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Glucoamylase is a key enzyme used in food processing as well as in commercial production of glucose 
from starch. The use of thermotolerant strain of Rhizopus microsporus TISTR 3518 offers the 
advantages of cooling-costs reduction during fermentation and high thermostable enzyme production. 
The effect of various carbon and nitrogen sources on glucoamylase production was evaluated. It was 
found that α-amylase treated liquefied cassava starch and CH3COONH4 gave the highest enzyme 
activity. The influence of various medium components and culture parameters were investigated using 
Plackett-Burman. It was shown that CH3COONH4, FeSO4.7H2O, ZnSO4.7H2O, CaCl2, temperature and pH 
are significant factors affecting the glucoamylase production. The medium with the initial pH of 6.5 
which consisted of α-amylase treated liquefied cassava starch, 10 gl

-1
; CH3COONH4, 5 gl

-1
; K2HPO4, 0.5 

gl
-1

; KCl, 1.5 gl
-1

; MgSO4.7H2O, 0.5 gl
-1

; FeSO4.7H2O, 0.06 gl
-1

; ZnSO4.7H2O, 0.035 gl
-1

; CaCl2, 0.05 gl
-1
 and 

C6H8O7.H2O, 5.6 gl
-1
 yielded the highest enzyme production (948 U ml

-1
) after cultivation at 40°C for 48 h. 
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INTRODUCTION 
 
Glucoamylase (EC 3.2.1.3.1; 4-D-glucan glucohydrolase) 
is a hydrolyzing enzyme acting on both α-1,4 and α-1,6 
glucosidic links of starch. It can degrade both amylose 
and amylopectin and produce glucose (Elegado and 
Fujio, 1993). Nowadays, glucoamylase is one of the most 
important enzymes in food industries (Cook, 1982; 
Beuchat, 1987; Soccol et al., 1992), as it is used for the 
production of glucose and fructose syrup from liquefied  
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starch (Nguyen et al., 2002). Glucoamylase are produced 
by various microorganisms, including bacteria, fungi and 
yeasts. Microbial strains of genera Aspergillus and 
Rhizopus have been mainly used for commercial produ-
ction of glucoamylases (Pandey, 1995).  

We recently characterized thermotolerant Rhizopus 
strains isolated from Thai traditional inoculum for alco-
holic fermentation (Kitpreechavanich et al., 2008). The 
thermotolerant strain of Rhizopus microsporus TISTR 
3518 produced more glucoamylase than the non-
thermotolerant TISTR 3523 at 40°C. Additionally, the 
thermal stability of crude  enzymes  from  R.  microsporus  



 

 

 
 
 
 
TISTR 3518 was also higher than that of the enzyme 
from   TISTR   3523.   The ability to grow and produce 
glucoamylase at high temperatures would be useful for 
cost-reduction in terms of cooling system.  

For screening purpose, various medium components 
and culturing parameters were evaluated based on 
Plackett-Burman design which is a well established tech-
nique for selecting the critical culture variables 
(Gangadharan et al., 2007). This type of design is very 
economical as up to n factors can be evaluated in only 
n+1 combination. The aim of this study was to screen the 
factors affecting glucoamylase production by R. 
microsporus TISTR 3518 using Plackett-Burman design. 
 
 
MATERIALS AND METHODS 
 
Microorganism and cultivation  
 
The R. microsporus TISTR 3518 strain isolated from Thai traditional 
inoculum was used in this study (Kitpreechavanich et al., 2008). 
The culture was maintained on a potato dextrose agar (PDA) slant 
at room temperature. Spore suspension was prepared from 7 days 
old culture that was grown on PDA slants, by aseptically adding 
sterile distilled water containing 0.1% tween-80 and then lightly 
brushing the mycelium with a sterile wire loop. The suspension was 
diluted with sterile distilled water to give a final spore count of 1 x 
10

7
 spores ml

-1
 determined by haemacytometer counts and was 

used as inoculums. Fifty milliliters of the medium in a 250 ml 
Erlenmeyer flask was inoculated with the inoculum and then shaked 
on a rotary shaker under 150 rpm at 35°C for 30 and 48 h. At the 
end of the cultivation, the mycelium was separated from the culture 
broth by filtering through a filter paper (Whatman no.1) to obtain the 
crude enzyme for glucoamylase activity assay. 
 
