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Tomato (Solanum lycopersicum) is one of the most important vegetables in the world with significant 
importance for human health and nutrition. This species has long served as model system for plant 
genetics, development, physiology, pathology, and fleshy fruit ripening, resulting in the accumulation of 
many genetic and genomic resources. In addition, the tremendous development of high-throughput 
technologies, such as transcriptomics, metabolomics and proteomics, collectively denoted as ‘omics’ 
technologies, has led to a huge collection of data and platforms today available on the net. Nowadays, 
identifying all the components of a single biological system is within our means; however, assigning 
function to genes, proteins and metabolites is still a daunting task. Major challenges include 
interpretation and integration of large datasets to understand the principles underlying the regulation of 
genes, metabolites and proteins, and how their combined interactions associate with variation in 
phenotype. In this review, we will focus on the role of the different high-throughput technologies in 
enhancing tomato breeding particularly for fruit quality traits. We also describe how two ‘omics’ 
approaches could be combined in order to identify candidate genes for the genetic control of ascorbic 
acid accumulation in tomato fruit. We report the example of transcriptomic and genomic approaches 
established on the use of different high-throughput platforms available for tomato. 
 
Key words: Tomato, introgression lines, quality trait, genomics, transcriptomics, candidate gene, single 
nucleotide polymorphism (SNPs). 

 
 
INTRODUCTION 
 
Nowadays, by taking the advantages of development of 
new sequencing technologies, the genome sequences of 
several plant species have been revealed. Among the 
almost 30 plant genomes publicly available, there is the 
tomato (Solanum lycopersicum) genome, whose sequen-
cing started at the end of 2004 in the framework of the 
International Solanaceae Genome Project (SOL) and 
completed at the end of the year 2011 (Tomato Genome 
Consortium, 2012). The tomato is one of the three most 

important vegetables in the world with significant impor-
tance for human health and nutrition. In the last years, its 
global production has increased approximately 10% since 
for many countries it is a significant source of vitamins and 
minerals (Giovannucci et al., 2002). Moreover, tomato has 
been always considered as model species for fleshy fruit 
development and ripening, as well as for genomics studies 
of other Solanaceae (Mueller et al., 2005). For these rea-
sons many genetic and genomic resources have been
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developed for this species, including databases for trans-
criptomics, metabolomics and proteomics data, which are 
now available on the net (Fei et al., 2011). Indeed, in the 
post-genomic era, high-throughput technologies as 
microarray, mass-spectrometry and protein chip, have led 
to the collection of a large amount of data developed by 
the scientific community. These techniques allow measu-
ring thousands of variables (genes, metabolites, proteins) 
simultaneously across populations. 

The data generated by these techniques are often 
collectively denoted as ‘omics’ data (Joyce and Palsson, 
2006). To understand the organization of cellular func-
tions at different levels (gene, metabolite, or protein) and 
link them to a particular phenotype, an integrative approach 
is needed and is often referred to as ‘systems biology’ 
(Kitano, 2002, 2010). Biological systems are complex and 
cannot be understood by focusing on any one aspect of 
their highly interacting components. Because the func-
tioning of a plant as a system concerns each of its mole-
cular constituents (DNA, RNA, proteins, metabolites, ions, 
etc.), the expanding development of high-throughput data 
generation technologies made it possible to apply a 
systems biology paradigm in plant science. Large sets of 
comprehensive and quantitative data from plant samples 
grown under a wide variety of conditions have been pro-
duced. Massive databases from such high-throughput 
data have been created (Joyard and McCormick, 2010). 
The goal of systems biology is to understand how all 
these components function to bring about the observed 
phenotypes, and to elucidate the complete network of 
causes and effects from the molecule to the ecosystem. 
Identifying all the components of a single biological sys-
tem is now within our means; however, assigning function 
to genes, proteins and metabolites is still a daunting task. 

