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We have presented a new arc representation, which differentiates the Watson-Crick base pairs between 
AU and GC. Based on the new representation, this paper also computes the number of various types of 

constrained secondary structures taking the minimum stack length 1 and minimum size m for each 
bonding loop as two parameters by virtue of the technique of generating function. Furthermore, 
asymptotes are derived from these recurrences relations, which are the generalizations of previous 
results. 
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INTRODUCTION  
 
In Biology, the nucleic acids play an important role in 
coding, transferring and retrieving genetic information, 
and in directing cell metabolism. The nucleic acid 
includes DNA and RNA molecule. RNA molecule is a 
single-stranded nucleic acid of four different kinds of 
nucleotides. The four nucleotides only differ by one part, 
called bases. Hence, one usually identifies nucleotides 
and bases. Generally, the bases are denoted by letters A, 
U, G and C. Each nucleotide is a polar molecule with two 
differing ends, usually denoted by end 5’ and 3’ end. The 
primary structure of a RNA molecule is the order in which 
these bases occur (Holley et al., 1965). Additionally, it has 
been known for some time that A base-U base and G 
base-C base may form hydrogen bonded base pairs and 
are said to be complementary, which is called Watson-
Crick pairing rules. However, adjacent bases never form 
hydrogen bonds. The planar folding of a RNA molecule is 
then called its secondary structure. Understanding the 
secondary structure of single-stranded RNA molecule is 
crucial to advancing knowledge of its biological functions 
(Couzin, 2002; Doudna, 2000). 

As it is known that the prediction of the shapes of 
biological molecules is a hot topic in Biology; suppose we 
wish to predict the secondary structure of  a  single  RNA,  
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many plausible secondary structures can be drawn for a 
sequence. The number increases exponentially with 
sequence length. We are concerned with the 
enumeration problem of RNA secondary structures, 
which play an important role in guiding for the predictions 
of RNA secondary structures (Rivas and Eddy, 1999; 
Waterman and Smith, 1978; Waterman and Smith, 1986; 
Zuker and Sankoff, 1984). The research on the 
enumeration of RNA secondary structures is one of the 
hot topics in Computational Molecular Biology (Nebel, 
2004; Nkwanta, 1997; Stein and Waterman, 1978; Wang 
et al., 2010; Waterman, 1978). In order to satisfy different 
needs of researches, RNA secondary structures are 
usually modeled by some discrete mathematic objects, 
such as linear tree (Schmitt and Waterman, 1994), lattice 
path (Doslic et al., 2004; Nkwanta,1997; Wang et al., 
2010), and so on, which raise many mathematically 
interesting questions concerning their enumeration 
problems (Doslic et al., 2004; Hofacker et al., 1998; 
Nebel,2002; Stein and Waterman, 1978; Wang et al., 
2010; Waterman and Smith, 1978). 

Generally, researchers are concerned with the number 
of secondary structures with limited length in each hairpin 
loop, in which the influence of pseudoknots are often 
neglected. Such as, the initial steps are based on the 
work of Waterman and Smith (Howell et al., 1980; 
Schmitt and Waterman, 1994; Stein and Waterman, 
1978;  Waterman,  1978;  Waterman  and   Smith,   1986;  



 
 
 
 
Waterman, 1995). In 1978, M.S. Waterman firstly gave a 
mathematical definition of RNA secondary structures 
(Stein and Waterman, 1978), which is the key of the 
enumeration problem of RNA secondary structures. 
Twenty years later I.L. Hofacker with his coworkers gave 
a basic formal framework for the same topic (Hofacker et 
al., 1998). Of course, there are many other authors who 
have been devoting to the research of the enumeration of 
secondary structures including pseudoknots (Haslinger 
and Stadler, 1999; Jin et al., 2008a; Jin and Reidys, 
2008b; Rodland, 2006). In this paper, we discussed the 
enumeration problem of secondary structures, which is 
mainly based on the following conditions:  
 
1. We neglect the influence of pseudoknots;  

2. We differentiate  base pairs and  
base pairs (Hofacker et al., 1998; Liao and Wang, 2004; 
Waterman and Smith, 1978).  
 