 
Effect of carbon and inorganic nitrogen sources 
 
Effects of carbon and nitrogen sources on glucoamylase production 
were studied in the basal medium with initial pH of 6.0 on a rotary 
shaker under 150 rpm at 35°C. The basal medium consisted of 
K2HPO4, 1 gl

-1
; KCl, 1 gl

-1
; MgSO4.7H2O, 0.5 gl

-1
; FeSO4.7H2O, 0.01 

gl
-1

; ZnSO4.7H2O, 0.003 gl
-1

; CaCl2, 0.21 gl
-1

 and C6H8O7.H2O, 3.3 

gl
-1

 (Morita et al.,1998). Five carbon sources (1.0% w/v): α-amylase 
treated liquefied cassava starch, glucose, maltose, soluble starch 
and cassava starch, and inorganic nitrogen source (0.7265 gl

-1
 N): 

CH3COONH4, (NH4)2SO4, NH4H2PO4 and (NH4)2HPO4 were used. 
Glucoamylase activity was determined after 30 and 48 h of 
cultivation. A slurry of 20% (w/v) cassava starch in distilled water 
was liquefied by 120 KNU α-amylase gl

-1
 (Termamyl 120L, NOVO 

NORDISK, Denmark) at 90 - 95°C for 2 h with intermittently 
agitation. KNU is kilo Novo units of alpha-amylase and is equivalent 
to amount of enzyme which breaks down 5.26 g starch per hour. 
After liquefaction, a clear liquefied solution was obtained by filtering 
the slurry through a cheesecloth.  
 
 
Plackett-Burman design  
 

Initial screening of the most significant fermentation parameters that 
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affected glucoamylase production by R. microsporus TISTR 3518 
was performed by Plackett-Burman design  (Plackett  and  Burman, 
1946). The best carbon source, α-amylase treated liquefied 
cassava starch (X1); best nitrogen source, CH3COONH4 (X2); each 
components of the basal medium, K2HPO4 (X3); KCl (X4); 
MgSO4.7H2O (X5); FeSO4.7H2O (X6); ZnSO4.7H2O (X7); CaCl2 (X8); 
C6H8O7.H2O (X9) and physical factors, temperature (X10) and pH 
(X11) were considered as independent variables in this study. Each 
variable is represented at two levels: -1 for low level and +1 for high 
level. Table 2 shows the factors under investigation as well as 
levels of each factors used in the experimental design, whereas 
Table 3 represents the design matrix. The media were adjusted 
according to the experimental design. The spore suspension was 
inoculated into the medium and then incubated on a rotary shaker 
under 150 rpm at temperature according to the experimental design 
for 48 h. All the experiments were performed in triplicate and the 
average of glucoamylase production was used as the experimental 
response (dependent variable). The experimental design and 
obtained data were analyzed statistically using SPSS window 11 
(version 11.5, 2002; USA). 
 
   
Glucoamylase assay 
 
The reaction mixture containing 0.5 ml of 2% (w/v) soluble starch in 
a acetate buffer 0.1 M, pH 4.5 and 0.5 ml of diluted crude enzyme, 
was incubated at 40°C for 20 min. The reaction was then stopped in 
a boiling water bath for 10 min. The amount of liberating glucose 
was measured by the glucose oxidase method (Kingsley and 
Getchell, 1969). One unit of glucoamylase activity was defined as 
the amount of enzyme required for releasing 1 µg of glucose per 
minute. 
 
