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The MP agent, prepared from Bacillus megaterium isolated from the soil near tobacco fields, can 
improve metabolic products, and hence the aroma, of tobacco (Nicotiana tabacum) leaf. To explore 
genes regulating metabolic responses in tobacco leaf, we used microarrays to analyze differentially 
expressed genes in tobacco leaves subjected to various treatments. The expressed genes were 
classified into six groups based on their expression profile. In total, 753 genes were significantly 
differentially expressed between microorganism-treated and water-treated samples. Gene ontology (GO) 
analyses showed that most of these genes were involved in metabolic and cellular processes. Some up-
regulated genes were related to the plant defense response, such as NtMMP1 and NtACRE231. Some 
genes were involved in metabolism responses, such as NtDXS. Semi-quantitative reverse transcriptase 
(RT)-PCR analysis of NtMMP1 and quantitative RT-PCR analysis of NtDXS showed that their expression 
levels increased after MP agent treatment, confirming the microarray results. We evaluated NtMMP1 and 
NtDXS in terms of their associations with Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. Phylogenetic analyses of NtMMP1, NtACRE231, and NtDXS revealed their relationships with 
homologs in other species. These microarray data increase our understanding of the mechanisms by 
which MP agent induces a metabolic response in tobacco leaves 
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INTRODUCTION 
 
Tobacco (Nicotiana tabacum) is an important economic 
plant that has been used as a model for plant metabo-
lomics and green bioreactors (Zhang et al., 2011; Poethig 
and Sussex, 1985; Sang-Wook Park et al., 2007; Tremblay 
et al., 2010). In plants, secondary metabolites are impor-
tant for many processes, and are closely related to plant 
growth and development, and adaptation to the environ-
ment. Phenolamides (PAs) are a diverse group of plant 
secondary metabolites that are found in many dicotyledo-
nous plants, suggesting that they play a role in plant 

growth and development (Martin-Tanguy, 1985; Facchini, 
2002; Edreva, 2007; Grienenberger and Legrand, 2009). 
Jasmonates are important plant hormones that mediate 
plant responses to attack from herbivores and necro-
trophic pathogens (Howe and Jander, 2008; Bari and 
Jones, 2009). In tobacco cell cultures, methyl jasmonate 
(MeJA) strongly induces the expression of genes related 
to alkaloid and phenylpropanoid biosynthetic pathways 
(Goossens et al., 2003). Salicylic acid (SA) is another 
important signaling compound in plant defense response
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(Verberne et al., 2007). In tobacco, products of second-
dary metabolism not only play roles in growth, develop-
ment, and defense, but also give a characteristic aroma. 
The main substances contributing to the aroma are 
phenolic compounds, terpenoids, and alkaloids, which 
are formed via the phenylpropanoid metabolic pathway, 
isoprenoid biosynthetic pathway, and alkaloid biosyn-
thetic pathway, respectively (Wang et al., 2008). 

In tobacco, treatments with microorganisms have been 
applied to alter metabolic products, to modify various 
aspects of plant development and regulation, and to im-
prove processing and storage of the tobacco crop. 
Microorganism treatments were first used by Koller to 
increase the aroma of tobacco (Koller, 1858). Subse-
quently, Tamayo used microorganisms to enhance tobacco 
aroma and reported that Bacillus and Micrococcus 
improved the aroma and decreased the protein content of 
tobacco leaves (Tamayo and Cancho, 1953). Other 
studies suggested that pleasant odor components could 
be produced quickly when tobacco was treated with 
individual or mixed strains of Bacillus subtilis (English et 
al., 1967). Several bacteria, such as Pseudomonas 
convexa (syn. Pseudomonas putida) PC1 (Thacker et al., 
1978), Achromobacter nicotinophagum (Hylin, 1959) and 
Arthrobacter oxydans (Gherna et al., 1965), can degrade 
nicotine. In the genus Arthrobacter, the mechanisms of 
metabolic degradation of nicotine have been charac-
terized in detail (Gherna et al., 1965; Schenk et al., 1998; 
Sachelaru et al., 2005; Ganas et al., 2008). One type of 
bacillus, Bacillus megaterium, has been used to prepare 
an ‘MP agent’, which, when sprayed onto tobacco, resul-
ted in marked increases in the concentrations of the most 
important aroma components and decreases in protein 
content (Wang et al., 2006). However, the mechanism by 
which these changes occur is still unknown. 

