
African Journal of Biotechnology Vol. 11(52), pp. 11524-11529, 28 June, 2012     
Available online at http://www.academicjournals.org/AJB 
DOI: 10.5897/AJB12.248  
ISSN 1684–5315 © 2012 Academic Journals  

 
 
 
 

Full Length Research Paper 
 

Effect of nifedipine, imipramine and sertraline on the 
antidepressant-like actions of furosemide in forced 

swim (FST) and tail suspension (TST) tests models of 
depression in mice 

 

S. E. Oriaifo1* and E. K. I. Omogbai2 
 

1
Department of Pharmacology, College of Medicine, Ambrose Alli University, Ekpoma, Edo State, Nigeria. 

2
Department of Pharmacology, University of Benin, Benin-City, Edo State, Nigeria. 

 
Accepted 2 April, 2012 

 

The objective of the study was to determine the effect of nifedipine, imipramine and sertraline on the 
acute and long-term antidepressant-like responses of furosemide in the forced swim (FST) and tail 
suspension (TST) tests in mice. Groups of mice of six in each group were treated for 30 days with 
Tween 80, furosemide (10 mg/kg) + nifedipine (5 mg/kg), furosemide (10 mg/kg) + imipramine (10 mg/kg) 
and furosemide (10 mg/kg) + sertraline (5 mg/kg), respectively. Experiments were done on day 1, 15 and 
31 in the FST and TST. In the FST and TST, results showed that in the test groups, sertraline, 
imipramine and nifedipine enhanced the reduction of immobility of furosemide significantly when 15-
days values were compared with acute values (F(3, 20) = 14.21, P < 0.05, < 0.01) and when 30-days 
values were compared with 15-days values (F(3, 20) = 24.26, P < 0.05, < 0.01). Duncan multiple range 
(DMR) post-hoc test showed that the furosemide + sertraline combination gave the most significant 
response. In conclusion, results show that the antidepressant-like action of furosemide is enhanced in 
the FST and TST models of depression in mice by co-administration of imipramine, sertraline and 
nifedipine. 
 
Key words: Furosemide, nifedipine, imipramine, sertraline, forced swim test (FST), tail suspension test (TST), 
antidepressant. 

 
 
INTRODUCTION 
 
Emerging evidence indicates that antidepressants (ADs) 
exhibit their long-term clinical actions by their effects on 
neuroplasticity. There is now a great appreciation of the 
convergence of mechanisms between stress, depression 
and neuroplasticity (Pittenger and Duman, 2008; Racagni 
and Popoli, 2008). 

Evidence from a substantial collection of research 
works implicates the loop diuretic, furosemide, as a 
neurochemical with neuroprotective effects that affects 
neuroplasticity and the biomarkers of depression. With its 
effects on monoamine transporters (Lucas et al., 2007),  
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brain renin angiotensin system (RAS) (Wright et al., 
2002), phosphodiesterase (Marcus et al., 1978), 
furosemide may enhance cyclic adenosine 
monophosphate-cAMP-response element binding 
protein-brain derived neurotrophic factor (cAMP-CREB-
BDNF) signalling. In the peripheral nervous system, the 
actions of furosemide may overlap with that of cAMP 
(Kreydiyyeh et al., 2000). Furosemide’s anti-oxidant 
actions (Lahet et al., 2003), its effect on cytokines 
(Yuengsrigul et al., 1999) and its attenuation of 
glutamate-mediated excitotoxicity (Sanchez-Gomez et al, 
2011) enhances neuroplasticity. Its upregulation of brain-
derived neurotrophic factor (BDNF) (Szekeres et al., 
2010) which is deficient in depression, its enhancement 
of long-term potentiation (LTP) and neurogenesis being a 
KCC2 blocker (Wang et al., 2006; Roitman et al., 2002)  



 
 
 
 
and favourable effects on Bcl-2/Bax ratio being a Bax 
blocker (Lin et al., 2005) enhances the neurotrophic 
signaling cascade of brain derived neurotrophic factor-
early signal regulated kinase-cAMP-response element 
binding protein-B cell lymphoma  2 (BDNF-ERK 1/2-
CREB-Bcl-2), an important mediator of neuroplasticity, 
which is impaired by stress (Trentani et al., 2002). 

Recently, the induction of salt appetite by furosemide 
has been reported to activate the endogenous enkephalin 
system (Grondin et al., 2011) and could activate the 
cocaine-amphetamine regulated transcript (CART) pep-
tides that have antidepressant effects (Peizhong, 2011). 

