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The prevalence of autism in Saudi Arabia is 18 per 10,000, higher than the 13 per 10,000 reported in 
developed countries. The etiology of autism is still not completely understood. Different studies 
support the involvement of dopaminergic neurotransmitter system in the etiology of autism. Several 
lines of evidences suggest the role of some dopamine related genes, such as DRD1 and SLC6A3 in the 
etiology of autism. The aim of the present work was to study the possible role of rs2550936 A/C 
polymorphism at SLC6A3 locus as well as rs4532 A/G polymorphism at DRD1 locus in the etiology of 
autism among Saudi population. The polymorphisms of DRD1 and LC6A3 were genotyped in the case-
control study using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) 
technique. Significant association as risk factor was found between autism and GA genotype of DRD1 
[OR = 3.5 CI (1.04, 12.41*)] as well as CA genotype of SLC6A3 [OR = 2.53 CI (1.03, 6.26*)], while CC 
genotype of SLC6A3 revealed protective effect. In conclusion, possible risk genotypes for autism in the 
DRD1 and SLC6A3 genes were observed. This is the first report in Saudi Arabia population and Arab 
world. Therefore further investigations of these markers and other SNPs of SLC6A3 and DRD1 genes 
are considered in large replication samples with other causal factors to enable positive identification of 
risk genotypes and generalize obtained results. 
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INTRODUCTION  
 
Autism is the most common of the Pervasive Develop-
mental Disorders (PDD) (Lord et al., 2002). Autism is a 
neuropsychiatric condition with a distinct pattern of social 
deficits, communication impairment, and rigid ritualistic 
interests (American Psychiatric Association, 1994; Al-
Salehi et al., 2009). It is a neuropsychiatric disorder with 
profound family and social consequences (Johnson and 
Myers,   2007).   Although   autism  is  a  global  disorder, 
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relatively little is known about its presentation and 
occurrence in many developing countries, such as Saudi 
Arabia. The prevalence of autism in Saudi Arabia is 18 
per 10,000, higher than the 13 per 10,000 reported in 
developed countries (Al-Salehi et al., 2009). The etiology 
of autism is still unknown. Thus, these finding supports 
the strong needs of more concentrated studies on the 
autism in Saudi Arabia. For more than three decades, 
there has been crucial evidence that most psychiatric 
disorders, including schizophrenia, bipolar disorder and 
autism, have a strong genetic component. An 
extraordinary  number  of  genetical, clinical, cytogenetics 
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and molecular studies were done (Carvalheira et al., 
2004). Different studies support the involvement of 
dopaminergic, serotonergic and noradrenergic neuro-
transmitter systems in the etiology of autism (Cook et al., 
1997; Zhong et al., 1999; Maestrini et al., 1999; 
Nakamura et al., 2010). 

The dopamine transporter (DAT) plays a critical role in 
dopaminergic neurotransmission, through taking up 
extracellular dopamine (DA) into pre-synaptic terminals 
(Jones et al., 1999; Kelada et al., 2006). The dopamine 
transporter is encoded by the SLC6A3 gene, which is 
located at chromosome 5p15.3 and consists of 15 exons. 
SLC6A3 gene has a role as a biological candidate gene 
for various behavioral and neurological disorders, such 
as pediatric bipolar disorder (Mick et al., 2008) and 
schizophrenia (Cordeiro et al., 2010), and affect 
personality traits (Shibuya et al., 2009). Nakamur et al. 
(2010) reported that the brains of autistic individuals have 
abnormalities in dopamine transporter binding.  

Among human SLC6A3 functional variants, there are 
different genotypes which shows differences in dopa-
minergic activities, which affects neuronal networks 
involved in both working and episodic memories 
(Bertolino et al., 2006; Schott et al., 2006; Hettinger, 
2009). Dong et al. (2009) identified association between 
two SLC6A3 SNPs rs8179029 and rs2550936, with major 
depressive disorder (MDD) (Opmeer et al., 2010). In 
animals, SLC6A3-1- mice faced difficulties in spatial 
learning and memory (Gainetdinov et al., 1999) and 
social interaction (Rodriguiz et al., 2004). Hyper-
dopaminergic activities were reported with mice either 
lacking of SLC6A3 or expressing 10% of normal gene 
function (Gainetdinov et al., 1999; Berridge et al., 2005).  