Microarray technology has become one of the most 
important approaches to examining thousands of genes 
simultaneously. Microarray analyses reveal the global 
biological functional differences among plants subjected 
to various treatments, which is the key to deciphering the 
networks of genes and their regulators that lead to a wide 
variety of defense responses (Lodha and Basak, 2011). 
This method has been applied extensively to determine 
the gene expression patterns in many different orga-
nisms, including Arabidopsis thaliana, Oryza sativa, Zea 
mays, Glycine max, Solanum lycopersicum and Vitis 
vinifera (Coughlan et al., 2004; Ma et al., 2005; Lund et 
al., 2008; Hayes et al., 2010; Mathias et al., 2010; 
Rohrmann et al., 2011). Arabidopsis thaliana is a power-
ful model system in the plant kingdom, and the relation-
ship between the plant itself and the microorganism has 
been particularly well studied. Recent microarray studies 
have showed that the plant immune response is the 
same among many species at the gene expression level 
(Wang et al., 2010; Weisman et al., 2010; Van Verk et al., 
2011). For example, Arabidopsis BRCA2 and RAD51 
proteins are specifically involved in transcription of defense 

 
 
 
 
genes in plant immune responses (Wang et al., 2010). 
Another two genes, WRKY28 and WRKY46, are both 
rapidly induced by pathogen elicitors and are related to 
systemic acquired resistance (Van Verk et al., 2011; 
Eulgem et al., 2000). In addition, enhanced disease sus-
ceptibility1 (EDS1) which interacts with two related pro-
teins encoded by Phytoalexin Deficient4 (PAD4) and 
Senescence Associated Gene101 (SAG101), is an 
important regulator of plant basal and receptor-triggered 
immunity (Rietz et al., 2011). It has been reported 
previously that Arabidopsis CRT2 is another regulator of 
plant innate immunity that plays a role in regulating plant 
defense against pathogens (Qiu et al., 2011). Microarray 
technology has been used widely in studies on tobacco. 
For example, an Affymetrix tobacco expression micro-
array was generated from a set of more than 40 k 
unigenes and was used to measure gene expression in 
19 different tobacco samples to produce the Tobacco 
Expression Atlas (TobEA) (Edwards et al., 2010). A 
cDNA microarray prepared from 2831 clones was used to 
compare gene expression levels in trichome and leaf 
tissues of tobacco (Cui et al., 2011). In addition, transcript 
levels in leaves and flowers of transgenic tobacco plants 
were analyzed using Agilent microarray techniques 
(Soitamo et al., 2011). 

Previous research has suggested that an MP agent 
prepared from Bacillus megaterium might improve the 
metabolic products of tobacco leaves (Wang et al., 2006). 
Therefore, a systematic understanding of genes in 
Nicotiana tabacum and the mechanisms that underlie the 
improvement of its metabolic products of tobacco leaves 
is of great interest. In this study, we performed microarray 
analysis to identify differentially expressed genes bet-
ween MP agent-sprayed and water-sprayed tobacco leaves. 
 
 
MATERIALS AND METHODS 
 
Microorganism cultivation 
 
MP agent was prepared from Bacillus megaterium according to the 
method of Wang et al. (2006). The Bacillus megaterium strain was 
incubated on beef extract peptone medium at 37°C with shaking at 
180 rpm until the concentration reached 108 CFU/mL. The super-
natant and pellet were harvested after 24 h. 
 
 

Agilent microarray design 
 

The Agilent ‘‘4×44K’’ microarray chip was designed for Nicotiana 
tabacum cDNA sequences in an effort to cover most tobacco genes 
with at least one 60-mer oligonucleotide probe. The probes were 
designed by CapitalBio Corporation (Beijing, China). To investigate 
differences in gene expression between leaves subjected to various 
treatments and the control, we sprayed tobacco leaves with four 
different preparations: supernatant, pellet, and whole bacterial liquid 
of the MP agent, and water. 
 
 

Experimental tobacco leaves and RNA isolation 
 
The flue-cured tobacco variety K326  was  cultivated   in  water  at a 



 

 
 
 
 
stable temperature of 25°C. The tobacco leaves were sprayed with 
supernatant, pellet, whole bacterial liquid of the MP agent, or water 
at 10 days before maturity. The treated leaves were snap-frozen 
and stored in liquid nitrogen for RNA extraction. Total RNA was 
isolated from each sample by TRIZOL reagent (Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer's instructions. Total RNA 
templates were quantified by spectrophotometry and subjected to 
1.0% formaldehyde denatured agarose gel electrophoresis. The 
average yield of RNA in each sample was approximately 0.5 μg/mg. 