The calcium channel blocker, nifedipine, enhances 
neuroplasticity through its anti-oxidant actions (Warner et 
al., 2004) and anti-excitotoxic actions in attenuating the 
effects of hyperglutamatergic excitotoxicity (Paul, 2001). 
Sustained Ca

2+
 increase generates reactive oxygen 

species (ROS) and the formation of ROS causes the 
disruption of Ca

2+
 homeostasis and cell death (Manzl et 

al, 2004). Nifedipine, by its actions on monoamine 
transporters (Padmanabhan et al, 2008) and phos-
phodiesterase (Moore et al., 1985) enhances cAMP-
CREB-BDNF signaling (Sasaki et al., 2007), an important 
factor in neuroplasticity. 

The aim of the study was to investigate the enhance-
ment of the antidepressant-like responses of furosemide 
acutely, at day 15 and 31 by nifedipine, imipramine and 
sertraline in the FST and TST models of depression in 
mice.  
 
 
MATERIALS AND METHODS 

 
Consent for animal experimentation was obtained from the Animal 

Experimentation Ethical Committee of the University. Male albino 
mice (25 to 35 g) were used. Groups of mice, six in each group, 
were housed in the animal house in separate labelled metal cages 
for 14 days. Animals were housed at room temperature of 25 to 
27°C in a 12-h light/dark cycle. They had access to food and water 
ad libitum and on the day of the test (days 1, 15 and 31), they were 
transported to the sound-proof testing area in their own cages. 

All drugs were supplied by Sigma-Aldrich through Rovet 
Chemicals, Benin City, Nigeria. All the drugs were dissolved in 10% 
Tween 80 in distilled water because of furosemide’s solubility. The 
mice were injected intraperitoneally (i.p.). The doses of drugs were 
chosen from previous studies (Eraly et al., 2006; Luszczki et al., 
2003; Cryan et al., 2004; Kosuda et al., 1997; Hesdorfffer et al., 
2001; Mogilnicka et al., 1987). 
 
 
Drug studies with the forced swimming test 
 

The mice, after acclimatisation and care in the animal house were 
transported to the sound-proof testing area in their own labelled 
cages. They were allowed to adapt for one hour before the 
intraperitoneal (i.p.) injections after which there was a wait-period of 
60 min before the tests of immobility. 

A behavioural model of immobility first postulated by Porsolt et al. 
(1977) and named the behavioural despair model was used. In this 
model, mice were forced to swim for four minutes in a restricted 

space (a vertical glass cylinder of 27 cm height, 16.5 cm diameter 
and containing fresh tap water to a depth of 15 cm  at 27°C) (Abel, 
1994) from which escape is not possible. Following an initial period  

Oriaifo and Omogbai        11525 
 
 
 
of vigorous activity, the mice became helpless and adopted a 
characteristic immobile posture with no further attempt to engage in 
escape-related behaviour; and this reflects a state of despair or 
lowered mood. The period of  on-set  of  immobility  is  timed  by  an 
observer unaware of the drug given and recorded. The mice were 
dried and kept warm after each test session. 

In the experiment, the control group received 0.25 ml of 10% 
Tween 80 i.p. daily for 30 days. The second group received 
furosemide (10 mg/kg) + nifedipine (5 mg/kg) i.p daily for 30 days. 
The third group received furosemide (10 mg/kg) + imipramine (10 
mg/kg) i.p. daily for 30 days and the fourth group received 
furosemide (10 mg/kg) + sertraline (5 mg/kg) i.p. daily for 30 days. 
On the test days, (days 1, 15 and 31), doses remained unchanged 

except the furosemide dose which was increased to 100 mg/kg 
because this dose was found in a preliminary experiment to give 
the most significant antidepressant response. Doses below 25 
mg/kg were found not to give antidepressant response. For the 
acute single drug experiment, separate groups of mice received 
100 mg/kg of furosemide, 5 mg/kg of nifedipine, 10 mg/kg of 
imipramine and 5 mg/kg of sertraline i.p. before experimentation in 
the FST. 
 

