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The current study was undertaken to determine the effects of arsenic on Colocasia esculentum. 
Rhizomes were grown in pots containing 2.5 kg of garden soil with increasing concentration of arsenic. 
Arsenic accumulation was more in shoots compared to roots at higher concentrations. High arsenic 
concentration caused reduction in plant growth along with induction of few antioxidants. C. esculentum 
has a strong antioxidative and physiological defense mechanism. Under arsenic stress, an increase in 
catalase, peoxidase, few non-enzymatic antioxidants and an induction of few stress induced protein 
were observed, along with some anatomical changes in roots. The increase in antioxidant stress 
enzyme activities in response to arsenic exposure may be taken as evidence for an enhanced 
detoxification capacity of C. esculentum, a herbaceous monocot plant, towards reactive oxygen species 
(and derivatives) that might be generated in the stressed plants. 
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INTRODUCTION 
 
Arsenic compounds are often unstable and in many 
cases are not well-defined materials. High levels of arse-
nic may also be present in some coals (up to 1500 
mg/kg). As a result of the presence of arsenic in the par-
ent rock, arsenic is observed naturally in soil in various 
quantities. In addition, some regions used for agriculture 
are contaminated by extensive use of arsenic compounds 
such as pesticides (Bernstam et al., 2000; Mitchell et 
al.,1995). Arsenic is more strongly bound to soils that 
have high clay or high organic matter and in these 
circumstances, is less available to plants. Arsenic is 
phytotoxic and trivalent arsenic is, in general, more toxic 
than pentavalent arsenic. Plants take up arsenic in 
proportion to the soil  concentration, except  at  very  high  
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soil concentrations. Plants growing on smelter wastes or 
mine have developed resistance to arsenic toxicity; such 
plants sometimes have concentrations of arsenic (6000 
mg/kg) that may be toxic to animals eating the plants. 
Common symptoms of arsenic uptake in humans are 
nausea, vomiting, abdominal pain, rice-water diarrhea, 
progressive general weakness, and severe dehydration, 
leading to collapse and heart failure. Arsenic taken up by 
plants is distributed to all tissues.  

Terrestrial plants are able to accumulate arsenic to a 
substantial extent. The hyper accumulator plant species 
take up more than 100 mg/kg dry weight of the pollutant 
(Brooks et al., 1977). Phytoextraction, the use of plants to 
remove contaminants from

 
soil, is an emerging tech-

nology due to its cost-effectiveness
 
and environmental 

friendliness (Terry and Banuelos, 2000; Brooks, 1998; 
Cunningham et al., 1995). Plant cultivation and harves-
ting

 
are inexpensive processes compared with traditional 

engineering
 
approaches involving intense soil manipula-

tion, and minimize the amount of secondary waste gene-
rated compared with soil heaping,

 
leaching, or washing. 

Furthermore, this technology creates minimal
 
environ-

mental disturbance. Heavy metal stress results in the pro- 
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duction of O2

-
, H2O2 and OH

-
, which affect various cellular 

processes, mostly the functioning of membrane systems 
(Weckx and Clijsters, 1996, 1997).  

Cells are normally protected against free oxy-radicals 
by the operation of intricate antioxidant systems, compri-
sing both enzymatic systems such catalase and pero-
xidase and other non enzymatic systems, acting as free 
radical scavengers such as ascorbate and phenolic com-
pounds. Ascorbate is involved, in addition, as a cofactor 
in the detoxifying enzymatic processes (Foyer et al., 
1993). The basic mechanism underlying the metal detoxi-
fication process by metal hyper accumulators has been 
understood to a certain extent. Two classes of proteins, 
phytochelatins (PCs) and metallothioneins (MTs) are 
reported to be involved in the sequestration of the toxic 
metal ions into the plant vacuole by absorption and trans-
portation (Grill et al., 1985; Zenk, 1996). The PCs are 
small proteins of 1.5 to 4.0 KD synthesized by phyto-
chelatin synthase, while MTs are relatively large proteins 
(14 KD) synthesized through RNA translation (Vata-
maniuk et al.,1999). 

The objective of the present investigation was to study 
the effect of heavy metal arsenic on the growth and 
physiology of C. esculentum and to explore the role of 
antioxidants, total proteins and anatomical changes for 
metal tolerance in plant.  
 