Dopamine D1 receptor encoded by the DRD1 gene 
which is located at chromosome 5q35.1 (Grandy et al., 
1990) consists of two exons, separated by a single intron 
(Minowa et al., 1992). The D1 receptors are modulates 
and many of the DA-related behaviors are abnormal in 
individuals with autism (Hettinger, 2009). DRD1 gene is a 
risk gene for core symptoms of autism spectrum 
disorders (ASDs) in families having only affected males 
(Hettinger et al., 2008). Several evidences supported the 
association between DRD1 gene with neuropsychiatric 
disorders, including bipolar disorder (Dmitrzak-Weglarz et 
al., 2006), Parkinson's disease (Juyal et al., 2006), 
schizophrenia (Rybakowski et al., 2009), alcohol 
dependence (Batel et al., 2008), intentional ability without 
overlab for reading ability (Luca et al., 2007) and smoking 
behavior (Novak et al., 2010). Hettinger (2009) showed 
strong evidence of association between rs4532 A/G 
polymorphism at DRD1 locus and social interaction, 
nonverbal communication and stereotypes in affected 
autistic males, against comparison group. 

The objective of the present work was to investigate the 
possible association between autism and rs4532 A/G 
polymorphism at DRD1 locus, as well as rs2550936 A/C 
polymorphism   at   SLC6A3   locus   among   Saudi   Taif 

 
 
 
 
population. 

 
 
MATERIALS AND METHODS  

 
Subjects  

 
The study sample composed of 50 Saudi autistic children with age 
range from 6 to 10 years (males = 30, 60% and; females = 20, 
40%) and recruited from Pediatric and Prince Mansour hospitals at 
Taif city. The diagnosis of autism was made according to autism 
diagnostic interview-revised (Lord, 1997) and the autism diagnostic 

observation schedule, modules 1, 2 or 3 (DiLavore et al., 1995; 
Joseph et al., 2002; Lord et al., 2002). All subjects were clinical 
referrals from hospital neurologists. In addition, 50 healthy age-
matched controls were recruited (male = 25, 50% and; female = 25, 
50%). Controls and autistic subjects were matched according to 
age, gender, geographical and socioeconomics conditions at Taif 
city. Non Saudi subjects, as well as other neurological or behavioral 
disorders cases were excluded from the study. All parents of the 
patients and control subjects provided informed consent. The study 

was approved by Taif University and all institutional requirements 
were met.  

 
 
Genotyping of SLC6A3 DRD1 polymorphisms 

 
Genotyping of rs2550936 A/C and rs4532 A/G polymorphisms was 
carried out through polymerase chain reaction-restriction fragment 

length polymorphism (PCR-RFLP) technique using Phusion blood 
direct PCR kit (Finnzymes) according to the manufacturer’s 
instructions. PCR 20 ul reaction volume consisted of 1 μl blood, 10 
Pmol of each primer specific for each studied polymorphism which 
are: rs2550936 F 5'-ACGCTCCCTCTGTCCTCAG-3' and R 5'-
GTCAAGGACAGGAGGTCTGG-3'; rs4532 F 5'-GCAGCAAGGG-
AGTCAGAAGA-3' and R 5'-TCTGACACCCCTCAAGTTCC-3' (Jena 
Bioscience, Jena, Germany); 10 µl of 2× phusion blood PCR buffer 
(Finnymes) and 0.4 μl phusion blood DNA polymerase. PCR 

amplification of rs2550936 A/C and rs4532 A/G polymorphisms was 
conducted at 60°C. The PCR products were visualized on 1.5% 
agarose gel (Bioshop, Canada) under UV Transilluminator, with 
DNA ladder standard (100 bp, Bioshop, Canada). The product of 
PCR amplification (230 bp) was subsequently digested with 0.5U of 
the RsaI and 0.4U of DdeI restriction enzymes for rs2550936 A/C 
and rs4532 A/G, respectively. The digested products were run in 
2.5% agarose gel stained by 0.5 μg/ml ethidium bromide (Bioshop, 
Canada), with ladder standard 50 bp (Bioshop Canada) and the 
digestion patterns were used to determine the genotypes of each 
polymorphism. 

 
 
Statistical analysis  

 
Statistical analysis was carried out using epitools package of R 

statistical software (Aragon, 2010). The program (HardyWeinberg: 
Graphical tests for Hardy-Weinberg equilibrium, R package version 
1.4.1) (Graffelman, 2012) was used to test for deviations from 
Hardy-Weinberg equilibrium by means of Chi-square (X

2
) test. 

Allelic and genotype distribution of the studied polymorphisms were 
calculated by direct counting method and the difference in allele 
and genotype frequencies between the autism subjects and 
controls was tested using X

2 
test. Odds ratio (ORs) was used to 

estimate the association between the studied SNPs and autism. 