 
Drug studies with the tail suspension test   

  
The mice, after acclimatisation and care in the animal house, were 
transported from the housing room to the sound-proof testing area 
in their own cages and allowed to adapt to the new environment for 
one hour before testing. The groups of mice were treated with the 
test compounds by intraperitoneal (i.p.) injection one hour prior to 
the test of immobility. In the TST first formulated by Steru in 1985, 

the mice were suspended on the edge of a shelf 58 cm above a 
table-top by adhesive tape placed approximately 1 cm from the tip 
of the tail. The duration of immobility was recorded for a period of 5 
min by an observer unaware of the test compound 

In the experiment, the control group received 0.25 ml of 10% 
Tween 80 i.p. daily for 30 days. The second group received 
furosemide (10 mg/kg) + nifedipine (5 mg/kg) i.p. daily for 30 days. 
The third group received furosemide (10 mg/kg) + imipramine (10 

mg/kg) i.p. daily for 30 days and the fourth group received 
furosemide (10 mg/kg) + sertraline (5 mg/kg) i.p. daily for 30 days. 
On the test days, (days 1, 15 and 31), doses remained unchanged 
except the furosemide dose which was increased to 100 mg/kg 
because this dose was found in a preliminary experiment to give 
the most significant antidepressant response. Doses below 25 
mg/kg were found not to give antidepressant response. For the 
acute single drug experiment, separate groups of mice received 
100 mg/kg of furosemide i.p., 5 mg/kg of nifedipine i.p., 10 mg/kg of 
imipramine i.p. and 5 mg/kg of sertraline i.p. before experimentation 
in the TST. 
 
 
Statistical analysis 

 
In the results, data were presented as mean ± SEM seconds. One-
way ANOVA was applied to compare the means followed by DMR 
as post-hoc test. Mann-Whitney non-parametric test was used to 
compare only two groups. The difference was considered to be 
significant at P < 0.05, < 0.01. 

 
 

RESULTS 
 

In the acute condition of the FST, it was 43.02 ± 1.04 s 
before the control mice became immobile. Still in the 
acute condition, the single agents of furosemide (100 
mg/kg), nifedipine (5 mg/kg), imipramine (10 mg/kg) and 
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 SERTRALINE ON ONSET OF PERIOD OF IMMOBILITY IN THE FST 
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Figure 1. Effect of acute, 15 and 30-days administration of furosemide + nifedipine, furosemide + imipramine, furosemide + 
sertraline on onset of immobility period in the FST. Furosemide (10 mg/kg) + nifedipine (5 mg/kg); furosemide (10 mg/kg) + 
imipramine (10 mg/kg); Furosemide (10 mg/kg) + sertraline (5 mg/kg) were administered to mice for 30 days. Experiments 
were done on days 1, 15 and 31 in the FST; drug doses remained unchanged except for furosemide which was increased to 
100 mg/kg. The drug combinations enhanced responses significantly when 15-day values were compared with acute values 
(F(3, 20) = 15. 47; P< 0.05; < 0.01); and when 30-day values were compared with 15-day values (F(3, 20) = 10, 53, (P< 
0.05; <0.01). Post-hoc DMR tests showed the furosemide + sertraline response as the most significant. 

 
 
 

sertraline (5 mg/kg) prolonged the onset of immobility of 
mice to 63.78 ± 1.08 s, 70.86 ± 0.55 s, 84.43 ± 1.13 s and 
75.30   ±  1.11 s,   respectively;   and   the   values   were 
significant (P < 0.01) when compared with controls. At 
day 15, it became 39.40 ± 1.35, 73.98 ± 1.52, 88.33 ± 
0.08, 121.05 ± 1.90 and 91.94 ± 1.05 s, respectively; and 
at day 31, it became 41.92 ± 1.57, 110.39 ± 1.53, 112.62 
± 0.90, 168.64 ± 2.00 and 114.10 ± 0.63 s, respectively 
(Figure 1). 

In the acute condition of the FST (Figure 1), the furo-
semide (10 mg/kg) + nifedipine (5 mg/kg) combination 
prolonged the period of onset of immobility in the FST to 
79.04 ± 1.02 s, and this became 101.14 ± 3.68 s and 
114.10 ± 0.63 s at 15 and 31 days, respectively. The 
furosemide (10 mg/kg) + imipramine (10 mg/kg) 
combination gave 79.25 ± 1.19 s acutely, 105.50 ± 4.36 s 
at days 15 and 170.79 ± 0.50 s at day 31. The 
furosemide (10 mg/kg) + sertraline (5 mg/kg) combination 
gave 125.90 ± 1.33 s acutely, 150.00 ± 2.00 s at day 15 
and 177.90 ± 2.89 s at day 31. The drug combinations 
significantly enhanced responses when the subchronic 
values were compared with the acute values (F(3, 20) = 
14.21, P < 0.05, < 0.01), and when chronic values were 
compared with subchronic values (F(3, 20) = 24.26, P < 
0.05, < 0.01). Post-hoc DMR test showed that the furo-
semide + sertraline combination gave the most significant 

response. This combination displayed synergy because 
the values at days 15 and 31 were more than the sum of 
the individual acute values. The furosemide + imipramine 
combination only showed synergistic res-ponse on day 
31 (after chronic administration). 