 
 
Probes labels and microarray hybridization 

 
The cDNA targets were prepared from 5 μg of total RNA and then 
labeled with a fluorescent dye (Cy5 and Cy3-dCTP, GE Healthcare 
Cat. No. PA 55021/ PA 53021). The samples were divided into four 
groups. In the first group, cDNA from tobacco leaves sprayed with 
supernatant was labeled with cy5 and cDNA from tobacco leaves 
sprayed with water (control) was labeled with cy3. In the second 
group, the cDNA from tobacco leaves sprayed with the pellet and 
water were labeled with cy5 and cy3, respectively. The labeling 
cDNA of the third group was fluorescence exchange according to 
the second group. In the fourth group, the cDNA from tobacco 
leaves sprayed with bacterial liquid of the MP agent and water were 
labeled with cy5 and cy3, respectively. The labeled cDNAs were 
dissolved in 80 μL of hybridization solution containing 3×SSC, 0.2% 
SDS, 5×Denhardt's solution and 25% formamide, then hybridized at 
42°C overnight. After hybridization, slides were washed with 
washing solution (0.2% SDS, 2×SSC and 2×SSC, respectively) at 
42°C for 5 min. Chips were scanned with feature extraction soft-
ware and images were then analyzed by GeneSpring software 
(both from Agilent Technologies Co., Ltd.).  

 
 
Bioinformatics 

 
Microarray analysis 

 
In this research, results were filtered according to the marked flag of 
feature extraction software. Points marked as “detected” were 
defined as “active genes”. Using the above fluorescent labeling 
method, we set “sprayed with MP agent”: “sprayed with water” (M: 
W) as the ratio. Then, we averaged the two ratios of the second 
and third groups, and converted the obtained ratios by a log 
function to generate data for analyses. When the M:W ratio showed 
a difference of more than 2-fold, the genes were considered to be 
differentially expressed (that is -regulated; 
M:W<0.5, genes were down-regulated). 

When the analysis data was obtained, whole hierarchical 
clustering of the average signal intensities was performed using the 
program Cluster (Cluster 3.0) and the results for all ratios were 
visualized using the program TreeView. Then, genes were syste-
matically annotated using the following bioinformatics tools: 
BLASTX was used to search for homologs and Gene Ontology was 
used for functional classifications (Ashburner et al., 2000). Gene 
sequences were BLASTXed to the non-redundant (nr) database in 
GenBank. GO classifications were performed for these species 
using the BGI-WEGO (Web Gene Ontology Annotation Plotting) 
web service (http://wego.genomics.org.cn).  

 
Phylogenetic analyses 

 
We used MEGA version 4 software for phylogenetic analyses 
(Tamura et al., 2007), and ClustalW for multiple alignments of 
protein sequences (Thompson et al., 1994). All protein sequences 
used for phylogenetic analyses were downloaded from NCBI. 
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Pathway analyses 
 
NtMMP1 and NtDXS involved in the plant defense and MEP 
metabolism pathway were then clarified and graphically displayed 
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway method (http://www.genome.jp/kegg/). 
 
 

Semi-quantitative RT-PCR and Quantitative RT-PCR 
 
To investigate the expression level of the NtMMP1 and NtDXS 
genes, we used RT-PCR and quantitative real-time PCR, 
respectively. RT-PCR was performed for 25 cycles. The primers 
designed for NtMMP1 (GenBank accession no. DQ508374.1) was 
5’-GAACGGTCTGACGGATAA-3’ (sense) and 5’- 
GCTAAACTCGGGAACATAA-3’ (anti-sense).  

Quantitative real-time PCR was used to confirm the expression 
level and microarray data. The primer sequences of NtDXS 
(GenBank accession no. FN429979.1) was 5’-
TATTGGTCCTGTGGATGGT-3’ (sense) and 5’- 
AAACTTGGCTACTCCGTGA-3’ (anti-sense). The real-time PCR 
was carried out using the SYBR Premix Ex Taq kit (TaKaRa, 
Dalian, China) and each reaction was prepared in 25 μL containing 
2 μL complementary DNA, SYBR Premix Ex Taq 12.5 μL, 10 
mmol/L primers 0.5 μL (sense and anti-sense). The PCR was set 
with the following steps: started with 10 s template denaturation at 
95°C, followed by 40 cycles of denaturation at 95°C for 5 s, and 
then combined primer annealing/elongation at 60°C for 31 s 
according to the manufacturer’s instructions. Then the results were 
read by ABI Prism 7000 Sequence Detection System (Applied 
Biosystems, Foster City, CA, US). The real-time PCR was 
performed in duplicate for at least three biological replicates. The 
amplification of NtGAPDH cDNA sequence was taken as the inner 
control. 
 