Compared with previous investigations, in this paper we 
chose the minimum stack length 1 and minimum size m, 
for bonding loops as two parameters, which generalize 
the results obtained in Wang et al. (2008ab), and it shows 
that there are a large number of various types of 
constrained RNA secondary structures to a certain 
extent. 
 
 
THE BASIC DEFINITIONS AND A NEW ARC 
REPRESENTATION 
 
An RNA molecule is a string of n characters 

 such that . The 
secondary structure is a vertex-labeled graph on n 

vertices with an adjacency matrix  fulfilling: 
 

(1)  

(2) If   

Note that if,  pairs with , that is,  then,  

and  all belong to  

(3) For each i there is at most a single  

such that  

(4) If  which 
prohibits certain knot structures. 
 

We call an edge  a bond or a base pair. 
A   vertex  i   connected   only  to  i-1   and   i+1  is   called  
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unpaired. A vertex i is said to be interior to the base pair 
(k, l) if, k<i<l. If, in addition, there is no base pair (p, q) 
such that k <p <i <q <l, we will say that i is immediately 
interior to the base pair (k, l). 

A stack consists of subsequent base pairs (p-k, q+k), 
(p-k+1, q+k-1)… (P, q) such that neither (p-k-1, q+k+1) 
nor (p+1, q-1) is a base pair. k+1 are the length of the 
ladder. (p-k, q+k) is the terminal base pair of the stack. A 
stack [(p, q),…(p+k, q-k)] is called terminal if p-1=0 or 
q+1=n+1 or if the two vertices p-1 and q+1 are not interior 
to any base pair. The sub-structure enclosed by the 
terminal base pair (p, q) of a terminal stack is called a 
component of secondary structure. We say that a 
structure on n vertices has a terminal base pair if (1, n) is 
a base pair. 

‘A bonding loop’ consists of a terminal base pair and 
unpaired vertices. The number of unpaired vertices is the 
length of the bonding loop. ‘An external vertex’ is an 
unpaired vertex which does not belong to a loop. A 
collection of adjacent external vertices is called an 
‘external element’. If it contains the vertex 1 or n it is ‘a 
free end’, otherwise it is called joint. ‘An internal vertex’ is 
an unpaired vertex which is interior to a base pair. 
Previous researches on the representation of RNA 
secondary structures were presented in Hofacker et al. 
(1998), Schmitt and Waterman, (1994) and Waterman 
(1978). All bases (e.g. A, U, G and C) are regarded as 
the same. In previous paper (Wang et al., 2008a), we 
have presented a new arc representation. That is to let 
circles ○ represent the bases A or U and dots ● represent 
the bases G or C, which is more meaningful than 
classical representation. Here an example of a secondary 
structure of size 91 is shown in Figure 1. Note that the 
minimum stack length l = 2 and each bonding loop has at 
least three bases, that is, m = 3. 
 
 

Recurrence relations of RNA secondary structures 
 
In order to compute the various types of constrained RNA 
secondary structures, let us introduce the Lemma given 
in Wang et al. (2008b) which is the base of our main 
results obtained in this paper. 
 
 

Lemma 1  
 

Let  be the number of RNA secondary structures 
on n vertices, where a bonding loop must contain at least 
m unpaired bases and the minimal stack length must be l, 

and be the number of structures on n vertices 
which have only stacks of length at least l if an additional 

terminal base pair is attached. Furthermore, let  
be the number of structures on n vertices which have all 
stacks of length at least l for  which  (1, n)  is  not  a  base  

{ , }A U { , }G C

1 2 , nR r r r ( )  ( )ir A U or G C

( ) ijA r

, 1 1,  1 1;    i ir i n
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ir
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, 1;i kr
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Figure 1. A new arc representation of secondary structures. 