In the acute condition of the TST, the duration of 
immobility was 211.72 ± 4.39 s for the control mice. Still 
in the same condition, the single agents of furosemide 
(100 mg/kg), nifedipine (5 mg/kg), imipramine (10 mg/kg) 
and sertraline (5 mg/kg) reduced the period of immobility 
of mice to 132.65 ± 2.38, 130.81 ± 4.89, 101.10 ± 4.89 
and 110.10 ± 4.89 s, respectively; and the values were 
significant (P < 0.01) when compared with the controls. At 
day 15, duration of immobility was 211.72 ± 4.39 s for 
control, 117.18 ± 2.45 s for the furosemide group, 105.58 
± 3.11 s for nifedipine, 88.25 ± 4.34 s for imipramine and 
103.28 ± 3.20 s for sertraline. At day 31, this became 
220.25 ± 1.52, 93.48 ± 1.44, 85.05 ± 0.73, 79.40 ± 1.00, 
81.67 ± 1.02 s, respectively (Figure 2). 

In the acute condition of the TST (Figure 2), the 
furosemide (10 mg/kg) + nifedipine (5 mg/kg) combi-
nation reduced the period of immobility in the TST to 
108.62 ± 5.40 s, and this became 101.11 ± 5.79 and 
100.46 ± 0.42 s at 15 and 31 days, respectively. The 
furosemide (10 mg/kg) + imipramine (10 mg/kg) 
combination gave 207.83 ± 6.92 s acutely, 83.42 ± 1.01 s  
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Figure 2. Effect of acute, 15 and 30-dayss administration of furosemide + nifedipine, furosemide + imipramine, furosemide 

+ sertraline on duration of immobility in the TST. Furosemide (10 mg/kg) + nifedipine (5 mg/kg); furosemide (10 mg/kg) + 
imipramine (10 mg/kg); Furosemide (10 mg/kg) + sertraline (5 mg/kg) were administered to mice for 30 days. Experiments 
were done on days 1, 15 and 31 in the TST; drug doses remained unchanged except for furosemide which was increased 
to 100 mg/kg. Values were expressed in seconds ± SEM (vertical bars). The drug combinations (furosemide + imipramine) 
and (furosemide + sertraline) reduced the duration of immobility significantly when 15-day values were compared with 
acute values (F(3, 20) = 9.70; P<0.05, <0.01); and when 30-day values were compared with 15-day values (F(3, 20) = 
16.42; P<0.05, <0.01). Post-hoc DMR tests showed that the furosemide + sertraline (F+S) combination produced the most 

significant response.  
 

 
 

at day 15 and 77.90 ± 0.73 s at day 31. The furosemide 
(10 mg/kg) + sertraline (5 mg/kg) combination gave 79.39 
± 7.50 s acutely, 77.80 ± 1.31 s at day 15 and 61.01 ± 
0.88 s at day 31. The drug combinations significantly 
enhanced responses when the subchronic values were 
compared with the acute values (F(3, 20) = 9.70, P < 
0.05, < 0.01), and when chronic values were compared 
with subchronic values (F(3, 20) = 16.42, P < 0.05, < 
0.01). Post-hoc DMR test showed that the furosemide + 
sertraline combination gave the most significant 
response. In the acute condition, the furosemide + 
imipramine combination did not significantly reduce the 
duration of immobility when compared with the control 
values.  
 
 
DISCUSSION 
 
The present results are in line with previous reports 
(Mogilnicka et al., 1987) that nifedipine possess anti-
depressant actions in rodents. Results also demonstrate 