 
MATERIALS AND METHODS 
 
Experimental design 
 
Rhizomes of wild C. esculentum belonging to Araceae family were 
collected from Mogri, near Vallabh Vidyanagar, Gujarat, India. The 

rhizomes were transferred to black plastic pots containing garden 
soil (1 rhizome/2.5 kg soil/pot) after washing under running tap 
water in the botanical garden of the Sardar Patel University, Vallabh 
vidyanagar, Gujarat, India. All pots were watered regularly with tap 
water to field capacity. In order to prevent the loss of element out of 
the pots, plastic trays were placed under each pot, and the drained-
out water collected was put back in the respective pots. After accli-
matization, three days old rhizomes were exposed to arsenic 
applied in the form of sodium arsenate salt (Na3AsO4.12H2O) (Hi-

Media, Mumbai, India) in concentrations 50, 100, 150, 200 and 250 
mg per kg of soil. Metal treatment was given as per the directions of 
Hamid et al. (2010). 
 
 
Heavy metal analysis 
 
After exposure to arsenic for 10 weeks, C. esculentum plants were 

harvested from each of the three replicate treatments, washed with 
water and were oven dried for three days. Samples (root, stem and 
leaf) of treated and untreated plants and the soil were acidified in a 
mixture of hydrochloric acid and nitric acid. For the determination of 
total arsenic contents, the samples were subjected to high pressure 
(for plant samples) and medium pressure (for soil) microwave 
digestion (Milestone, mls-1200). The digested samples were placed 
in 25 ml calibrated flasks and filled up to the mark with water. 
Arsenic hydride was produced by a pre-reduction of As (V) with 
potassium iodide. Later, the samples were again subjected to hyd-
ride generator. The determination of total arsenic (Francesconi and 
Edmonds,  1997)  was  carried  out  by inductively coupled plasma- 

 
 
 
 
atomic absorption spectroscopy (ICP-AAS) (GBC, plasmalab 
8440M along with Hydride generator).  
 
 
Biochemical analysis  
 

Chlorophyll content 
 
Chlorophyll estimation of C. esculentum leaves was carried out 
spectrophotometrically (Arnon, 1949).

 

 
 
Enzyme assay 

 
Fresh root tissues of metal treated (five days) and control plants 
were homogenized in an ice-cooled mortar in phosphate buffer (pH 
6.8) using a prechilled mortar and pestle in an ice bath. The super-
natant after centrifugtion at 12000 g for 20 min at 4°C was used for 
catalase and peroxidase activity. Catalase activity was estimated by 
permanganate method (Povolotskaya and Sedenka, 1956; Gopala-
chari, 1963) calculated as mg H2O2 destroyed in 5 min by 1 g plant 
tissue. Peroxidase activity was determined following the method 

described by Kar and Mishra (1976) expressed as absorbance units 
(0.1 difference in absorbance value was taken as one unit of 
enzyme activity) per mg protein. 
 
 
Total protein content 
 
Fresh root tissues of the arsenic treated plants and the control 
plants were homogenized in an ice cooled mortar in extraction 

buffer containing 20 mM Tris (pH 8.0), 0.25 M sucrose, 5% poly 

vinyl pyrrolidone (PVP) and 3 l of β-mercaptoethanol. The homo-
genate was centrifuged at 12000 g for 20 min and the supernatant 
was used for protein assays. Soluble root extracts of C. esculentum 

plants were used for total soluble protein by Lowry’s et al. (1951)
 

method using bovine serum albumin as standard (1 mg/ml) to com-
pare the total protein profile of control and arsenic treated plants.  
 

 
Proline 
 
Free proline content was estimated following the procedure of 
Bates et al. (1973). Fresh root tissues were homogenized in 3% 
aqueous sulphosalicylic acid and the homogenate was filtered. An 
aliquote of 2 ml filtrate was used for proline estimation. The 
absorbance was measured at 520 nm. The amount of proline in the 
sample was calculated using a standard curve prepared from pure 

proline. 
 
 
Lipid peroxidation 
 
Lipid peroxidation in fresh roots was determined by estimating the 
malondialdehyde content following the method of Heath and Packer 
(1968). Tissues were homogenized in 0.1% trichloroacetic acid 

(TCA), centrifuged at 10000 g for 5 min and the absorbance of the 
supernatant was measured at 532 nm. Measurements were 
corrected for unspecific turbidity by subtracting the absorbance at 
600 nm. The concentration of malondialdehyde was calculated 
using extinction coefficient of 155 mM

-1
 cm

-1
.
  

 
 

Ascorbic acid content 
 

Fresh plant roots were homogenized in 6% TCA at 4°C and cen-
trifuged at 10000 g for 20 min. The supernatant was analyzed by 
dinitrophenylhydrazine  method  (Mukherjee  and  Chaudhuri, 1983) 



 
 
 
 

 

 

Arsenic uptake by the plant 
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Figure 1. Arsenic contents in root, stem and leaves of C. 

esculentum treated with increasing concentrations of Cd. 
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Figure 2. Effect of increasing concentrations of As on fresh weight 

of C. esculentum. 
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Figure 3. Effect on total chlorophyll content of C. esculentum 

treated with increasing concentrations of As 

 
 

 
using standard ascorbic acid to compare the changes in vitamin C 
content of control and arsenic treated plants. 