ORs were constructed separately for each genotype. The 
magnitude of this association was estimated by 95% confidence 
interval (95% CI). CIs were constructed using exact methods (mid-p 
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Figure 1. PCR amplification ofrs4532 A/G polymorphism at DRD1 locus among autistic patients 

(P) and healthy control subjects (C). 

 
 
 
and Fisher). The significance of CIs was tested using Chi-square 
test.  
 

 

RESULTS  
 

The present study was motivated by a relatively 
moderate sample size of 50 autistic patients and 50 
healthy controls. Statistical analysis indicate that there 
were no deviations from Hardy Weinberg equilibrium in 
the patient samples for SLC6A3 rs2550936 A/C poly-
morphism (X

2
 = 4.793678) and for DRD1 rs4532 A/G 

polymorphism (X
2
 = 2.661608). Genomic DNA from 50 

autistic patients and 50 control subjects were used to 
carry out PCR amplifications for SLC6A3 rs2550936 A/C 
and DRD1 rs4532 A/G polymorphisms. The PCR 230 bp 
amplified bands of rs2550936 and rs4532 poly-
morphisms, among autistic patients (P) and healthy 
control subjects (C) were determined (Figure 1). The 
SLC6A3 rs2550936 A/C PCR amplicons (230 bp) was 
digested with RsaI into cut (A allele), or uncut (C allele). 
Two genotypes CC 24 (48%) and CA 26 (52%) were 
obtained (Figure 3); whereas, AA genotype was not 
observed. The digestion of rs4532 amplicon (230 bp) with 
DdeI, based on A/G substitution revealed cut (A allele) 
and uncut (G allele). Then three genotypes were 
observed: GG 6 (12%), GA 14 (28%) and AA 30 (60%).  
Electrophoretic banding pattern of cleaved amplified 
bands is shown in Figures 2 and 3. The genotypes and 
allele frequencies for each studied polymorphism are 
illustrated in Table 1. Association between autism and 
rs2550936 polymorphism at SLC6A3 locus was 
observed, with CA genotype as a risk factor [OR = 2.53 
and CI = (1.03, 6.26*)] (Table 2), while genotype CC 
revealed significant protective effect. Significant 
association between GA genotype and autism among the 
obtained three genotypes for rs4532 at DRD1  locus  was  

recorded [OR = 3.5 and CI = (1.04, 12.41*)] (Table 2). 
 
 
DISCUSSION 
 
Several indirect evidences were introduced from human 
and nonhuman studies, suggesting that, the dys-
regulation of dopaminergic function may be part of the 
complex neurochemical basis for autistic behaviors 
(Goldman-Rakic, 1996; Adolphs et al., 1998, 2002; Stone 
et al., 2003) and demonstrates a dose-dependent 
modulatory effect of DA on working memory (Brozoski et 
al., 1979; Sawaguchi et al., 1988; Williams and Goldman-
Rakic, 1995; Williams and Castner, 2006). Sun et al. 
(2008) reported that dopaminergic nervous system is 
dysfunctioning in the brain of children with autism.  

The main objective of the present study was to 
investigate the association between DRD1 and SLC6A3 
polymorphisms in the etiology of autism among Saudi 
autistic subjects. The obtained results indicate that there 
is statistical association between some genotypes and 
autism. Some of the studied polymorphism showed 
association as a risk factor and other statistically 
associated as a protective factor. Two genotypes were 
observed for the rs2550936 A/C polymorphism at 
SLC6A3 locus CC (48%) and CA (52%), while AA 
genotype was absent. The absence of AA genotype 
might be due to moderate sample size. It is also possible 
that, the AA genotype is a rare genotype in the sample 
included in the present study. However, the association 
of CA genotype as a risk factor with autism, flags the 
possibility that the rs2550936 A/C polymorphism at 
SLC6A3 locus is in part a risk factor for autism. Jones et 
al. (1999) and Giros et al. (1992) reported thatdopamine 
transporter plays important role in DAergic neuro-
transmission,   through   intake   of  extracellular  DA  into  
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Figure 2. PCR amplification of rs4532 A/G polymorphism at DRD1 locus with Ddel among 

autistic patients (P) and healthy control subjects (C). 
 
 

 

 
 
Figure 3. PCR amplification of rs2550936 A/C polymorphism at SLC6A3 locus with Rsal among 

autistic patients (P) and healthy control subjects (C). 
 
 

 
Table 1. Genotypes and allele frequencies of SNPs and association analysis of each SNP in population-based samples. 