 

RESULTS AND DISCUSSION 
 
Effect of carbon and inorganic nitrogen source  
 
In the investigation of the effects of various carbon sour-
ces on glucoamylase production (Table 1), α-amylase 
treated liquefied cassava starch was the best carbon 
source with regard to the highest glucoamylase production. 
Gomes et al. (2005) reported that cassava starch was 
shown to be a better substrate than corn starch for 
glucoamylase production by Aspergillus flavus. The α-
amylase serves to reduce the viscosity of gelatinized 
starch solutions and also to produce a lower molecular 
size substrate. These smaller substrate molecules are 
efficient inducers of glucoamylase which hydrolyzes the 
dextrins to glucose (Hockenhull, 1967). The production of 
glucoamylase by this strain using cassava starch which is 
abundant and cheap raw material will reduce cost of the 
enzyme production. Nitrogen source is the important 
nutrient for the growth of fungi and production of gluco-
amylase (Mamo and Gessesse, 1999). In our study, it 
was found that ammonium acetate was the best nitrogen 
source for glucoamylase production by R. microsporus 
TISTR3518 (Table 1). Ammonium acetate is provided not  
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Table 1. Effects of various carbon and nitrogen sources on glucoamylase 
production by R. microsporus TISTR 3518. 

 

Carbon and nitrogen source 
Glucoamylase activity (U ml

-1
) 

30 h 48 h 

Carbon sources 

Glucose 14 45 

Maltose 141 380 

Soluble starch 43 307 

Cassava starch 9 349 

Liquefied cassava starch 202 539 

Inorganic nitrogen source 

CH3COONH4 223 540 

(NH4)2SO4 186 300 

NH4H2PO4  194 350 

(NH4)2HPO4 142 338 
 
 
 

Table 2. Experimental variables at different levels used for glucoamylase 
production by R. microsporus TISTR 3518 using Plackett-Burman design. 
 

Variable code Variable 
Level 

Low (-1) High (+1) 

X1 Liquefied cassava starch (gl
-1

) 10 30 

X2 CH3COONH4 (gl
-1

) 5 10 

X3 K2HPO4 (gl
-1

) 0.5 1.5 

X4 KCl (g l
-1

) 0.5 1.5 

X5 MgSO4.7H2O (gl
-1

) 0.5 1.5 

X6 FeSO4.7H2O (gl
-1

) 0.02 0.06 

X7 ZnSO4.7H2O (gl
-1

) 0.005 0.035 

X8 CaCl2 (gl
-1

) 0.05 0.15 

X9 C6H8O7.H2O (gl
-1

) 1 5.6 

X10 Temperature (
o
C) 30 40 

X11 pH 5.5 6.5 
 
 
 

Table 3. Plackett-Burman experimental design matrix for glucoamylase production by R. microsporus TISTR 3518. 
 

Run number X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 Y (U ml
-1

) 

1 1 1 -1 1 1 1 -1 -1 -1 1 -1 20 

2 1 -1 1 1 1 -1 -1 -1 1 -1 1 98 

3 -1 1 1 1 -1 -1 -1 1 -1 1 1 208 

4 1 1 1 -1 -1 -1 1 -1 1 1 -1 28 

5 1 1 -1 -1 -1 1 -1 1 1 -1 1 400 

6 1 -1 -1 -1 1 -1 1 1 -1 1 1 792 

7 -1 -1 -1 1 -1 1 1 -1 1 1 1 948 

8 -1 -1 1 -1 1 1 -1 1 1 1 -1 717 

9 -1 1 -1 1 1 -1 1 1 1 -1 -1 0 

10 1 -1 1 1 -1 1 1 1 -1 -1 -1 627 

11 -1 1 1 -1 1 1 1 -1 -1 -1 1 218 

12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 134 
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Table 4. Statistical analysis of Plackett-Burman design for glucoamylase production by R. microsporus TISTR 3518. 
 