Major challenges include interpretation and integration 
of large datasets to understand the principles underlying 
the regulation of genes, metabolites and proteins, and 
how their combined interactions associate with variation 
in phenotype (Kim et al., 2010; Fukushima, 2009). Seve-
ral attempts have been made to integrate multiple ‘omics’ 
data sets from different species. Even if we are still far 
from the initial objective of fully understanding how a 
given system works, is undeniable that the systematic 
analyses of the different ‘omics’ levels can facilitate the 
discovery of new candidate genes/QTLs and/or to assign 
functions to unknown proteins. Networks and pathways 
have been reconstructed using transcriptome, genome–
wide transcription factor binding, proteome and meta-
bolome data, and subsequently used to infer functional 
interactions among genes, proteins and metabolites 
(Moreno-Risueno et al., 2010). Moreover, systematic 
analyses of the transcriptome and metabolome and cor-
relation of the expression pattern of genes with the accu-
mulation pattern of metabolites have been successful 
ways to deduce the functions of genes.  

The guilty-by-association principle states that a set of 
genes  (or  proteins  and metabolites) involved in a certain 
biological  process  is generally co-regulated and thus co- 

 
 
 
 
expressed under the control of a shared regulatory sys-
tem (Saito and Matsuda, 2010). Therefore, if an unknown 
gene is co-expressed with known genes of a particular 
biological process, researchers assume that this un-
known gene may be involved in this process. This co-
occurrence principle can be extended to metabolite co-
accumulation relationships with the expression pattern of 
genes of the particular pathway in which the metabolite is 
involved. 

Following the comprehension of the whole biological 
system under investigation, it is of fundamental impor-
tance to identify the hubs that regulates it, in order to 
focus on these key-elements that could be successfully 
transferred into new varieties by breeding schemes or 
genetic transformation. In this review, we focus on how 
different genome-wide datasets have been and can be 
used to reconstruct biological networks in tomato flesh 
fruit, and to dissect the QTLs that underlie their genetic 
control, reporting as example the approaches established 
on the combined use of different platforms available for 
tomato. 
 
 

GENETIC AND GENOMIC TOMATO RESOURCES 
 

Tomato has long served as a model system for plant 
genetics, development, physiology, pathology, and fleshy 
fruit ripening, resulting in the accumulation of substantial 
information regarding the biology of this economically 
important crop. Besides a large amount of already well-
established genetic and genomic resources, today even 
more high-throughput datasets and different platforms 
have been generated. Among the tomato genetic resour-
ces, besides wild and related species publicly available at 
the Tomato Genetics Resource Center (TGRC) 
(http://tgrc.ucdavis.edu/index.cfm), different mutant 
collection (http://zamir.sgn.cornell.edu/mutants/ and 
http://tomatoma.nbrp.jp/) (Barone et al., 2009), and 
TILLING populations were developed in several countries 
(Minoia et al., 2010; Piron et al., 2010; Okabe et al., 
2011). A powerful material to dissect genetic complex 
traits as quantitative trait loci (QTLs) is represented by 
the introgression line (IL) populations. These populations 
consist of a number of homozygous lines each containing 
marker defined segments from the wild genome in a 
uniform cultivated genetic background. They allow the 
same genetic stocks to be used worldwide in genetics 
and genomics applications for tomato breeding. Currently, 
different IL populations are available derived from wild 
tomato species such as Solanum pennellii, Solanum 
habrochaites, Solanum pimpinellifolium, Solanum 
lycopersicoides, Solanum chmielewskii and Solanum 
sitiens (Fernie et al., 2006). These lines have been widely 
used to localize QTLs on the molecular map, and to 
identify putative genes involved in their genetic control 
(Lippman et al., 2007). This has greatly helped the bree- 
ding work for these traits, which show a continuous varia-
tion and are strongly influenced by environmental conditions. 

