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Joint effects of Cd
2+ 

and napropamide in seeds, roots or leaves of alfalfa were investigated under 
different treatments. It was shown that single stress of Cd

2+
 or napropamide decreased chlorophyll 

content after 30 days of treatment in different concentrations. The decrease in chlorophyll content 
became insignificant under joint stress of Cd

2+ 
and napropamide. It can be concluded that the 

interaction of Cd
2+ 

and napropamide would aggravate the toxic effects on chlorophyll synthesis in 
leaves of alfalfa. The joint effect of Cd

2+ 
and napropamide was markedly significant (p < 0.05) on the 

change of SP content in leaves in all treatment. Moreover, Cd
2+ 

and napropamide mixture exposure can 
increase lignin content and present synergistic effect. In a mixture treated with Cd

2+ 
and napropamide, 

52% decrease in β-carotene content contrasted with the control in young leaves. The contents of 
protein thiols and non-protein thiols in the roots of alfalfa were significantly increased by Cd

2+
 

treatment in all treatment levels. In contrast, increasing napropamide supply did not have any 
significant effect on the protein thiols and non-protein thiols content. The Cd

2+
 induced accumulation of 

O2
•− 

in seeds could be increased by treatment with different Cd
2+

 concentration. Production of H2O2 and 
O2

•− 
was also higher in the napropamide treatments than in the control. The addition of napropamide 

significantly increased the H2O2 and O2
•− 

level in the seeds of alfalfa.  
 
Key words: Alfalfa, joint stress, cadmium, napropamide. 

 
 
INTRODUCTION 
 
The study on biochemical responses of plants to joint 
stress of metals and herbicides is an important area of 
ecotoxicology. Metals are environmental pollutants relea-
sed from both industrial and agricultural sources affecting 
the biosphere in many places worldwide. Among them, 
cadmium (Cd), a nonessential element present in the 
atmosphere, soil, and water, is one of the most aggres-
sive and persistent element in natural environments. Cd 
released into the environment may be concentrated in the 
soil, where it is available for the rooted plants. Due to its 
great solubility in water and high mobility in the soil–plant  
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system, Cd is readily taken up by the roots (KreveŠan et 
al., 2003). 

Agricultural soil may be contaminated with Cd as a 
result of industrialization, land applications of sewage 
sludge, and use of different fertilizers, pesticides, and 
insecticides (Mench, 1998; Sanita Di Toppi and Gabbrielli, 
1999). The high solubility of Cd makes this element an 
environmental concern especially because it is easily 
assimilated by plants and it disturbs their metabolism 
(Benavides et al., 2005). Herbicide such as paraquat 
would also cause a significant activation of all antioxidant 
enzymes (Ekmekci and Terzioglu, 2005). The inhibition 
on protein biosynthesis is one of the popular ways in 
preventing plant growth by exogenous toxic chemicals. 
Pesticides are an indispensable controller of plant 
diseases   and    weeds   for   modern   agriculture.  Such 



 
 
 
 
pesticides get accumulated in crops or other organisms 
and may find their way into food chain to cause a series 
of secondary contaminations (Eberle and Gerber, 1976; 
Pylypiw et al., 1993; Nagami et al., 2004).  

One of the visible toxic symptoms of the plants expo-
sed to metals and herbicides is the change of chlorophyll 
content in leaves. In fact, most of the herbicides kill 
weeds by inhibiting their photosynthesis and then inhibi-
ting their growth. Napropamide is a selective systemic 
herbicide used to limit the growth of grasses and weeds 
in much agricultural cultivation. When the napropamide 
concentration exceeds the maximum soil holding capa-
city, it may transfer to the surface or ground water and 
consequently bring contamination to aquatic or ecological 
systems. Commercial napropamide can easily pass into 
tissues of living organisms and is readily accumulated in 
crops and exposure of napropamide induced substantial 
production of O2

•−
, H2O2 and oxidative injury to Brassica 

napus (Zhang et al., 2010; Biswas et al., 2007).  
Alfalfa (Medicago sativa), a legume, is one of the most 

popular species used for perennial grazing and ubiqui-
tously cultured on the global scale (Sengupta-Gopalan et 
al., 2007). At present, few reports are involved in the joint 
stress of cadmium and napropamide. However, the use of 
chemical fertilizers and other pesticides may introduce 
metals such as Cd to the terrestrial systems, which leads 
to combined pollution of cadmium and napropamide.  