 

Polymorphism n Genotype Allele frequency 

SLC6A3 rs2550936 A/C  100 
CC ( 230 bp) CA ( 230, 180, 50 bp) AA (180, 50 bp) 

A C 
n % n % n % 

Autistic 50 24 48 26 52 0 0 0.74 0.26 

Control 50 35 70 15 30 0 0 0.85 0.15 

       

DRD1rs4532 A/G  100 
GG (230bp) AG ( 230, 180, 50 bp) AA (180, 50 bp) 

A G 
n % n % n % 

Autistic  6 12 14 28 30 60 0.74 0.26 

Control  9 18 5 10 36 72 0.77 0.23 
 
 
 

terminals. The previous studies carried out by Bertolino et 
al. (2006) and Schott et al. (2006) reported that the 
functional variants of human SLC6A3 have some geno-
types that reveal differences in dopaminergic activities, 
which affects neuronal networks involved in both  working 

and episodic memories. In animals, SLC6A3-1- mice 
show impairment in spatial learning and memory 
(Gainetdinov et al., 1999) and social interaction 
(Rodriguiz et al., 2004) as well as disrupted sleep-wake 
patterns    (Wisor  et  al.,  2001).  In  addition  mice  either  
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Table 2. Odds ratio and confidence interval for association of genotypes within gene SLC6A3 and DRD1 
polymorphisms and risk of autism. 
 

Polymorphism Genotype 
Case 

(n = 50) 

Control 

(n = 50) 
OR (95% CI) Significant 

SLC6A3 
rs2550936 A/C 

CC 24 35 0.40(0.16, 0.97*) Significant protective 

CA 26 15 2.53(1.03, 6.26*) Significant risk 

AA 0 0   

      

DRD1 rs4532 A/G 

 

GG 6 9 0.62(0.18, 2.13 ) NS 

GA 14 5 3.50(1.04, 12.41*) Significant risk 

AA 30 36 0.58(0.23, 1.46 ) NS 
 

NS, Not significant. 

 
 

lacking, the SLC6A3 gene (Gainetdinov et al., 1999) or 
expressing 10% of normal gene function (Berridge et al., 
2005) were hyperdopaminergic, and had increased 
stereotypies. So, depending on the suggestions of the 
previously mentioned studies, it is possible to assume 
that the CA genotype of SLC6A3 might be in relation with 
autism, through affecting some dopaminergic activities. 

Three genotypes were observed for the rs4532 A/G 
polymorphism at DRD1 locus: GG 6 (12%), GA 14 (28%) 
and CA 30 (60%). Association between autism and GA 
genotype as a risk factor was noticed. The DRD1 gene 
encodes the dopamine D1 receptor, which modulates 
many of the DA-related behaviors that are abnormal in 
individuals with autism. For example, administration of 
high doses of D1 receptor antagonists to the PFC was 
found to disrupt performance on working memory tasks in 
non-human primates (Sawaguchi and Goldman-Rakic, 
1994; Williams and Goldman-Rakic, 1995) and atten-
tional set-shifting in rats (Ragozzino, 2002), while D1 
receptor blockade in the OFC or striatum of rats impaired 
reversal learning (Calaminus and Hauber, 2008) and 
procedural learning (Willuhn and Steiner, 2008), 
respectively. Dopamine D1 receptors modulate a feed-
forward inhibitory circuit involved in amygdala activation 
(Marowsky et al., 2005), which is a key structure involved 
in emotional regulation and social behaviour, for which 
there is evidence of dysfunction in individuals with autism 
(Baron-Cohen et al., 2000) while the administration of D1 
receptor agonists or antagonists induced or attenuated 
stereotypes in a DA-deficient mouse model (Chartoff et 
al., 2001).  

Thus, the DRD1 gene is clearly a good candidate for 
affecting autism risk or modifying the classical symptoms 
of autism, despite the absence of D1 receptor binding 
measurements in individuals with autism (Hettinger et al., 
2008). In the shadow of the obtained results of the above 
mentioned studies and present study, it could be possible 
that, the GA genotype of the rs4532 A/G polymorphism at 
DRD1 locus might have a role in the etiology of autism, 
through affecting some dopaminergic activities. In 
general, in the present study, moderate sample size was 
recruited. In addition, gender was not included as 

covariate. No additional factors were studied rather than 
genotypes effects. These limitations might affect the 
obtained results.  
 
 
Conclusion  
 

In the present study, some polymorphisms at DRD1 and 
SLC6A3 loci were genotyped. This is the first report in the 
Saudi Arabia population. Both risk and protective effects 
in the etiology of autism were observed with some 
studied genotypes. The resulted risk effect might play a 
role with other casual factors. The moderate used sample 
size might be a contributor to the resulted effects. Further 
investigations of these markers are required in large 
replication samples with other causal factors to enable 
positive identification of risk genotypes and generalize 
obtained results. 
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