium dodecyl sulfate 
polyacrylamide gel electrophoresis. 
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Figure 3. Effect of vitamin C (100 ppm) on seeds after being soaked for 8 h in 100 ppm vitamin C and air dried. (a) Fresh weight and (b) 
dry weight of root, (c) fresh weight and (d) dry weight of shoot of Silybum marianum (L) Gaertner plants grown under different levels of 
NaCl + water. Vertical bars represent ±SD 

 
 
 
reported earlier in several plants (Hajer et al., 2006; 
Alqurainy, 2007; Long et al., 2008). Increase in 
NaCl+water level reduced the absorption of water leading 
to a drop in water content of tested plants. Thus, the 
inhibitory effect of NaCl+water on growth parameters 
could be attributed to the osmotic effect of NaCl+water 
salinity (Salter et al., 2007). In addition, the changes in 
water status under NaCl+water stress may cause a 
reduction in meristem activity as well as cell elongation 
(Shah, 2007). 

The adverse effects of NaCl+water salinity on the 
growth parameters, WC and RWC were mitigated by 
seed 100 ppm vitamin C. These results are in coin-
cidence with that cited by Azooz (2004), Alqurainy (2007) 
and Athar et al. (2008). They suggested that vitamin C 
could accelerated cell division and cell enlargement of 
treated plants. Shoot spraying with vitamin C was more 
effective in improving growth parameters of treated 
plants, which was associated with increasing the WC and 
RWC of leaves and reduction in transpiration rate. This 
indicates that shoot spraying probably reflects the 
efficiency of water uptake and utilization or reduces water 

loss which consequently causes a concomitant increase 
in leaf water potential. Hence, it can be concluded that 
the beneficial effect of vitamin C on growth parameters of 
S. marianum (L) Gaertner has been related to the 
efficiency of their water uptake and utilization. These 
suggestions are in a good agreement with present 
results, which showed that the increase of WC and RWC 
was associated with a decrease in transpiration rate. 
Further, it could be suggested that the effectiveness of 
vitamin C depends on its mode of application, which may 
enhance the endogenous level of vitamin C and water 
status of treated plants.In addition, the photosynthetic 
pigments of S. Marianum (L) Gaertner leaves (Figures 5a 
to c) were substantially affected under NaCl+water 
irrigation. The content of chl. a and chl. b was more or 
less unchanged under 10% NaCl+water level, while, at 
higher levels of Na+water; a significant decrease was 
observed. On the other hand, the content of carotenoid 
was increased at low and moderate NaCl+water levels as 
compared with control. The reduction in chl. b was higher 
(about 44%) than chl. a, (about 30%) below  the control 
at the highest  

http://scialert.net/fulltext/?doi=ajpp.2009.38.51#f5c
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Figure 4. Effect of vitamin C (100 ppm) treatments either by seed soaking on water content (%) of (a) root and (b) shoot, (c) leaf 

relative water content (%) and (d) transpiration rate of Silybum marianum (L) Gaertn plants grown under different levels of sea water. 
Vertical bars represent ±SD.  

 
 

 

NaCl+water level, resulting in a higher chl. a/chl. b . The 
inhibitory effect of NaCl+water stress on photosynthetic 
pigments was completely alleviated as a result of vitamin 
C treatments. Moreover, the values of pigments were 
higher than those of control plants at most NaCl+water 
levels used. These results reinforce the results obtained 
by Shah (2007) and Beltagi (2008). The reduction 
observed in chlorophyll content under NaCl+water 
irrigation could be as a result of inhibition of chlorophyll 
biosynthesis or increased of its degradation (Khan et al., 
2006). Furthermore, under NaCl+water stress, an oxi-
dative stress could result, which causes deterioration in 
chloroplast structure. This leads to a decrease in 
chlorophyll content, while carotenoid content increased 
(Khosravinejad and Farboondia, 2008). Carotenoids are 
known to act as efficient quenchers of free radical caused 
by ROS. Thus, increasing carotenoids in plants treated 
with NaCl+water and/or vitamin C could enhance the 
capacity of these plants to minimize the damage caused 
by ROS. Therefore, chlorophyll content of plants treated 
with vitamin C was increased, which could result from the 