Variable code Variable Coefficient estimate Mean square F-value P-value 

X1 Liquefied cassava starch (gl
-1
) -21.67 5633.33 0.914 0.440 

X2 CH3COONH4 (gl
-1
) -203.50 496947 80.60 0.012

a
 

X3 K2HPO4 (gl
-1

) -33.17 13200.33 2.14 0.281 

X4 KCl (gl
-1
) -32.33 12545.33 2.04 0.290 

X5 MgSO4.7H2O (gl
-1
) -41.67 20833.33 3.38 0.207 

X6 FeSO4.7H2O (gl
-1

) 139.17 232408.33 37.70 0.026
a
 

X7 ZnSO4.7H2O (gl
-1

) 86.33 89441.33 14.51 0.063
a
 

X8 CaCl2 (gl
-1

) 108.17 140400.33 22.78 0.041
a
 

X9 C6H8O7.H2O (gl
-1
) 16.00 3072 0.50 0.553 

X10 Temperature (ºC) 103.00 127308 20.65 0.045
a
 

X11 pH 94.83 107920.33 17.50 0.053
a
 

 
a
 Significant at P < 0.1. 

 
 
 

only as nitrogen source but also as carbon source. In 
addition, final pH of the medium using acetate as nitrogen 
source were 7.8 and 8.4 after 30 and 48 h

 
of cultivation, 

respectively, which were suitable for the enzyme 
production. In case of the other nitrogen sources, the final 
pH decreased to 4.5 - 5.3 and diminished the enzyme 
production. Our result was coherent with the work of 
Morita et al. (1998), which showed that ammonium acetate 
was the best nitrogen source in Rhizopus sp. MKU40 for 
glucoamylase production. Nevertheless, it was different 
from the previous reports, which found that (NH4)2HPO4 
was the best for the enzyme production by Aspergillus 
fumigatus (Cherry et al., 2004) and Candida famata 
(Mohamed et al., 2007).   
 
 
Screening of variables using Plackett-Burman 
 
The corresponding response, glucoamylase activity (Y), 
from the media which adjusted according to the experi-
mental design matrix of variables, is shown in Table 3. 
The experiment (run no. 7) in which the medium was 
adjusted to pH 6.5 and consisted of α-amylase treated 
liquefied cassava starch, 10 gl

-1
; CH3COONH4, 5 gl

-1
; 

K2HPO4, 0.5 gl
-1

; KCl, 1.5 gl
-1

; MgSO4.7H2O, 0.5 gl
-1

; 
FeSO4.7H2O, 0.06 gl

-1
; ZnSO4.7H2O, 0.035 gl

-1
; CaCl2, 

0.05 gl
-1

 and C6H8O7.H2O, 5.6 gl
-1
 yielded the highest 

enzyme production (948 U ml
-1

), after cultivation at 40°C 
for 48 h. The resulting effect of the responses, the 
associated coefficient estimate, mean square, F-value 
and significant levels (P-value) were investigated (Table 
4). It was found that the P-value of six variables: X2, 
CH3COONH4; X6, FeSO4.7H2O; X7, ZnSO4.7H2O; X8, 
CaCl2; X10, temperature and X11, pH was less than 0.10. 

Thus, this indicated that they were significant on the 
glucoamylase production. The addition of iron, magne-
sium and zinc ions in the liquid medium was essential to 
growth and glucoamylase production of Rhizopus sp. 
KMU40, while calcium ions also stimulated its growth and 
glucoamylase production (Morita et al., 1999). The effect 
of pH is one of the most important factors for growth of 
microorganisms and glucoamylase production. Cherry et 
al. (2004) found that the optimum initial pH was 7.0 for 
glucoamylase production by A. fumigatus. The model had 
a coefficient of determination (R

2
) of 0.996, which can 

explain 99.60% variability of the data. Plackett-Burman 
design is a powerful technique for screening important 
variables and has successfully been used by many workers 
(Xu et al., 2002; Kaur and Satyanarayana, 2005; Kumar 
and Satyanarayana, 2006).  
 
 

CONCLUSION  
 

The present study involved the effect of carbon and 
nitrogen sources on glucoamylase production by R. 
microsporus TISTR 3518 and the use of statistical design 
of experiment to optimize parameters for the glucoa-
mylase production. The α-amylase treated liquefied 
cassava starch and CH3COONH4 gave the highest gluco-
amylase activity. Six variables: CH3COONH4, FeSO4. 
7H2O, ZnSO4.7H2O, CaCl2, temperature and pH were 
also identified by the Plackett-Burman design as signifi-
cant for glucoamylase production. 
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