that furosemide has antidepressant-like effects in mice 
and that the combinations of furosemide + nifedipine, 
furosemide + imipramine and furosemide + sertraline 
enhanced the antidepressant-like effects of furosemide in 
the FST and TST models of depression in mice on days 
15 and 31 significantly different from acute values (P < 
O.01). The furosemide + sertraline combination displayed 
synergy on days 15 and 31. While acute combination of 
furosemide + imipramine displayed antagonism, 15-day 
administration of furosemide + imipramine showed 
enhancement of response over acute values and 30-day 
administration showed synergy. Furosemide + nifedipine 
combination displayed only enhancement of response 
over acute values in the FST. Furosemide could enhance 
its acute antidepressant-like actions by enhancing cAMP-
CREB-BDNF signaling. It could enhance this down-
stream signalling by its effect on angiotensin (Charron et 
al., 2002), its anti-oxidant effects (Lahet et al, 2003), its 
effect on adenosine (O`Connor et a., 1991), 
phosphodiesterase (Marcus et al., 1978) and cytokines 
(Yuengsrigul et al.,  1999).  Its  effect  in  down-regulating  
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the dopamine transporter (Lucas et al., 2007) and 
norepinephrine transporter (Habecker et al, 2003) could 
also enhance cAMP-CREB-BDNF signalling. Furosemide 
antagonizes GABAergic transmission (Mantovani et al., 
2011) and chronic furosemide administration upregulates 
BDNF mRNA (Szekeres et al., 2010) and these 
mechanisms could explain the antidepressant-like effects 
of furosemide demonstrated in these experiments. 

Additionally, furosemide’s anti-apoptotic effect as a Bax 
blocker (Lin et al., 2005), its antioxidant status and 
overlapping role with Bcl-2 (Wang et al., 2007), could 
enhance BDNF-ERK1/2-CREB-MAP kinase-Bcl-2 sig-
nalling, the dysregulation of which is a key mechanism by 
which prolonged stress induces atrophy of select 
vulnerable neuronal subpopulations (Trentani et al., 
2002).  

With its effect as a KCC2 down-regulator (Wang et al., 
2006), an attribute it shares with BDNF (Wardle and Poo, 
2003), furosemide may enhance CREB-BDNF signaling, 
enhance LTP and induce neurogenesis (Roitman et al, 
2002), important biomarkers of antidepressant effect. 

The synergistic effect (furosemide + sertraline) dis-
played from our experiments over the furosemide + 
imipramine combination may be explained at a down-
stream level involving BDNF since furosemide 
upregulates BDNF production which can synergise with 
serotonergic agents (Deltheil et al., 2009) and secondly, 
the serotonergic system has been found (Kozisek et al., 
2004) to mature earlier than the noradrenergic system 
and desipramine, the metabolite of imipramine has been 
observed not to increase BDNF and TrkB levels in 
juvenile rats which were used in this study. 
The present results show that while acute furosemide 
administration antagonizes imipramine, implicating a 
significant cholinergic signalling for the acute effects of 
imipramine, 15-day imipramine administration is not 
antagonized by furosemide, while 30-day furosemide and 
imipramine administration have a synergistic effect in 
reducing immobility in the FST and TST in mice. It has 
been reported, however (Vaillant, 1969) that discrete 
cholinergic mechanisms do not play an important role in 
endogenous depression. 

Results show that nifedipine enhances the effect of 
furosemide in reducing immobility of mice in the FST and  
TST and the FST appeared to be more sensitive to the 
effects of this combination. Both could down-regulate the 
monoamine transporters to enhance cAMP-CREB-BDNF 
signaling and both could enhance BDNF-CREB-ERK1/2-
CREB-MAP kinase-Bcl-2 signalling by attenuating the 
effects of hyperglutamatergic activity which can cause 
sustained Ca

2+
 increase to generate reactive oxygen 

species that may lead to disruption of Ca
2+ 

homeostasis 
and cell death (Manzl et al., 2004; Sanchez-Gomez et al., 
2011).  

In conclusion, 15 and 30-day administration of 
nifedipine, imipramine and sertraline facilitates the effect 
of 15 and 30-day administration of furosemide in reducing  

 
 
 
 
immobility of mice in the FST and TST models of 
depression in mice, while the effect of acute 
administration of imipramine in the reduction of immobility 
is antagonized by acute administration of furosemide.  
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SEM, Standard error of mean; SSRI, selective serotonin 
reuptake inhibitor; TCA, tricyclic antidepressant; CCB, 
calcium channel blocker; SERT, serotonin transporter; 
NET, nor-epinephrine transporter; DAT, dopamine 
transporter; NKCC1, isoform 1 of the sodium-potassium-
chloride co-transporter; KCC2, isoform 2 of the 
potassium-chloride co-transporter; GABA, gamma- 
amino butyric acid; cAMP, cyclic adenosine 
monophosphate; CREB, cAMP-response element 
binding protein; BDNF, brain-derived neurotrophic factor; 
ERK 1/2 (Classical MAP Kinases), extracellular signal-
regulated kinase, isoform ½; MAP, mitogen activated 
protein kinase; FST, forced swim test; TST, tail 
suspension test.  
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