 
 
Anatomical studies 

 
To study the anatomical changes, temporary slides of cross section 
of roots of untreated and 100 mg/kg arsenic treated plant of C. 

esculentum were observed and photographed using a Carl-Zeiss 
Image Analyzer at a magnification of 320×. 
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Statistics 
 
All values reported in this work are mean ± standard deviation (SD) 
of three replicates.  

 
 
RESULTS 
 

Figure 1 shows the uptake of arsenic by C. esculentum 
exposed to different concentrations of arsenic. The 
shoots appear to accumulate most of the arsenic, with 
low levels of arsenic detected in the roots. At 50 and 100 
mg/kg of soil arsenic, the metal content in the root was 
higher as compared to leaf, but with the increase in metal 
concentrations, arsenic content in shoots increased. The 
arsenic accumulation in the plant was highest in stem, 
followed by leaf and root. The heavy metal uptake in 
stem was 38 and 42% more than leaf and root, respect-
tively. On exposure to different concentrations of arsenic 
for two months, C. esculentum showed pronounced effect 
on the whole plant biomass. The metal accumulation 
caused a conspicuous decrease of fresh weight in plants, 
and this became steeper with increasing concentrations 
of arsenic (Figure 2). The ability of the plant to continue 
growing in the presence of arsenic, a highly toxic heavy 
metal, resulted in the removal of metal from the soil. The 
growth showed a negative correlation with increased 
arsenic content. Exposure to different concentrations of 
arsenic showed a progressive reduction of total chloro-
phyll pigment of C. esculentum (Figure 3). The chloro-
phyll content of the plant declined with increasing con-
centrations of arsenic. 

Arsenic assimilation induces a sharp increase in the 
enzymatic activity of peroxidase and catalase (Figures 4 
and 5) in C. esculentum with respect to control. Activities 
of redox enzymes in C. esculentum exhibited a rise in 
relation to increasing concentrations of externally sup-
plied arsenic to soil, and showed higher values as com-
pared to untreated plant. Treatment with arsenic showed 
a marked increase in the total proteins in roots of C. 
esculentum (Figure 6). The total soluble proteins in metal 
treated plants increased to almost twice the concentration 
in control plant. C. esculentum plants exposed to arsenic 
showed progressive increase in free proline content. The 
increase in proline content of root was about two fold 
more than control treatment (Figure 7). The formation of 
malondialdehyde content was considered as a measure 
of lipid peroxidation. The lipid peroxidtion of roots of C. 
esculentum progressively increased by about three fold 
with increasing concentrations of externally supplied 
arsenic (Figure 8). 

Ascorbic acid content of arsenic treated plant also sho-
wed an increase with increased metal concentration. The 
increase in ascorbic acid content is about two fold high 
under arsenic stress (Figure 9). Significant changes were 
observed in the root of arsenic treated C. esculentum 
against control. The roots showed a vast decrease of cell 
numbers  in  the  cortex  region  of  arsenic treated plants 
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Figure 4. Peroxidase specific activity in roots of C. esculentum 

treatd with As. 
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Figure 5. Catalse activity in roots of C.esculentum treatd with As. 
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Figure 6. Effect of increasing concentrations of As on total soluble 

proteins of C. esculentum. 

 
 
 

(Figure 10). It also appeared that the cortex region 
consisted of elongated parenchyma cells instead of the 
normal parenchymatous tissue in the control plant. 
 
 
DISCUSSION 
 
The data presented here shows that arsenic accumula-
tion  was  more  in  shoots as compared to the roots. We 
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Figure 7. Effect on proline of C. esculentum treated with increasing 

concentrations of As. 
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Figure 8. Effect of increasing As concentrations on TBARS of C. 

esculentum treated with increasing concentrations of As. 
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Figure 9. Effect on ascorbic acid content of C. esculentum treated 

with increasing concentrations of As. 
 
 
 

found that with the increase in metal concentrations in 
soil, arsenic translocation increased from roots to shoots. 
C. esculentum cannot uptake much of arsenic and hence 
cannot be categorized as a hyperaccumulator for arsenic 
but C. esculentum is already reported as a hyperaccumu-
lator for cadmium with strong antioxidative response (Pa-
tel et al., 2005). Though the plant was unable to uptake 
high concentration of arsenic, it is equipped with superior 
antioxidative defenses, and the arsenic uptake in this 
plant can be enhanced by genetic engineering. 