 

RESULTS 
 

Differences in gene expression among leaf samples 
from four different treatments  
 

Using the Agilent microarray, we analyzed the gene 
expression profiles of tobacco leaves subjected to four 
different spray treatments: supernatant, pellet, and whole 
bacterial liquid of the MP agent, and water (control). 
According to “feature extract” analysis software, the 
points marked as “detected” were defined as “active 
genes”. As a result, we detected expressions of 9,565 
genes. Next, we calculated gene-expression ratios (log-
ratios) of “sprayed with MP agent”:“sprayed with water” 
(M:W). The genes were clustered into six groups 
according to their expressions. Group 1 contained all of 
the up-regulated genes (2867 in total); group 2 contained 
all of the down-regulated genes (2770 in total); group 3 
contained 996 genes that were up-regulated in leaves 
sprayed with supernatant. 

Some of these genes were up-regulated in leaves 
sprayed with the pellet, and were down-regulated in 
leaves sprayed with the whole bacterial liquid of the MP 
agent. Group 4 contained 701 genes that were down-
regulated in leaves sprayed with supernatant. Some of 
these genes were up-regulated in leaves sprayed with 
the pellet and with whole bacterial liquid. Group 5
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Figure 1. Hierarchical cluster analysis of genes expressed in 
response to MP agent- and water-treatments. Gene expression 
levels are represented by red and green boxes (denoting those 
with up-regulated and down-regulated expressions, 
respectively). Horizontal lines represent differential expression 
of genes of interest. Vertical rows represent different treatments 
of tobacco leaves (A, B, and C). Ratios represent “Sprayed with 
microorganism”: “sprayed with water” (M: W). A: Sprayed with 
supernatant of MP agent: sprayed with water; B: sprayed with 
pellet of MP agent: sprayed with water; C: sprayed with whole 
bacterial liquid of MP agent: sprayed with water. Genes were 
classified into six groups based on their expression profile: 
Groups 1 and 2 included all up-regulated and down-regulated 
genes, respectively. Group 3 included genes that were up-
regulated in leaves sprayed with supernatant of MP agent. 
Group 4 included genes that were down-regulated in leaves 
sprayed with supernatant and up-regulated in those sprayed 
with pellet and bacteria liquid of MP agent. Group 5 included 
genes that were significantly down-regulated after spraying with 
pellet and bacteria liquid of MP agent, except for some genes 
that were up-regulated after spraying with supernatant. Group 6 
included genes that were up-regulated only in response to 
spraying with whole bacterial liquid of MP agent. 

 
 
 

contained 1579 genes that were significantly down-
regulated; however, some of these were up-regulated after 
spraying with supernatant. The 652 genes in Group 6 were 
up-regulated only after spraying with whole bacterial liquid 
of the MP agent (Figure 1). Among the six groups of genes, 
753 genes were identified to differentially express. When 
expressions were compared between leaves sprayed 
with MP agent and those sprayed with water, there were 
368 up-regulated genes 385 down-regulated genes. 
 
 

Gene ontology annotations and analysis 
 

The 753 differentially expressed genes were subjected to 
gene  ontology  (GO)  analysis, and GO annotations were 

obtained for 192 genes. We also analyzed these genes in 
terms of their participation in biological processes. The 
results show that most of these genes were involved in 
metabolic process (118 genes) and cellular process (100 
genes), accounting for 61.5 and 52% of total annotated 
genes, respectively. There was only one gene classified 
into each of the cellular component organization, 

multicellular organismal process, and cellular component 
biogenesis categories (Figure 2). Among the 192 annotated 
genes, there were many more up-regulated genes than 
down-regulated genes. The up-regulated genes were 
involved in processes such as reproduction, reproductive 
process, multicellular organism process, cellular 
component biogenesis, and multi-organism process. One 
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Figure 2. Gene ontology categories of the differentially expressed genes. Numbers of up (+) or down. 
 
 
 

down-regulated gene was involved in cellular component 
organization. The analysis suggested that the genes with 
unknown or other annotated functions may be involved in 
biological processes. 
 