In this work, by comparable study of the biochemical 
responses in alfalfa under single and joint stress of 
cadmium and napropamide, the jointly toxicological 
mechanisms of cadmium and napropamide were 
explored. The data of this work may offer base for the 
assessment of ecological risks caused by joint stress of 
metals and organic chemicals in terrestrial ecosystems. 
 
 
MATERIALS AND METHODS 
 

Alfalfa culture and treatment 
 

Seeds of alfalfa were germinated in moist filter paper for 3 days. 
After germination, 60 seedlings were sown in a plastic container (1 
L) with 2000 g soils mixed with Cd

2+
 or napropamide soil. Alfalfas 

were grown in a climate chamber under the controlled conditions 
(photoperiod, 16/8 h light/dark cycle; temperature, 20 to 25°C at 
day/night; relative humidity, 60%; soil moisture 60%) for 30 days 
(Kong et al., 2007; Cui et al., 2011). The tested concentrations for 
the joint stress in the present work were 0, 1.0, 5.0, and 10.0 mg/kg 
for Cd

2+ 
and 0, 5, 100 and 200 µg/kg for napropamide. There were 

12 treatments with different concentration combination of Cd
2+ 

and 
napropamide and each concentration treatment had four repeats for 

each of the 3 days time intervals. Three repeats were performed for 
each of the treatments.  
 

 
Preparation of tissue extract 
 

About 0.1 g of leaf and root tissues was ground with 1.5 ml of 50 
mM pre-cooled  Na-phosphate  buffer  (pH 7.8),  containing  0.1 µM 
EDTA and 1% (w/v) polyvinylpyrrolidone (PVPP). The filtered tissue 
extract was centrifuged at 13,000 rpm for 30 min at 4°C. The 
supernatant was used for further analyses (Wang et al., 2009). 
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Chlorophyll extract and content determination 
 
The leaves were soaked in 80% acetone, and the chlorophyll was 
extracted. The extract was centrifuged at 5300 g for 10 min. Then 
the absorbances of the supernatant were read at 645 and 663 nm. 
The content of chlorophyll in alfalfa was determined in 80% acetone 
extract of 0.1 g leaf tissues as described by Hegedüs et al. (2001) 
and expressed using mg/g FW.  
 
 
Total soluble protein (SP) and lignin content measurement  

 
The method of Bradford was used to determine the concentration of 

soluble proteins in leaves of alfalfa (Bradford, 1976). Absorption 
was recorded at 595 nm. Soluble proteins were expressed as mg/g 
FW. Lignin content was measured according to the method of Aline 
et al. (2010). Lignin was expressed as mg/g DW. 
 
 
Assay of α-tocopherol and β-carotene concentrations 

 
The α-tocopherol was directly quantified after its extraction in order 

to avoid loss by oxidation with time according to the study of Emile 
et al. (2005). β-Carotene and chlorophyll concentrations were 
determined spectrophotometrically using standard curves. Sample 
preparation before detection was carried out as previously 
described by Hejazi and Wijffels (2003). 
 
 
Determination of protein thiols and non-protein thiols 
 

The contents of total thiols were estimated according to the method 
of Ellman (1959). Non-protein thiols were determined following the 
method described by Deng and Hu (2010). The protein thiols were 
calculated by subtracting the non-protein thiols from total thiols. 
 
 
Determination of H2O2 and O2

•−
 production 

 

Formation of H2O2 and O2
•− 

dependent on NADH peroxidase was 
measured colorimetrically as described by Ishida et al. (1987). 
 
 
Statistical analysis 

 
All measurements were replicated three times. The analysis of 
variance (two-way ANOVA) for factors of Cd

2+ 
and napropamide 

concentrations in each time interval were performed with 
randomized model. The data were expressed as means ± standard 
error. Statistical comparisons were carried out using Origin 8.0 
software, and significant differences were indicated by *letters (p < 
0.05). 
 