On the other hand, in addition to the recently tomato ge- 



 

 
 
 
 
nome sequence (www.solgenomics.net, release SL2.40 
January 2011), a large amount of genomic resources are 
now available. High-density genetic and physical maps, 
derived from interspecific crosses between S. lycopersicum 
and S. pennellii, S. habrochaites, S. pimpinellifollium, and 
other wild relatives have been developed (Foolad, 2007). 
Moreover, many EST collections (more than 330,000 EST 
deposited in the Tomato Gene Index database) deriving 
from various tomato species and tissues and different 
developmental stages are also publicly available. Diffe-
rent microarray platforms (TOM1, TOM2, combimatrix, 
affimetrix, and agilent) have been used to study the 
transcriptomic change in different tissues and at different 
environmental conditions (Alba et al., 2004, 2005; Di 
Matteo et al., 2010; Balaji et al., 2008; Lemaire-Chamley 
et al., 2005). A SolCAP chip (http://solcap.msu.edu) con-
taining more than 8000 single nucleotide polymorphism 
(SNPs) has been made available for the tomato scientific 
community (Sim et al., 2012a). These SNPs were mainly 
discovered based on NGS-derived transcriptomic se-
quences obtained from six tomato accessions (Hamilton 
et al., 2012). Finally, very recently, a diversity array tech-
nology (DArT) platform for tomato using the S. pennellii 
ILs population has been developed and validated (Van 
Schalkwyk et al., 2012). These recent genomic resources 
add to other high-throughput genotyping platforms that 
are being used to explore the level of polymorphism de-
tectable within cultivated tomato by genome-wide analy-
sis (Sim et al., 2009, 2012b; Robbins et al., 2010; Shirasawa 
et al., 2010a). 

Alongside of genomic resources, there are an increa-
sing number of powerful computational pipelines for se-
quence analysis and genome annotation. SGN (Solanaceae 
Genome Network, http://solgenomics.net/) is a website 
that provides a virtual workbench for researchers working 
on the Solanaceae family, which hosts various sources of 
data and analysis tools. The Metabolome Tomato Data-
base (MoTo DB) is an open-access metabolome data-
base for tomato fruit. The database was developed using 
fruits from 96 different tomato cultivars in different ri-
pening stages ensuring a representative fruit sample. The 
Tomato Functional Genomics Database (TFGD, 
http://ted.bti.cornell.edu/) provides a comprehensive 
resource to store, query mine, analyse, visualize and in-
tegrate large-scale tomato functional genomics data sets 
(Fei et al., 2011). A web-based system (plant MetGenMAP) 
has also been developed, which can com-prehensively 
integrate and analyze large-scale gene expression and 
metabolite profile data sets along with diverse biological 
information (Joung et al., 2009). Other web resources 
that collect data generated from different tomato ‘omics’ 
approaches are publicly available and reviewed in Yano 
et al. (2007) and Barone et al. (2008). 
 
 

A transcriptomic-based approach 
 

Thanks   to  the  tremendous  technical  advances  of  the 
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post-genomics era, data generation is no longer the limi-
ting factor in advancing biological research. In addition, 
data integration, analysis, and interpretation have become 
key bottlenecks and challenges that biologists conducting 
genomic research face daily. In the last few years, many 
reports in tomato research focused on the possibility of 
understanding the complex of fruit ripening (Alba et al., 
2005; Kok et al., 2008; Palma et al., 2011) and nutritional 
quality composition (Shauer et al., 2006; Moco et al., 
2006, 2008) by using different ‘omics’ approaches. In our 
lab, we undertook two different ‘omics’ approaches to in-
depth understand molecular mechanisms underlying tomato 
quality traits with particular attention to the ascorbic acid 
(AA) synthesis and accumulation in the fruits. The first 
approach consists on the screening of a S. pennellii IL 
population (genomic level), for the ascorbic acid content 
(metabolic level) to detect QTLs controlling its synthesis 
and accumulation into the tomato fruits, and on compa-
ring the microarray analyses (transcriptomic level) of the 
ILs carrying the specific QTL. We identified two geno-
types, IL12-4 and IL10-1, carrying a QTL for higher and 
lower AA accumulation compared to the control M82, res-
pectively. Surprisingly, the transcriptomic analyses of 
these ILs revealed that the genes directly involved in the 
main metabolic pathway of AA synthesis and recycling / 
catabolism showed not differentially expression with res-
pect to the cultivated parent. Indeed, the higher AA con-
tent in the IL12-4 was supposed to be controlled through 
the up-regulation of genes driving pectin degradation, 
thus releasing intermediates for the L-galactonic acid 
pathway, which is an alternative biosynthetic pathway for 
AA synthesis in plant (Di Matteo et al., 2010) previously 
detected only in strawberry (Agius et al., 2003) and 
grapevine (Cruz-Rus et al., 2010). 