The observed decrease in fresh weight as a result of 
arsenic accumulation suggests a change in the plant's 
water status, which may be the result of decreased water



Patel et al.         16245 
 
 
 

 
 
Figure 10. Anatomical changes observed in the roots of C. esculentum treated with 100 mg/kg of arsenic heavy 

metal (320×). U, Untreated root; A, arsenic treated root. 
 
 
 

uptake or enhanced water loss, both of which may occur 
following membrane damage. Plant cell membranes are 
generally considered primary sites of metal injury (Bar-
celo and Poschenrieder, 1990). Both decrease in bio-
mass and reduction in chlorophyll pigment of C. escu-
lentum as seen in the present study under arsenic stress 
may be due to degradation of chlorophyll resulting in 
inhibition of photosynthesis (Salt et al., 1995). Photosyn-
thesis is also sensitive to excessive Cu, and the pigment 
and protein components of photosynthetic membranes 
are the targets (Patsikka et al., 2002). Cu-induced gene-
ration of hydrogen peroxide, hydroxyl radicals or other 
reactive oxygen species (ROS) have been directly corre-
lated with the damage to proteins and lipids (De Vos et 
al., 1991; Murphy and Taiz, 1997). It is known that envi-
ronmental stresses often induce activity of free-radical 
detoxification enzymes such as catalase and peroxidase 
in plants. Therefore, catalase and peroxidase are two of 
the best candidate enzymes for testing plant responses 
to stress at the enzyme activity level. Catalase is one of 
the major antioxidant enzymes that eliminates hydrogen 
peroxide by converting it into oxygen and water. So, the 
increase in catalase enzyme protects the cell from 
oxidative damage.  

Treatment with arsenic showed an increase in the total 
proteins in roots of C. esculentum after 20 h (Figure 8).  

The increase in total protein content of roots suggests 
the expression of some low molecular weight proteins 
involved in the metal ion homeostasis known as metallo-
thionein or phytochelatin (class III metallothionein), which 
are assumed to be involved in the accumulation, detoxi-
fication and metabolism of metal ions. Metallothioneins 
are thought to sequester excess amounts of certain metal 
ions, which vary for the structurally distinct proteins/poly-
peptides occurring in different organisms (Kagi and Scha-
ffer., 1988) with final sequestration in the storage orga-
nelle of the cell. The increase in proline content of roots 
of arsenic treated plants indicate the response of plants 

to heavy metals stress. Proline has been shown to play 
an important role in ameliorating

 
environmental stress in 

plants and microorganisms, including
 
heavy metal stress. 

Surasak et al. (2002) showed that
 
trans-genic algae 

expressing the mothbean P5CS gene have 80%
 
higher 

free-proline levels than wild-type cells, and grow more 
rapidly

 
in toxic Cd concentrations.  

Lipid peroxidation is a process by which the func-
tionality and integrity of the membrane is affected, and 
can produce irreversible damage to cell function (Mishra 
and Choudhuri, 1996). The increase of thiobarbituric acid 
reactive substances (TBARS) in C. esculentum may be 
considered as an index of oxidative damage due to in-
adequate response of the antioxidative systems, as 
observed in several other crops (Sudhakar et al., 2001). 
We presume that As facilitates lipid peroxidation by dis-
organizing the membrane structure (Cakmak and Horst, 
1991). Enhanced lipid peroxidation, occurring in response 
to arsenic, indicates that arsenic toxicity resulted in the 
increased production of ROS, which in turn caused mem-
brane damage. 

C. esculentum showed increased ascorbic activity 
under metal stress. Ascorbic acid is a primary cellular 
antioxidant and also functions as secondary antioxidant 
because it represents a cellular reservoir to regenerate α-
tocopherol, which scavanges lipid peroxide radicals 
(Foyer, 1993; Alscher et al., 1997). Increase in ascorbate 
with glutathione might restrict heavy metal-induced lipid 
peroxidation and oxidative stress (Schat et al., 1997). 

The results of the anatomical studies indicate that the 
thickening of the cell wall and the reduction in number of 
cells in the cortical region of the roots may be due to 
accumulation of arsenic in the intercellular spaces of the 
internal cortex and the cell wall of the root. STEM data 
showed the electron dense granules contained cadmium 
in the cytoplasm and  vacuoles  of  differentiating  cortical 
cells and mature cells and in nuclei of undifferentiated 
cells  in  Agrostis  and  maize  roots  exposed to cadmium 
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(Rauser and Ackerley, 1987).  
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