 
 
 

pair. Then,  fulfill the following 
recursions following recursions. 
 

 

 

 

 

 
 
The proof of above Lemma is given in detail (Wang et al., 
2008b). Due to the fact that the stack structures and 
bonding loop structures are two basic elements of any 
RNA secondary structure, in this paper, we took the 
lengths of two elements of structures as parameters and 
discussed the enumeration problem of various types’ 
secondary structures. Note that for the special case l = 1, 
the number 87 of structures with minimum stack length 1, 

that is, is equal to  given in Wang et al. 
(2008a) because the length of any stack is at least 1, and 
in Wang et al. (2008b), it is pointed that 

 

Of course, it is obvious that for l = 1. We 
now calculate the number of different elements of RNA 
secondary structures. 
 
  

Theorem 1  
 
Let Jn(b,l) denote the number of structures on n vertices 
with exactly b components, then: 

 
 

 
 
 
Proof  
 

The number  of structures on n+ 1 vertex with b 
components can be computed as follows: 
 

i. Adding an unpaired base belonging to  to a 
structure on n digits doesn't change the number of 

components, we obtain  structures with b 
components. In the same way, if the unpaired base 

belonging to  we get the same number. So if we add 

an unpaired base, we can get the total number   
ii. Inserting an additional pair makes the bracketed part of 
length k a single component and doesn't affect the 
remainder of the sequence. There are b-1 components in 

the remainder; we have  times all the structures 
with b-1 components in the remainder of the sequence. 
Summing over k, we can get the desired result. 

For the special case l = 1, we consider above 
recurrence relation. Submitting l = 1, we can get 

 

 
 

Application of the identity we can immediately 
get the following relation. 
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Here, is the same as  used in Wang et al. 
(2008a). It is obvious that the result coincides with the 
Theorem 5.1.2 in Wang et al. (2008a). 
 
 
Theorem 2  
 

Let denote the total number of components in the 
set of all secondary structures on n vertices, then; 
 

 

 
 
 

Proof  
 

The number of secondary structures on 1n  
vertices can be computed as follows: 
 

i. Adding an unpaired base belonging to to a 
structure on $n$ digits doesn't change the number of 

components, we obtain  structures. In the same way, 

if the unpaired base belonging to , we get the 
same number. So if we add an unpaired base, we get the 

total number ; 

ii. Inserting an additional pair, we have  times all 
the components in the reminder of the sequence plus the 
number of structures that can be formed the remainder of 

the structure. Summing over k , we can get the desired 
result. 

For the special case l = 1, we consider above 
recurrence relation. Submitting l = 1, we can get; 
 

 
 

Application of the identity , we can 
immediately get the following relation. 
 

 
 

Based on the fact that  is equal to  given in 

Wang et al. (2008a)  is the same as . It is 
obvious that the result coincides with the Theorem 5.2.4 
in Wang et al. (2008a). 
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Theorem 3 
 

 Let denote the number of structures on n 
vertices with exactly b external digits then; 

 

 
 

 
 
For sake of completeness, let b = 0, then we have the 
following relations: 

 

 
 
 
Proof 
 

The number 
),(1 lbEn  of structures on n + 1 vertices 

with b external digits can be computed as follows: 
 

i. Adding an unpaired base belonging to  to a 
structure on n digits, because adding an external digit, we 

obtain 
),1( lbEn 

structures with 1b external digits. If 

the unpaired base belonging to , we can get the 
same number. So if we add an unpaired base, we get the 

total number
),1(2 lbEn 

; 
ii. Inserting an additional pair and making the bracketed 
part length k. Based on the fact that there are no external 
digits in the newly bracketed part of length k, we have 

 times all the structures with b external digits in 
the reminder of the sequence. Summing over k, we can 
get the desired result. 
 