protection effect of vitamin C and carotenoids to the 
photosynthetic apparatus from NaCl+water induced 
oxidative stress ( Khan et al. , 2006) .An antioxidant is a 
molecule capable of inhibiting the oxidation of other 
molecules. Oxidation is a chemical reaction that transfers 
electrons from a substance to an oxidizing agent. 
Oxidation reactions can produce free radicals, and in 
turn, these radicals can initiate chain reactions. When the 
chain reaction occurs in a cell, it can cause damage or 
death. Moreover, when the chain reaction occurs in a 
purified monomer, it produces a polymer resin, such as a 
plastic, a synthetic fiber, or an oil paint film. Antioxidants 
terminate these chain reactions by removing free radical 
intermediates, and inhibit other oxidation reactions. They 
do this by being oxidized themselves, so antioxidants are 
often reducing agents such as thiols, ascorbic acid or 
polyphenols.  

Although oxidation reactions are crucial for life, they 
can also be damaging; hence, plants and animals main-
tain complex systems of multiple types of antioxidants, 
such as glutathione, vitamin C, and vitamin E, as well as  
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Figure 5. Effect of vitamin C (100 ppm) treatments either by seed soaking or shoot spraying on (a) chl a, (b) chl b, and (c) carotenoids of 

Silybum marianum (L.) Gaertn plants grown under different levels of NaCl + water. Vertical bars represent ± SD.  
 

 
 

enzymes such as catalase, superoxide dismutase and 
various peroxidases (Figure 6). Low levels of antioxidants 
or inhibition of the antioxidant enzymes, cause oxidative 
stress and may damage or kill cells. 

Ascorbic acid or "vitamin C" is a monosaccharide 
oxidation-reduction (redox) catalyst found in both animals 
and plants. Since one of the enzymes needed to make 
ascorbic acid has been lost by mutation during primate 
evolution, humans must obtain it from the diet; it is 
therefore a vitamin.  

Most other animals are able to produce this compound 
in their bodies and do not require it in their diets. Ascorbic 
acid is required for the conversion of the procollagen to 
collagen by oxidizing proline residues to hydroxyproline. 
In other cells, it is maintained in its reduced form by 
reaction with glutathione, which can be catalysed by 
protein disulfide isomerase and glutaredoxins.  

Ascorbic acid is redox catalyst which can reduce, and 

thereby neutralize reactive oxygen species such as 
hydrogen peroxide. In addition to its direct antioxidant 
effects, ascorbic acid is also a substrate for the redox 
enzyme ascorbate peroxidase, a function that is 
particularly important in stress resistance in plants. 
Ascorbic acids present at high levels in all parts of plants 
and can reach concentrations of 20 millimolar in chloro-
plasts.Finally, it could be concluded that our results 
explain the inductive role played by vitamin C in 
overcoming the detrimental effects of NaCl+water and 
enhancing the capacity of treated plants to scavenge the 
free radicals produced as a result of NaCl+water stress. 
This was associated by improvement of plant growth, 
water status, carotenoids, endogenous vitamin C and 
antioxidant enzymes activities, especially AP and GR. 
Furthermore, vitamin C increases protein synthesis in 
germinated seeds, including de novo synthesis of new 
proteins and accumulation of certain existing proteins.  

http://en.wikipedia.org/wiki/Vitamin_C
http://en.wikipedia.org/wiki/Monosaccharide
http://en.wikipedia.org/wiki/Redox
http://en.wikipedia.org/wiki/Catalyst
http://en.wikipedia.org/wiki/Mutation
http://en.wikipedia.org/wiki/Primate
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Collagen#Collagen_I_formation
http://en.wikipedia.org/wiki/Collagen
http://en.wikipedia.org/wiki/Proline
http://en.wikipedia.org/wiki/Hydroxyproline
http://en.wikipedia.org/wiki/Reduced_form
http://en.wikipedia.org/wiki/Substrate_(biochemistry)
http://en.wikipedia.org/wiki/Millimolar
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Figure 6. Effect of vitamin C (100 ppm) treatments either by seed soaking or shoot spraying on (a) superoxide dismutase (SOD), (b) 

catalase (CAT), (c) glutathione reductase (GR) and (d) ascorbate peroxidase (AP) of Silybum marianum (L.) Gartner plants grown under 
different levels of NaCl + water. Vertical bars represent ±SD.  

 
 
 
These findings indicate that plants treatment with vitamin 
C trigger some unknown physiological processes which 
subsequently lead to improvement of seed germination, 
growth      and       development      of     treated     plants. 
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