 
RESULTS AND DISCUSSION  
 
Effects of Cd

2+
 and napropamide on changes of the 

content of chlorophyll 
 
Chlorophyll as a marker indicating growth status was fur-
ther determined. It was shown that single stress of Cd

2+
 

or napropamide decreased chlorophyll content after 30 
days of treatment in different concentrations. However, 
under joint stress of Cd

2+ 
and napropamide, the decrease 

in chlorophyll content became insignificant. That is, when
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Figure 1. Changes of chlorophyll content under stress of single and joint stress of Cd

2+
and 

napropamide.(A: control; B:1.0 mg/kg Cd
2+

 or 5.0 µg/kg napropamide; C: 5.0 mg/kg Cd
2+

 or 
100 µg/kg napropamide; D: 10 mg/kg Cd

2+
 or 200 µg/kg napropamide; E, F, and G: joint 

stress of Cd
2+

and napropamide in different concentration, respectively).*p < 0.05.  
 
 
 

seeds of alfalfa were treated with 1.0, 5.0, and 10.0 
mg/kg Cd

2+
, the contents of chlorophyll decreased by 

13.16, 18.83, and 30.38% in comparison to the control, 
respectively. Similarly, when seeds of alfalfa were treated 
with napropamide at 5, 100, and 200 µg/kg, the content 
of chlorophyll decreased by 11.26, 15.75, and 25.69%, 
respectively in comparison to the control. That is, 10.0 
mg/kg Cd

2+
 caused the responses to be significant. For 

the combined treatment with 1.0 mg/kg Cd
2+ 

and 
napropamide at 5 µg/kg, the content of chlorophyll 
decreased in comparison to the control, the single 
treatment with 1.0 mg/kg Cd

2+ 
and the single treatment 

with a napropamide at 5 µg/kg.  
The decrease was more evident in the other combined 

treatments with Cd
2+ 

and napropamide. The decrease in 
the content of chlorophyll in seeds of alfalfa treated with 
Cd

2+ 
and napropamide were higher than those of the 

single treatment with Cd
2+ 

or napropamide. In order to 
investigate the interaction between Cd

2+ 
and napropa-

mide action on the content of chlorophyll in seeds of 
alfalfa, two-way ANOVA analysis was performed. ANOVA 
for factors of Cd

2+ 
and napropamide demonstrated that 

the joint effects of Cd
2+ 

and napropamide were markedly 
significant (p < 0.05) with the content of chlorophyll (R

2 
= 

0.956, F = 3.121, p < 0.05). The results indicated that 
there was an obvious interaction between Cd

2+ 
and 

napropamide action. Meanwhile, the degrees of decrease 
in toxicological effects under the combined treatment 
were higher than the degree in toxicological effects under 
the single treatment with Cd

2+ 
and napropamide, namely 

synergistic effect.  

It could be concluded that the interaction of Cd
2+ 

and 
napropamide would aggravate the toxic effects on 
chlorophyll synthesis in leaves of alfalfa. This result is 
consistent with previous reports in other plants with 
different pesticides (Biswas et al., 2007; Song et al., 
2007). Further analysis revealed that plants treated with 
napropamide accumulated less amounts of chlorophyll 
(Cui et al., 2011). Chlorophyll allows plants to obtain 
energy from light, which is the first stage for light reaction 
of photosynthesis, and thus chlorophyll is vital for 
photosynthesis (Wang et al., 2009; Sun and Wang, 2012). 
It has been reported that the single treatment with Cd

2+
 or 

pesticides decreased the content of chlorophyll and net 
photosynthetic rate (Gao et al., 2010; Huang et al., 2010; 
Shamsi et al., 2008; Wang et al., 2009b; Zhang et al., 
2010; Mahmooduzzafar et al., 2007), leading to the 
inhibition of the photosynthesis (Figure 1). 
 
 
Effects of Cd

2+
 and napropamide on changes of SP 

and lignin content  
 
Figure 2 shows the change of soluble protein (SP) 
content in leaves of alfalfa under single and joint stress of 
Cd

2+ 
and napropamide. The single stress of Cd

2+
 had 

significant effect on the SP content in leaves in all the 
experimental exposure, and the single effect of 
napropamide was insignificant after 30 days of treatment. 
However, the joint effect of Cd

2+ 
and napropamide was 

markedly significant (p < 0.05) on the change of SP 
content in leaves in all treatment. SP content in leaves of
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Figure 2. Changes of SP content under stress of single and joint stress of Cd