 
Differentially expressed genes in response to MP 
agent treatment 
 
Based on the microarray data, some differentially 
expressed genes were present in all six groups. 
According to their functional annotation, some of the up-
regulated expression genes were closely related to plant 
defense response, hormone metabolism, cell cycle regula-
tion and enzyme regulation. For instance, expres-sions of 
NtMMP1, NtACRE231, elicitor inducible LRR protein 

(EILP), and five WRKY transcription factors, which are 
involved in the plant defense response, were up-regulated 
after MP agent treatment (Yamamoto et al., 2004; 

Schiermeyer et al., 2009; Durrant et al., 2000; Takemoto et 
al., 2000; Rowland et al., 2005; Park et al., 2006). Some 
up-regulated genes were closely related to metabolic 
regulation (example, genes encoding P450 mono-
oxygenase (Simon-Mateo et al., 2006) and pyruvate 
kinase (Grodzinski et al., 1999) and to cell cycle regulation 
(example, genes encoding cyclin-dependent kinase B1-2 
(Sorrell et al., 2001), ribonucleotide reductase (Chaboute 
et al., 1998), and cyclin A-like protein (Reichheld et al., 
1996). At the same time, 385 genes were down-regulated 
after MP agent treatment. Some down-regulated genes 
were associated with metabolic regulation, such as genes 

encoding an ATP-binding cassette (ABC) transporter 

(Yazaki, 2005, 2006) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (Munoz-Bertomeu et al., 2010). 
Some down-regulated genes were related to cell cycle 
regulation, for instance, the gene encoding the ribosomal 
protein (Turkina et al., 2011), cytochrome C oxidase 
(Yamashita and Voth, 2011). Other down-regulated 
genes were involved in plant defense responses (for 

example, pectinesterase inhibitor, which plays a role in 
the plant defense mechanism via cell wall fortification 
(Hong et al., 2010; Jolie et al., 2010), and polyphenol 
oxidase, a multifunctional enzyme involved in the defense 
response  
(Thipyapong et al., 2004; Poiatti et al., 2009). Further 
analysis of these differentially expressed genes will provide 
new insights into the molecular mechanisms underlying 
different responses among tobacco leaves subjected to 
various treatments. 
 
 
Analyses of selected genes associated with plant 
defense responses 
 
There are a number of potential genes related to growth 
and anti-disease responses in plants. When plants 
perceive some kind of pathogenic stimulation, 
expressions of some genes are induced leading to 
various reactions including resistance or growth 
stimulation. Previous studies indicated that after spraying 
with a microorganism MP agent, the levels of some 
proteins  and  amino  acids  decreased in tobacco leaves,  
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while the main aroma components significantly increased 
(Wang et al., 2006). According to our microarray results, 
spraying with a microorganism MP agent resulted in up-
regulated expressions of genes involved in the plant 
defense response such as NtMMP1, NtACRE231, EILP, 
and WRKY transcription factors, but down-regulated 
expressions of pectinesterase inhibitor and polyphenol 
oxidase (Hong et al., 2010; Jolie et al., 2010; Thipyapong 
et al., 2004; Poiatti et al., 2009; Durrant et al., 2000; 
Takemoto et al., 2000; Eulgem and Somssich, 2007; 
Schiermeyer et al., 2009). 
 
 
Matrix metalloprotease 1 
 
Plant matrix metalloproteinases (MMPs) are conserved 
proteolytic enzymes that are widely distributed in the 
plant kingdom. MMPs play crucial roles in many aspects 
of pathogen defense (Liu et al., 2001), senescence 
(Delorme et al., 2000) and growth, and development 
(Golldack et al., 2002). In Nicotiana tabacum, tobacco 
MMP1 (NtMMP1) participate in the pathogen defense 
(Schiermeyer et al., 2009). In our research, we analyzed 
the evolution of MMPs or an unknown protein that 
contained a characteristic MMP domain in 15 plant 
species belonging to 10 families. We constructed a 
phylogenetic tree to examine the relationships of these 
proteins (Figure 3). The result indicates that NtMMP1 
(red, marked with an asterisk) clustered with MMP from 
Nicotiana benthamiana. This group clustered with a zinc 
metalloproteinase of A. thaliana (Cruciferae), a matrixin 
family protein of Brassica oleracea (Cruciferae), a matrix 
metalloproteinase of A. thaliana, and a predicted GPI-
anchored protein of A. thaliana. We analyzed whether 
NtMMP1 exhibited different transcriptional responses 
after treatment with the MP agent. Semi-quantitative RT-
PCR showed that the highest transcript levels of NtMMP1 
were observed after spraying with the pellet of the MP 
agent, followed by the bacterial liquid of the MP agent,  
then the MP agent supernatant. The lowest transcript 
levels were observed after spraying with the water control 
(Figure 4). To determine whether the function of NtMMP1 
is similar to that of MMP1, we carried out a pathway 
analysis. The results indicate that NtMMP1 participates in 
the Toll-like receptor signaling pathway (Supplementary 
Figure S1). 
 