In the IL10-1, the different expression of genes involved 
in carbohydrate catabolism, fatty acid biosynthesis, glyo-
xylate metabolism and antioxidant system were involved 
in a reduced AA level of tomato ripe fruit (Di Matteo et al., 
2012). Therefore, in both cases, the combined use of the 
ILs with the microarray platform, allowed the identification 
of new genes candidate to the control of AA level in the 
tomato fruit. The identified differentially expressed trans-
cripts were mapped onto the tomato genome available at 
the Solanaceae Genomics Network. The genetic posi-
tions were obtained by BLASTN (Altschul et al., 1990) 
searches against the entire Tomato WSG Chromosomes 
(SL2. 40) database (http://solgenomics.net/index.pl). 
Among the 20 genes of the IL12-4 model (Di Matteo et 
al., 2010), three mapped on the introgression 12-4, 
whereas in case of IL10-1, among the 17 genes which 
establish the model (Di Matteo et al., 2012), eight map-
ped to the introgression 10-1. Therefore, we can state 
that the transcriptomic analysis led to dissect the two 
QTLs for AA content that map to chromosomal regions 
10-1 and 12-4 into candidate genes, whose specific func-
tion will be further investigated by other ‘omics’ appro-
aches, such as the TILLING or VIGS platforms today avail-
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TC Chr IL10-1 IL12-4 Annotation

TC189778 1 - - Unknown

TC170015 1 - - REF family protein

TC184006 2 + + Cystathionine gamma synthase

TC173750 4 + + NA

TC182944 10* - -
Serine/threonine protein 
phosphatase-related

TC182124 10* - + Unknown

TC180762 10* + - Translation elongation factor

TC180189 11 - - Unknown

a)

b)

8

98

147144

82

IL10-1 IL12-4

 
 

Figure 1. a) Venn diagram showing the shared differentially expressed genes between the 
Solanum pennellii introgression lines (ILs) 12-4 and 10-1; b) list of the eight shared genes 
between the ILs 12-4 and 10-1. 

 
 
 

available for tomato (Minoia et al., 2010; Orzaez et al., 
2009). 

In addition, it is interesting to note that candidate genes 
for AA control in tomato fruits of ILs 10-1 and 12-4 have 
also been found outside of the introgression regions, 
giving us a more complete picture of the genes and mole-
cular mechanisms controlling metabolic pathways and 
their interactions. For example, out of these genes, 10 
mapped to chromosome 1, five per each IL; for some of 
these genes, it is possible to hypothesize an interaction 
of ‘key-elements’ mapping on chromosome 1 with genes 
mapping on the regions 10-1 and 12-4, in controlling AA 
synthesis and accumulation in tomato fruit. As a whole, 
comparing the differentially expressed transcripts obtained 
from the two different microarray experiments (Figure 1), 
we found that a set of 8 transcripts were shared between 
the IL12-4 and the IL10-1, and among them two 
(TC182124 and TC180762) mapping on the introgressed 

region 10-1 also exhibit a contrasting expression pattern. 
One is annotated as a translation elongation factor p 
whereas the other is still not annotated. For the latter, a 
possible role as regulator of genes controlling AA level in 
tomato fruit could be hypothesized and further investi-
gated in the future. These results highlight the powerful 
employment of the ILs in combination with the microarray 
approach. 

Comprehensively, identified genes mapping within or 
outside the introgressed regions may represent key-con-
trol points in the mechanisms regulating the AA content in 
tomato fruit and so very useful in breeding program 
aimed to increasing nutritional quality in tomato fruits. 
 