2+
and napropamide (A: 

control; B: 1.0 mg/kg Cd
2+

 or 5.0 µg/kg napropamide; C: 5.0 mg/kg Cd
2+

 or 100 µg/kg napropamide; D: 10 
mg/kg Cd

2+
 or 200 µg/kg napropamide; E, F, and G: joint stress of Cd

2+
and napropamide in different 

concentration, respectively). *p < 0.05.  
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Figure 3. Changes of lignin content under stress of single and 

joint stress of Cd
2+

and napropamide (A: control; B: 1.0 mg/kg 
Cd

2+
 or 5.0 µg/kg napropamide; C: 5.0 mg/kg Cd

2+
 or 100 

µg/kg napropamide; D: 10 mg/kg Cd
2+

 or 200 µg/kg napropa-
mide; E, F, and G: joint stress of Cd

2+
and napropamide in 

different concentration, respectively). *p < 0.05. 
 

 
 

alfalfa increased after 30 days of treatment under single 
stress of Cd

2+
 or napropamide, and that joint stress of 

Cd
2+ 

and napropamide significantly decreased the SP 
content in leaves of alfalfa compared with that under 
single stress of Cd

2+
 or napropamide. The decrease in 

soluble protein (SP) content can be observed in many 
organisms when exposed to metals and other adverse 
stresses (Hegedüs et al., 2001; Jin et al., 2002). 

As a consequence of Cd
2+

 single exposure, lignin 
content increased from 12.8, 16.8 and 21.9% to 110.3, 
135.6, and 167.2% after 1.0 to 10.0 mg/kg Cd

2+
 treatment 

with respect to the control, respectively. However, lignin 
content decreased from 12.5, 19.7 and 25.6% to 10.3, 
13.7, and 19.2% after 5.0 to 200 µg/kg napropamide 
single treatment with respect to the control, respectively 
(Figure 3). Cd

2+ 
and napropamide mixture exposure can 

increase lignin content and present synergistic effect, 
having ascertained that lignin content was already affec-
ted by Cd, Cu or chlorimuron-ethyl and napropamide. 
Moreover, the reduction in root growth has been 
considered one of the first effects of the Cd, Cu, Hg and 
herbicide (such as chlorimuron-ethyl and napropamide) 
associated with lignin production and related parameters 
(Aline et al., 2010; Zhou et al., 2008). As described 
earlier, the  biosynthesis  of  lignin  involves the polymeri-
zation of monolignols primarily derived from the phenyl-
propanoid pathway, which commences with the deamina-
tion of phenylalanine by PAL to form cinnamate, followed 
by the other derivatives (Song et al., 2010). 
 
 

Effects of Cd
2+

 and napropamide on changes of α-
tocopherol and β-carotene content 
 

Cd
2+ 

toxicity affected α-tocopherol content at young leaf 
ages. Significant dose-related increases in α-tocopherol, 
and decreases in α-tocopherol was observed in the 
leaves of napropamide-treated alfalfas (Figure 4). After
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Figure 4. Changes of α-tocopherol content under stress of single and joint stress of Cd

2+
and napropamide (A: 

control; B: 1.0 mg/kg Cd
2+

 or 5.0 µg/kg napropamide; C: 5.0 mg/kg Cd
2+

 or 100 µg/kg napropamide; D: 10 mg/kg 
Cd

2+
 or 200 µg/kg napropamide; E, F, and G: joint stress of Cd

2+
and napropamide in different concentration, 

respectively). *p < 0.05, **p < 0.01.  
 
 
 

30 days of exposure to1.0, 5.0, and 10.0 mg/kg Cd
2+

, a 
21, 35, and 48% raise in α-tocopherol content was detec-
ted compared to the control in young leaves of alfalfa, 
respectively. In an opposite way, the α-tocopherol content 
was reduced at both napropamide treatments. At 5.0 
µg/kg napropamide supply, α-tocopherol content declined 
in young leaves by 25% as compared to the control. 
Whereas, the α-tocopherol content decreased significant-
ly at 200 µg/kg napropamide exposure. Further, mixture 
treated with joint stress of Cd

2+ 
(10.0 mg/kg) and napro-

pamide (200 µg/kg), the 45% decrease in α-tocopherol 
content contrasted with the control in young leaves. 
Metabolites such as α-tocopherol is also involved in 
antioxidant defense. α-Tocopherol is the major vitamin E 
compound found in leaf chloroplasts (Munné-Bosch, 
2005). This antioxidant deactivates photosynthesis-deri-
ved reactive oxygen species (ROS) and prevents the 
propagation of lipid peroxidation by scavenging lipid 
peroxyl radicals in thylakoid membranes (Munné-Bosch, 
2005). Under Cd

2+
 stress, it has been shown that high α-

tocopherol content plays a major role in plant stress 
tolerance, keeping an adequate redox state in chloro-
plasts, while decreased levels facilitate oxidative damage 
(Munné-Bosch, 2005).  