Avr9/Cf-9 rapidly elicited protein 231 
 
As mentioned above, plant cells induce an array of 
defense responses upon perceiving pathogens. 
Previously, Avr9/Cf-9 rapidly elicited (ACRE) genes from 
tobacco were identified to encode putative signaling 
components and may play important roles in the initial 
development of the defense response (Rowland et al., 
2005; Durrant et al., 2000). In our research, we found that 
the   expression   level   of   Nicotiana tabacum ACRE231  

 
 
 
 
(NtACRE231) was up-regulated in response to MP agent 
treatment. Subsequently, we analyzed the evolution of 
NtACRE231 and its homologs in 16 plant species. We 
found that NtACRE231 clustered with the 
glycosyltransferase of Panax notoginseng 
(Supplementary Figure S2). 
 
 
Analysis of metabolism-related genes in tobacco 
 
Plant secondary metabolites play important roles in plant 
growth and development, and in adaptation to the 
environment. As a model plant, tobacco is well 
characterized in terms of its metabolic responses (Martin-
Tanguy, 1985; Facchini, 2002; Edreva, 2007; Goossens 
et al., 2003; Verberne et al., 2007). In our research, we 
found that some differentially expressed genes between 
MP agent-treated and water-treated tobacco were closely 
related to metabolic responses. These included 1-deoxy-
D-xylulose-5-phosphate synthase (DXS) (Walter et al., 
2000, 2002; Estevez et al., 2001), and genes encoding 
P450 monooxygenase (Simon-Mateo et al., 2006), 

pyruvate kinase (Grodzinski et al., 1999), an ABC 
transporter (Yazaki, 2005, 2006), and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (Munoz-Bertomeu 
et al., 2010). 
 
 
1-Deoxy-D-xylulose-5-phosphate synthase 
 
Isoprenoids are a large and highly diverse family of 
natural products involved in primary and secondary 
metabolism (Buckingham, 1998). The key pathway for 
production of isoprenoids is the methylerythritol 
phosphate (MEP) pathway (Walter et al., 2002), in which 
1-deoxy-D-xylulose-5-phosphate synthase (DXS) plays a 
central role (Estevez et al., 2001; Walter et al., 2000, 
2002). We found that the expression level of the N. 
tabacum DXS gene (NtDXS) increased after spraying 
with MP agent. Considering that DXS is an important 
player in the MEP pathway, we further examined NtDXS 
to clarify its role in the regulation of plastidic isoprenoid 
biosynthesis (Supplementary Figure S3). Quantitative 
PCR analyses showed that the highest level of NtDXS 
expression was after spraying with the bacterial pellet of 
the MP agent, followed by whole bacterial liquid, then the 
supernatant. The lowest expression was observed after 
spraying with water (Figure 5). A phylogenetic tree of the 
gene and its homologs showed that NtDXS clustered with 
the DXS of Capsicum annuum (CaDXS) (Supplementary 
Figure S4). 
 
 
DISCUSSION 
 
Tobacco is a dicot, and is a member of the Solanaceae. 
Secondary   metabolic   substances produced by tobacco 
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Figure 3. Molecular phylogeny of matrix metalloproteinases (MMP). Phylogram was constructed by the Neighbor-Joining method 
using MEGA4 software and reflects the relationship between MMP and its homologs in 15 plant species. Different colors show 
different plant families: Solanaeae shown in red (tobacco); Brassicaceae shown in green (Arabidopsis thaliana, Brassica oleracea, 
and Arabidopsis lyrata); Poaceae shown in purple (Oryza sativa, Zea mays, Sorghum bicolor, and Hordeum vulgare); Salicaceae 
shown in light green (Populus trichocarpa); Vitaceae shown in brilliant blue (Vitis vinifera); Euphorbiaceae shown in orange (Ricinus 
communis); Pinaceae shown in light purple (Pinus taeda); Selaginellaceae shown in black (Selaginella moellendorffii); 
Leguminaceae shown in blue (Glycine max); and Cucurbitaceae shown in pink (Cucumis sativus). Asterisk represents matrix 
metalloprotease 1 of Nicotiana tabacum. See Materials and Methods for details of the phylogenetic analysis. 