For the special case l = 1, we consider above 
recurrence relation. Submitting l = 1, we can get; 
 

 
 

Application of the identity , we can 
immediately get the following relation. 
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Here, 
)1,(bEn  is the same as 

)(bEn  used in Wang et 
al. (2008a). It is obvious that the result coincides with the 
Theorem 5.1.4 in Wang et al. (2008a). 
 
 

Theorem 4 
 

Let 
)(lEn denote the number of external digits in the set 

of all structures with n bases, then; 
 

 
 

 
 
 

Proof 
 

The number 
)(1 lEn  of external digits can be computed 

as follows: 
 

i. Adding an unpaired base belonging to  to a 

structure on n digits, we obtain 
)(lEn external digits plus 

the 
)(ln  newly added ones. In the same way, if the 

unpaired base belonging to , we can get the same 
number. So if we add an unpaired base, we can get the 

total number
)]()([2 llE nn 

, 
ii. Inserting an additional pair, because there are no 
external digits in the newly bracketed part of length k, we 

have  times all the structures in the reminder of 
the sequence. Summing over k, we can get the desired 
result. 
 

For the special case l = 1, we consider above 
recurrence relation. Submitting l = 1, we can get; 
 

 
 

Application of the identity , we can 
immediately get the following relation. 
 

 
 

Here 
)1(1kE

 is the same as 1kE
 used in Wang et al. 

(2008a), which coincides with the result obtained in Wang 
et al. (2008a). 

 
 
 
 
Theorem 5 
 

Let 
)(1 lU n  denote the total number of unpaired bases in 

the set of all secondary structures on n vertices, then; 
 

 
 

 
 
 

Proof 
 

The number 
)(1 lU n  of external digits can be computed 

as follows: 
 

i. Adding an unpaired base belonging to  to a 

structure on n digits, we obtain 
)(lU n  unpaired bases 

plus the 
)(ln  newly added ones. In the same way, if 

the unpaired base belonging to  we can get the 
same number. So if we add an unpaired base, we can 

get the total number
)]()([2 lAlU nn 

, 
ii. Inserting an additional pair, because there is no 
unpaired bases in the newly bracketed part of length k, 

we have 
)(* lkn

 times all the unpaired digits in the 
reminder of the sequence  plus all the unpaired digits in 
the newly bracketed part of length k times the number of 
structures  that can be formed the reminder of the 
structure. Summing over k, we can get the desired result. 

 
For the special case l = 1, we consider above 

recurrence relation. Submitting l = 1, we can get; 
 

 
 

Application of the identity , we can 
immediately get the following relation. 
 

 
 

Based on the fact that 
)(ln  is equal to nS

 given in 

Wang et al. (2008a), 
)1(1kU

is the same as 1kU
 used 

in Wang et al. (2008a). It is obvious that the result 
coincides with the Theorem 5.2.1 in Wang et al. (2008a).  

The total number of internal vertices is denoted by 
.nV
 

It is clear that Vn + En = Un. By combining Theorems 5 
and 6, we obtain; 
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ASYMPTOTIC ENUMERATIONS 

 
Based on the fact that the recursions stated above are 
complicated, it is hard to give simple closed form 
expressions for them. According to the asymptotic 
methods given in Bender (1974); Canfield, (1984) and 
Meir and Moon (1989), we now consider the asymptotic 
enumeration in terms of the generating functions. In this 
section, the symbol ~ has its usual meaning: 
 

 means  
 
 
Lemma 2 
 

Suppose  and is of form 

where is real, and 

are analytic near and is real but not a 

nonnegative integer. If y(x) is analytic for and 

is the only singularity of y on its circle of 
convergence, then; 
 

  
 
By Lemma 2 which is a simple version of Darboux' 
theorem, I.L. Hofacker, P. Schuster and .F. Stadler give 
us the following proposition in order to be applied directly 
to the counting of RNA problem. 