 

A genomic-based approach 
 

The introgression lines as source of favorable alleles to 
transfer in the cultivated varieties have been so far used
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Table 1. Characteristics of SNP assayed on the 96 tomato sample collection by the SolCAP genomic platform. 
 

Missing value data point 
Analyzed SNP 

(Number) 

Segregating SNP (No.) 

MAF = 0 MAF<10% MAF>10% 

MV = 0 6427 1410 3102 1915 

MV<10% 1154 - 446 708 

MV>10% 38 n.d. n.d. n.d. 

Total 7619 1410 3548 2623 
 

MV = Missing value. MAF=Minor frequency allele. 
 
 
 

in tomato with the aim of identifying QTLs, both in con-
ventional breeding (Lippman et al., 2007) and combined 
with ‘omics’ platforms (Schauer et al., 2006; Di Matteo et 
al., 2010, 2012). Despite these approaches allowed to 
identify many QTLs controlling very different traits, they 
allowed to explore reduced genetic backgrounds, gene-
rally limited to a few wild species (Fernie et al., 2006). By 
contrast, a wider source of genetic variation can be found 
among and within tomato breeding lines or cultivated 
varieties and ecotypes collected from different geogra-
phical regions. This is particularly true for traits important 
for adaptation to different environments. Most of this 
variation is of a quantitative nature and therefore requires 
specific genetic strategies for detecting QTLs, such as 
association mapping. In this case, large populations have 
to be phenotyped for the trait under study and genotyped 
through molecular markers uniformly distributed all over 
the genome, to perform a wide-genome approach of 
association mapping aimed at identifying new genes 
controlling the trait. 

As an alternative, a candidate-gene approach could 
also be used, where variation at genomic level is speci-
fically investigated for a number of genes already known 
to be involved in determining the phenotypic trait under 
study. In both cases, a high number of markers and/or 
genes already mapped on chromosomes are required. 
For tomato, a high-density map including different mar-
kers and genes is already available (Foolad, 2007; 
Shirasawa et al., 2010a, 2010b). Moreover, recently a 
genomic platform for SNPs detection has been built in the 
framework of the Solanaceae Coordinated Agricultural 
Project (SolCAP) from NIFA/USDA, based on the 
ILLUMINA Infinium Technology. The SolCAP tomato 
panel initially included around 8000 SNPs. These consist 
of Sanger-based eSNPs from genome sequences of two 
processing tomato lines (TA496 and Heinz 1706), be-
sides those identified from ILLUMINA transcriptomic 
sequencing of three fresh-market lines, one processing 
line, one cherry tomato and one accession of the wild 
species S. pimpinellifolium. Therefore, depending on the 
germplasm assayed by the SolCAP genomic platform, 
various levels of polymorphism could be detected. A 
germplasm panel that consists of 489 accessions has 
been so far (September 27th, 2011) genotyped in the 
framework of the SolCAP activities (Sim et al., 2012b). 

This panel includes 141 accessions for processing, 122 
accessions for fresh-market, 88 vintage tomatoes, 103 
accessions belonging to various wild species and 35 
accessions of miscellaneous materials (hybrids, F1 etc). 

Data from this experiment are available for the scientific 
community (http://solcap.msu.edu) in order to compare 
the level of polymorphism detected in this population 
representative of genetic variability available among 
tomatoes with that highlighted in other specific tomato 
collections belonging to specific institutions, as already 
reported by Hamilton et al. (2012). In our laboratory, an 
association mapping approach by candidate gene has 
been undertaken with the aim of identifying among 96 
different genotypes new alleles in genes that could 
increase the level of antioxidants in the fresh and pro-
cessed fruit. In this context, a collection of S. lycopersicum 
accessions is being investigated for fruit quality traits in a 
2-years trial in order to measure physiological and meta-
bolic characters correlated with antioxidant synthesis and 
storage. In the meanwhile, the collection has been geno-
typed using the SolCAP platform for high-throughput 
genomic analysis. The collection under study mainly con-
sists of Italian ecotypes (39 accessions), Latin American 
cultivars (29 accessions), some vintage cultivars and 
modern varieties coming from different geographical re-
gions (that is, from Spain, China, Africa, USA). The varia-
bility exhibited by this collection, as evidenced by SNP 
analysis on the SolCAP genomic platform, resem-bles in 
the percentage that highlighted by the SolCAP experi-
ment on the panel of 489 genotypes. Indeed, most of SNPs 
analyzed (98.2%, Table 1) had a missing value <10%, 
that means they lacked in less than 86 genotypes out of 
96, and this value is similar to the 97.6% observed in the 
larger tomato population of 489 genotypes. The 38 SNPs 
that showed a missing value (MV, Table 1) higher that 
10% were excluded by subsequent analyses. 