 
 
 

play roles in growth, development, defense responses, 
and in producing an aroma (Onkokesung et al., 2011; 
Verberne et al., 2007; Lackman et al., 2011; Liu and 
Thornburg, 2011; Naoumkina et al., 2008). Previously, it 
was reported that an MP agent produced by Bacillus 
megaterium, which was screened from soil in tobacco 
fields, was useful for increasing the aroma of tobacco. 
biosynthesis (Supplementary Figure S3). Quantitative 
PCR analyses showed that the highest level of NtDXS 

The MP agent was applied to upper leaves in fields, while 
water was applied to controls, and then the normal 
processing and maturing steps were conducted. The 
leaves treated with MP agent showed increased contents 
of aroma components and decreased total amino acids 
and protein contents (Wang et al., 2006). In this study, 
we developed and validated a new 4×44k Agilent 
microarray, and used it to analyze gene expression after 
treatment  with  MP  agent.  Our  results reveal that many  
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Figure 4. Expression profile of NtMMP1 in tobacco leaves 
subjected to different treatments. Lane 1, tobacco leaves treated 
with supernatant of MP agent; lane 2, tobacco leaves treated with 
pellet of MP agent; lane 3, tobacco leaves treated with whole 
bacterial liquid of MP agent; lane 4, tobacco leaves treated with 
water. NtGAPDH mRNA was the internal control. 

 
 
 

 
 

Figure 5. NtDXS expression was detected using real-time RT-PCR analysis after treatment with 
MP agent and water. 

 
 
 

genes are differentially expressed between MP agent-
treated and water-treated hydroponic seedlings of 
tobacco. These genes can be classed into six main 
groups (Figure 1). Our study reveals 753 differentially 
expressed genes, of which 368 were up-regulated and 
385 were down-regulated. Functional analyses using 
Gene Ontology demonstrated that they are mainly 
involved in metabolic and cellular processes (Figure 2). 
We annotated these genes, and found that several genes 
have been reported previously to participate in plant 
defense responses. These include genes such as MMP1 
(Schiermeyer, Hartenstein et al., 2009), ACRE231 
(Durrant et al., 2000; Rowland et al., 2005), EILP 
(Takemoto et al., 2000), and those encoding WRKY 
transcription factors (Yamamoto et al., 2004; Park et al., 
2006), a pectinesterase inhibitor (Hong et al., 2010; Jolie 
et al., 2010) and polyphenol oxidase (Thipyapong et al., 
2004; Poiatti et al., 2009). 

In the course of growth and development, plants face a 
variety of pathogens, including bacteria, fungi, viruses, 
and oomycetes. Plants have developed a variety of defense 
mechanisms against their attackers. However, disease 
resistance is often governed by a gene-for-gene interact-
tions (Dangl and Jones, 2001). Gene-for-gene relation-
ships, which are codetermined by a resistance gene (R) 
and an avirulence gene (Avr), are an important part of 
plant resistance. The interaction between R and Avr often 
leads to the hypersensitive response (HR) (Flor, 1971; 
Keen, 1990). Most R genes have conserved domains, 
such as leucine rich repeat (LRR), WRKY, and nucleotide-
binding site (NBS) domains. Interestingly, we found EILP 
and five WRKY transcription factors containing LRR and 

WRKY domains, respectively, showing up-regulated 
expressions after leaves were sprayed with MP agent. 
Previous research showed that the product of EILP and 
WRKY  transcription  factors  may  play  a  central  role in  



 

 
 
 
 
plant immune responses (Bhattarai et al., 2010; Takemoto 
et al., 2000). Therefore, we can speculate that EILP and 
WRKY transcription factors play a similar role to that of 
the R gene after treatment with MP agent; that is, they 
recognize the complementary pathogen product of Avr, 
produce a resistance signal to activate a series of signal 
transduction processes, and activate expressions of 

defense genes leading to resistance. 
The MMP1 gene is involved in a variety of physiological 

processes including senescence, pathogen defense, and 
growth and development (Delorme et al., 2000; Liu et al., 
2001; Golldack et al., 2002). Our microarray data provide 
valuable insights into the expression level of NtMMP1 
genes after treatment with MP agent and water. Subse-
quently, semi-quantitative RT-PCR analysis validated that 
transcript levels of NtMMP1 were significantly increased 
in response to MP agent treatment, confirming the results 
from the microarray analysis (Figure 4). Previous research 
showed that NtMMP1 plays a role in pathogen defense 
(Schiermeyer et al., 2009). We conducted pathway analysis 
for this gene and found that it is involved in the Toll-like 
receptor signaling pathway (Supplementary Figure S1). 
Plant matrix metalloproteinases (MMP) are collagenases, 
which are conserved proteolytic enzymes with the ability 
to degrade proteoglycan and accelerate degradation of the 
extracellular matrix (ECM) (Nagase and Woessner, 1999). 
NtMMP1 can degrade the pharmaceutical protein DSPAa1 
(Mandal et al., 2010). In our research, we speculate that 
the increased expression level of NtMMP1 might result in 
not only enhanced resistance to pathogens, but also 
increased degradation of some proteins in tobacco 
leaves. This result reflects the underlying function of 
NtMMP1 in the metabolic pathway of tobacco. 