 
 
Lemma 3 

 

Let  be a polynomial in  and analytic in  for 

, . Suppose  fulfills the conditions of 
Lemma 2 with; 

 

, 
 

Let the generating function  be of the form 
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. Then,  yields

. 
 
Denote by 
 

 
 
The generating functions. And we use the notations 
 

. 
 

Lemma 4 The generating functions  and 

 fulfill the following recursion. 
 

 

    

 
 
 

Lemma 5 The generating function  is analytic at 0 and 
fulfills 
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Lemma 6 
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The proofs of Lemmas 4, 5 and 6 are given in Wang et al. 
(2008b) in detail. Throughout the remainder of this paper 

we will assume that  denotes the solution of the 
following equation; 
 

 and . 
 
 
Theorem 6 
 

. 
 
 
Proof. From Lemma 4 we obtain 
 

 
 
Application of Lemma 3 completes the proof. 
 
 
Theorem 7 
 

 
 
 
Proof 
 
From Lemma 4 we obtain; 
 

 
 
Application of Lemma 3 immediately yields the desired 
result. 
 
 
Theorem 8  
 

The number of structures with  components  
fulfills; 
 

 
 

 
 
 
 
Proof 

Let  be the generating function for the 

number of secondary structures with exactly  
components. We can get; 
 

 
 

and from , we obtain . Application 
of Lemma 3 and Lemma 4 we obtain the desired result. 

Especially, let , and application of , then we 
can obtain; 
  

. 
 
Simplifying above relation, we can obtain the result which 
is identical with the Theorem 3.3.2 in Wang et al. 
(2008b). 
 
 

Theorem 9  
 

The number of structures with  components,  
fulfills; 
 

 
 
 

Proof 
 

Let  be the generating function 

of the number of secondary structures with exactly  
external digits. According to Theorem 3, we get the 
function equation; 
  

, where  
 

By Lemma 3, the desired expression is yielded. 
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which is identical with the Theorem 3.3.3 in (Wang et al., 
2008b in Wang et al. (2008a). 
 
 

Theorem 10  
 

The number of external digits  fulfills; 
 

. 
 
 

Proof 
  
Let 
 

  
 
be the generating function of the total number of external 
digits. The recursion can be brought to the form. 
  

. 
 

Multiplying by  and summing over  yields 
 

 
 
According to Lemma 4, we get 
 

 
 
Application of Lemma 3 completes the proof. 
 
Let 
 

 
 
and application of 
 

, 

 
then we can obtain; 
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which is identical with the Theorem 3.3.5 in (Wang et al., 
2008b). 
 
 
Theorem 11  
 

The number of components  fulfills; 
 

 
 
 
Proof 
 

Let  be the generating function of the 
total number of components. We can get 
 

. 
 
 Application of Lemma 3 immediately yields the desired 
result. 

Especially, let , and application of , then 
we can obtain; 
 

, 
 
which is identical with the Theorem 3.3.6 in Wang et al. 
(2008a). 
 
 

CONCLUSIONS 
 
It is known that the stack structure is as important as the 
bonding loop structure in any RNA secondary structure. 
Most previous researches are only concerned with the 
influence of minimum length of bonding loop for the 
secondary structures. This paper, we consider not only 
the length of each bonding loop but the length of each 
stack based on a new arc representation given in (Wang 

et al., 2008a). The number of various elements of  
secondary structures was also discussed. Furthermore, 
according to these recurrence relations, we make 
asymptotic analysis with the combinatorial technique of 

generating function. Considering the  special  case , 
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Table 1. Comparison of asymptotic formulas with obtained results. 
 

The number of various secondary 
structures 

The asymptotic formulas of elements 

for any l  

The asymptotic formulas for special case 
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the results obtained all coincided with previous results in 
(Wang et al., 2008ab). Finally, we present the asymptotic 
formulas compared with some results obtained in (Wang 
et al., 2008b) in Table 1. 
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