Among others, a threshold value of minor frequency 
allele (MAF) of 10% was established. Overall, 1410 SNPs 
out of 7619 (18.5%) did not segregate among the 96 
genotypes, since they only exhibited a single allele in all 
genotypes and no minor alleles were detected (MAF = 0). 
The distribution of all 7619 SNPs on the 12 tomato 
chromosomes was obtained by physically mapping them 
on the macromolecules obtained from the complete 
sequenced tomato genome (version 2.40 available at the
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Table  2. Distribution over the 12 tomato chromosomes of SNP (with MV = 0 and MAF>10%) suitable for association mapping studies. 
 

 Allelic frequency chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 Total 

10%<AF<15% 28 12 43 30 179 13 11 15 9 3 66 7 416 

15%<AF<20% 10 28 39 179 207 27 12 14 8 3 111 19 657 

20%<AF<25% 16 18 20 31 4 3 8 12 36 3 26 2 179 

25%<AF<30% 22 25 33 19 5 9 5 9 20 9 65 8 229 

30%<AF<35% 6 15 17 9 7 10 4 8 13 14 3 5 111 

35%<AF<40% 7 7 6 20 6 2 10 15 10 7 5 8 103 

40%<AF<45% 11 6 28 5 8 2 3 7 12 3 6 11 102 

45%<AF<50% 30 4 9 8 5 2 9 10 9 1 4 14 105 

Total 130 115 195 301 421 68 62 90 117 43 286 74 1902 
 

AF = Allelic frequency; AF = 10% includes segregation ratios = 86:10; AF = 50% includes segregation ratios = 48:48; MV = missing value; MAF = 
minor frequence allele. 
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Figure 2. Distribution of 7619 SNPs on the 12 tomato chromosomes. MAF = Minor frequency allele. 
 
 
 

http://solgenomics.net). The highest number of SNPs map 
on chromosome 11 (Figure 2), with an equal distribution 
between SNPs with MAF>10% and < 10%. A lower num-
ber of SNPs map on chromosomes from 7 to 12, whereas 
this number is higher for chromosomes from 1 to 6. In 
most cases, except than chromosomes 5 and 11, on 
each chromosome SNPs with MAF<10% are prevalent. 
Since many SNPs (3548 corresponding to 46.6%) fall 
within the group with MAF<10%, they should be mostly 
considered rare alleles (present only in one or two geno-
types), and not useful for association mapping analysis. 
This high frequency of rare alleles, estimated considering 

the threshold value of 10%, confirms the one evidenced 
by Labate et al. (2009) who analyzed 30 tomato land-
races by different types of markers. In our collection, the 
2623 SNPs showing MV<10% and MAF>10% were the 
only suitable for the linkage disequilibrium analysis re-
quired to associate gene polymorphism with phenotype 
variation. They were located on the tomato molecular 
map (Figure 3) and it is evident that some chromosomes 
are better covered and that markers mainly cluster in 
specific areas of each chromosome, generally in distal 
ones. This would suggest extending our analysis to a 
greater  number of genotypes and of markers, even though
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Figure 3. Mapping on tomato chromosomes of 2623 SNPs showing MV ≤ 10% and MAF > 10%. MV = missing value; MAF = minor 
allele frequency. 

 
 
 

preliminary information could be derived for realizing a 
genome-wide association mapping approach. 