Most of the aroma components of tobacco are produced 
via secondary metabolism. Previous studies indicated 
that a microorganism MP agent could significantly increase 
main aroma components (Wang et al., 2006). In our 

research, we found that some of the differentially expressed 
genes were closely related to metabolic responses. We 
focused on analyzing the expression level of the Nicotiana 
tabacum DXS gene (NtDXS). Previous research has shown 
that DXS is a limiting enzyme for plastidic isoprenoid 

biosynthesis in plants (Estevez et al., 2001; Walter et al., 
2002). Isoprenoids participate in a variety of biological 
functions such as plant defense, photosynthesis, respire-
tion, growth, cell cycle control, and adaptation to environ-
mental conditions (Estevez et al., 2001). In tobacco, 
isoprenoids also affect the formation of aroma (Cui et al., 
2011). However, DXS, which participates in isoprenoid 
biosynthesis, is also a candidate gene for the trait of high 
levels of monoterpenols, which is associated with a 

distinctive aroma related to the composition of volatiles 
(Battilana et al., 2011). In our research, we found that the 
expression levels of NtDXS were increased by MP agent 
treatment, consistent with our microarray data (Figure 5). 
DXS is an important enzyme in regulation of the MEP path-
way  in  plants  (Estevez  et  al., 2001; Walter et al., 2000,  
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2002). Our pathway analysis of NtDXS yielded similar 
results to those for other DXSs, which are involved in the 
regulation of plastidic isoprenoid biosynthesis 

(Supplementary Figure S3). Our results suggest that 
NtDXS has a similar function to those of NtMMP1, 

NtACRE231, EILP, and WRKY transcription factors, all of 
which show increased expression levels after MP agent 
treatment, leading to increased resistance of tobacco and 
improved aroma characteristics of tobacco leaves. These 
results provide valuable information about NtDXS and 
allow us to clarify its possible function. 

In summary, this study summarizes microarray data for 
tobacco leaves treated with MP agent and water. 
Analyses of gene expression showed that many genes 
were differentially expressed, and some of them were 
involved in plant defense responses. Further analyses of 
the genes identified in the microarray will increase our 
understanding of the role of MP agent in the growth and 
metabolism of N. tabacum. 
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Supplementary Figure S1. Toll-like receptor signaling pathway which MMP1 participate in. TLR2/4, Toll-like 
receptor 2/4; AP1, activator protein 1. 

 
 
 

 
 

Supplementary Figure S2. Phylogenetic tree of the Nicotiana tabacum ACRE231 and homologous proteins. Phylogram 
was constructed by the Neighbor-joining method using MEGA4 software and shows relationships among 16 amino acid 
sequences of ACRE231-like proteins. Support for each branch, as determined from 1,000 bootstrap samples, is indicated 
by value at each node (in percent). Only bootstrap values above 50% are shown. Scale bar indicates evolutionary distance 
estimated by amino acid substitutions per position. 
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Supplementary Figure S3. Isoprenoid biosynthetic pathways in Nicotiana tabacum. Diagramatic 
representation of the plastidic MEP pathways is shown. NtDXS, 1-deoxy-d-xylulose 5-phosphate 
reductoisomerase in Nicotiana tabacum. DXR, 1-deoxy-d-xylulose 5-phosphate reductoisomerase; CMS, 4-
diphosphocytidyl-2C-methyl-D-erythritol synthase; CMK, 4-diphosphocytidyl-2C- methyl-D-erythritol kinase; 
MCS, 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase;  HDS, hydroxymethylbutenyl diphosphate 
synthase. 
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Supplementary Figure S4. Phylogenetic tree of Nicotiana tabacum DXS and its homologs. Phylogram was constructed 
using the Neighbor-joining method with MEGA4 software and reflects relationships among 25 amino acid sequences of DXS-
like proteins. Support for each branch, as determined from 1,000 bootstrap samples, is indicated by value at each node (in 
percent). Only bootstrap values above 50% are shown. Scale bar indicates evolutionary distance estimated by amino acid 
substitutions per position. 

 
 
 