Cd
2+

 treatment induced changes of β-carotene in the 
young leaves depending on the Cd

2+ 
concentration 

(Figure 5). The β-carotene contents of young leaves 
treated with 1.0 mg/kg Cd

2+
 did not show remarkable 

variations as compared to the control. In contrast, 10.0 
mg/kg Cd

2+
 treatments resulted in 38% reduction of total 

β-carotene content. In young leaves, β-carotene contents  
were significantly affected by napropamide treatments at 

any concentration. Mixture treated with joint stress of 
Cd

2+ 
and napropamide, the 52% decrease in β-carotene 

content contrasted with the control in young leaves at the 
maximum mixture concentration. β-Carotene, a tetrater-
penoid containing eight isoprene units is a known precur-
sor of vitamin A and accounts for more than 90% of total 
carotenoids in vegetables, β-carotene not only serves as 
valuable source of vitamin A, but also serves as a potent 
antioxidant, scavenging free radicals and quenching sing-
let oxygen (Rosa and Marta, 2003).  

Our results indicate that β-carotene content was 
reduced in young leaves at Cd

2+ 
and napropamide with a 

decrease of both chlorophyll and β-carotene contents. 
Cd

2+ 
and napropamide concentrations affect the electron 

transport rates of photo system I (PSI) and photo system 
II (PSII), therefore generating high level of free oxygen 
radicals (Herbette et al., 2006; Ekmeki et al., 2008; Cui et 
al., 2011), it is likely that the reduction in chlorophyll con-
tent is a direct consequence of the reduction of β-caro-
tene and β-carotenoid accumulation which in turn limits 
the ROS detoxification capacity. 
 
 
Effects of Cd

2+
 and napropamide on changes of 

protein thiol and non-protein thiol contents 
 
Protein thiols and non-protein thiol compounds can be 
found in most plants, micro-organisms and all mamma-
lian tissues. The contents of protein thiols and non-
protein thiols increased in the roots of alfalfa exposed to 
Cd

2+
 treatment compared with the control group (Figure 

6A and B) and the napropamide exposures were insigni-
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Figure 5. Changes of β-carotene content under stress of single and joint stress of Cd

2+
and 

napropamide (A: control; B: 1.0 mg/kg Cd
2+

 or 5.0 µg/kg napropamide; C: 5.0 mg/kg Cd
2+

 or 100 µg/kg 
napropamide; D: 10 mg/kg Cd

2+
 or 200 µg/kg napropamide; E, F, and G: joint stress of Cd

2+
and 

napropamide in different concentration, respectively). *p < 0.05. 
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Figure 6. Changes of protein thiol (A) and non-protein thiol; (B) content under stress of single and joint stress of Cd

2+
and 

napropamide. (A: control; B: 1.0 mg/kg Cd
2+

 or 5.0 µg/kg napropamide; C: 5.0 mg/kg Cd
2+

 or 100 µg/kg napropamide; D: 10 
mg/kg Cd

2+
 or 200 µg/kg napropamide; E: 5.0 mg/kg Cd

2+
 and 100 µg/kg napropamide; F: 5.0 mg/kg Cd

2+
 and 200 µg/kg 

napropamide). *p < 0.05.  
 
 
 

ficant increase in the contents of protein thiols and non-
protein thiols in the roots of alfalfa. The contents of 
protein thiols and non-protein thiols in the roots of alfalfa 
were significantly increased by Cd

2+
 treatment in all levels 

treatment. The highest contents of protein thiols and non-
protein thiols in alfalfa were observed that received 10 

mg/kg Cd
2+

, value was 123 and 115% greater than that of 
the control, respectively. In contrast, increasing napropa-
mide supply did not have any significant effect on the 
protein thiols and non-protein thiols content. The influ-
ence of protein thiols and non-protein thiol upon metals is 
due to their extremely high affinity for -SH residues (Deng 
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Figure 7. Changes of H2O2 (A) and O2
•−

(B) level under stress of single and joint stress of Cd
2+

and napropamide. (A: control; 
B: 1.0 mg/kg Cd

2+
 or 5.0 µg/kg napropamide; C: 5.0 mg/kg Cd

2+
 or 100 µg/kg napropamide; D: 10 mg/kg Cd

2+
 or 200 µg/kg 

napropamide; E, F, and G: joint stress of Cd
2+ 

and napropamide in different concentration, respectively). *p < 0.05. 
 