Indeed, in order to explore the level of variability availa-
ble in our collection, the segregation ratios observed for 
1902 markers with MV = 0 and MAF>10%, distributed for 
each chromosome, are reported in Table 2, excluding 
those that still map on chromosome 0 or are not assigned 
to any chromosome (http://Solgenomics.net). Segrega-
tion ratios were grouped in eight different intervals, ran-
ging from 10% (86:10) to 50% (48:48) of the allelic fre-
quencies. Each interval includes five segregation ratios 
corresponding approximately to 5% of the allelic frequen-
cies. Two intervals (10 to 15% and 15 to 20%) include 
about 50% of the markers (1073 SNPs of 1902) while the 
other ones include about 100 SNPs, except than the 
interval 25 to 30% (229 SNPs). These segregation ratios 
suggest that a higher variability is evident in our tomato 
collection compared to that exhibited by the collection of 
30 accessions analyzed by Labate et al. (2009). More-

over, distribution of the 1902 SNP markers with MAF 
>10% on chromosomes shows that most of all map on 
chromosome 5 (421 SNPs) but also on chromosomes 4 
(301 SNPs) and 11 (286 SNPs) while only 43 SNPs map 
on chromosome 10.  

Consequently, in order to find new genes associated to 
AA variation by a genome-wide AM approach, genotypes 
should be added to our collection with the aim of further 
increasing the genetic variability to be explored. Finally, 
as for the candidate gene AM approach, based on the gene 
annotation actually available for the sequenced tomato 
genome, among the 7720 SNPs represented on the 
SolCAP platform, 28 genes belong to the metabolic path-
ways that lead to AA biosynthesis and accumulation 
(Ioannidi et al., 2009; Zou et al., 2006). 

Among these, 25 segregate in our population of 96 
genotypes, 17 as minor alleles (MAF<10%) whereas the 
other eight show a high level of variability and map on 
chromosomes 3, 4, 5 and 10. These polymorphisms will
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Figure 4. Integration of ‘omics’ data to improve and accelerate the production of new elite lines: combined transcriptomic and genomic 
analyses of different tomato lines will facilitate the identification of candidate genes for the trait of interest and will enhanced tomato 
breeding efficiency. 

 
 
 

be further investigated referring to their potential asso-
ciation with different levels of AA content in tomato fruit. 
In the future, new alleles will also be searched for those 
candidate genes involved in AA level regulation that were 
identified by the transcriptomic approach here described. 
This high integration among ‘omics’ platforms will be 
extremely powerful in detecting genes or alleles up until 
now unexplored for the improvement of the nutritional 
quality of tomato fruit. It could be also successfully 
applied to other traits under the complex control of many 
genes/QTLs, thus allowing to identify genes/hubs and to 
realize breeding by precision approach in tomato (Collard 
and Mackill, 2008). 
 
 

CONCLUSION 
 

Our comprehension of complex molecular networks that 
underlie biological processes has grown dramatically in 
the last few years. In this review, we have highlighted the 
use of some ‘omics’ platforms and tools today available 
for tomato researches to better understand molecular 
mechanisms controlling fruit AA synthesis and storage. 
Our goal was to unveil new genes and their relations 
(transcriptomic-based approach) or new alleles (genomic-
based approach) involved in modulating AA accumulation 
in tomato fruit in order to manipulate them for enhancing 
fruit antioxidant content. Comprehensively, this would 
lead to an approach of genetical genomics, as proposed 
by Kirst and You (2007), which incorporates the transcrip-
tion level information at integration of those from geno-

typing and phenotyping to identify candidate genes for 
complex traits (Figure 4). The application of post-geno-
mics tools should accelerate the selection process and 
the combined use of different ‘omics’ strategies and will 
considerably shorten the time required for the production 
of elite lines.  Indeed, as genome sequencing becomes 
less costly and the development of the most recently 
technique, such as RNAseq (Wang et al., 2009), protein–
DNA binding microarrays (Badis et al., 2009) and 
genome-wide profiling of histone modifications and DNA 
methylation (Lister et al., 2008; Zhang et al., 2009) is 
increasing, the comprehension of complex biological 
phenomena will certainly improve. 
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