 
 

and Hu, 2010). 
 

 

Effects of Cd
2+

 and napropamide on changes of H2O2 
and O2

•− 
production 

 

Changes of NADH-dependent H2O2 production in germi-
nating seeds of alfalfa are shown in Figure 7A and B. The 
H2O2 content was about 120, 135, and 146% of the 
control value, and it was significantly higher than that of 
the control after 30 days in the 1.0, 5.0, and 10.0 mg/kg 
Cd

2+ 
treated seeds, respectively. Similarly, the Cd

2+
 indu-

ced accumulation of O2
•− 

in seeds could be increased by 
treatment with different Cd

2+
 concentration. Production of 

H2O2 and O2
•− 

was also higher in the napropamide treat-
ments than in the control with different treatments. The 
addition of napropamide significantly increased the H2O2 
level in the  seeds  of  alfalfa. Treated with napropamide 
induced high level of O2

•− 
in seeds of alfalfa compared 

with the control, indicating that a higher level of O2
•− 

was 
produced with different napropamide concentration. The 
seeds of alfalfa were treated with joint stress of Cd

2+ 
and 

napropamide, the results showed that H2O2 and O2
•− 

accumulation in seeds of alfalfa significantly increased 
under treatment with different joint stress of Cd

2+ 
and 

napropamide. Protective effects of exogenous H2O2 
against abiotic stresses were observed in plant seed 
germination and seedling growth (He et al., 2009; Singh 
et al., 2004). O2

•− 
represents an instable species of reac-

tive oxygen which can rapidly be converted to H2O2, and 
therefore, production of O2

•−
 by plants is usually accom-

panied by the appearance of H2O2 (Zhou et al., 2008; Cui 
and Hong, 2010; Elbaz et al., 2010). The sensitive gene-
ration of H2O2 and O2

•−
 can be used as a biomarker to 

illustrate the degree of oxidative stress. 

Conclusion 

  
The significantly joint effect of Cd

2+ 
and napropamide on 

alfalfa at biochemical levels was prevalent in the natural 
environment. It was shown that single stress of Cd

2+
 or 

napropamide decreased chlorophyll content after 30 days 
of treatment in different concentrations. The decrease in 
chlorophyll content became insignificant under joint 
stress of Cd

2+ 
and napropamide. It could be concluded 

that the interaction of Cd
2+ 

and napropamide would 
aggravate the toxic effects on chlorophyll synthesis in 
leaves of alfalfa. The joint effect of Cd

2+ 
and napropamide 

was markedly significant (p < 0.05) on the change of SP 
content in leaves in all treatment. Moreover, Cd

2+ 
and 

napropamide mixture exposure can increase lignin con-
tent and present synergistic effect on mixture treated with 
joint stress of Cd

2+ 
and napropamide; the 45% decrease 

in α-tocopherol content contrasted with the control in 
young leaves.  

In mixture treated with joint stress of Cd
2+ 

and 
napropamide, the 52% decrease in β-carotene content 
contrasted with the control in young leaves. The contents 
of protein thiols and non-protein thiols in the roots of 
alfalfa were significantly increased by Cd

2+
 treatment in 

all treatment levels. In contrast, increasing napropamide 
supply did not have any significant effect on the protein 
thiols and non-protein thiols content. The Cd

2+
 induced 

accumulation of O2
•− 

in seeds could be increased by 
treatment with different Cd

2+
 concentration. Production of 

H2O2 and O2
•− 

was also higher in the napropamide treat-
ments than in the control. The addition of napropamide 
significantly increased the H2O2 level in the seeds of 
alfalfa. Treated with napropamide induced high level O2

•− 

in  seeds  of  alfalfa compared with the control, indicating  



 
 
 
 
that a higher level of O2

•− 
was produced with different 

napropamide concentration and the sensitive generation 
of H2O2 and O2

•−
 can be used as a biomarker to illustrate 

the degree of oxidative stress. 
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