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Genetic linkage analysis involves estimating parameters in a genetic model in which a genetic trait is 
regressed on some factors such as polygenic values and environmental effects. Since only phenotypes 
are observed, hypothesis testing in such cases needs calculation of likelihood function in which one 
needs to consider all compatible configurations of genotypes. The number of these configurations 
increases as the size of a pedigree and the number of loci involved increase, Monte Carlo methods play 
an important role. The existing theory assumes an asymptotic normality for score statistics which is 
violated on boundary values which is the case in genetic linkage analysis. In this paper, a Markov Chain 
Monte Carlo approach is proposed to overcome this problem. 
 
Key words: Gibbs sampling, pedigree, linkage analysis, likelihood. 

 
 
INTRODUCTION 
 
Geman and Geman (1984) proposed an iterative pro-
cedure called Gibbs sampler, for drawing multiple 
dependent realizations from a distribution known only to 
be proportionally constant. Sheehan et al. (1989) show 
that Markov chain Gibbs sampler produces a chain which 
is irreducible. Some difficulties are encountered when 
using Gibbs sampler as the method of resampling. These 
are: Slow convergence, the problem of multimodality of 
the distribution from which we are resampling and the 
problem of setting initial values. These problems have 
been addressed by Sheehan and Thomas (1993) and 
Jandaghi (1994). The Gibbs sampling method has been 
used for statistical inference in other biological resear-
ches during the past decade (Rezhetsky and Morozov, 
2001). Since hypothesis testing is mainly required in 
genetic models, most researchers use the asymptotic 
normality property. In linkage analysis, testing hypothesis 
on recombination fraction usually involves testing either 

0 : 0H θ =  or 0 : 0.5H θ = .  

Asymptotic theory states that under some regularity 
conditions on the likelihood function, the unrestricted 
maximum likelihood estimate is asymptotically normal 
(Cox and Hinkley, 1974). One of these regularity conditions 
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ditions is that 0θ  is in the interior of the parameter space 

Ω . Since the usual hypothesis test in linkage is either 

0θ =  or 0.5θ = , the regularity condition is violated, 

and we need to take account of the truncation of the 
limiting normal distribution (Cox and Hinkley, 1974). As a 
result, when dealing with the restricted maximum like-

lihood estimate and 0θ  is on the boundary, which is the 

case in linkage analysis, the likelihood ratio and the score 
statistic are not guaranteed to be asymptotically chi-
squared distributed. In this paper, a two level Gibbs 
sampling is proposed to find the true shape of their 
distributions. 
 
 

TERMINOLOGY AND NOTATION 
 

To consider a pedigree with n  individuals, let 

( )1 2,, ...,
n

g g g g=  be the vector of genotypes of the 

individuals in the pedigree, where 
i

g  is the genotype of 

the i -th individual. Let 
i

g−  
= 

( )1 1 1| ,..., , ,...,
i i i n

g g g g g− + , let ( )1 2, ,...,
n

x x x x=  be 

the observed data, where 
i

x  is the observed phenotype 

of   the  i -th   individual,   ( )|P x g
  

 is   the   penetrance  



 
 
 
 
probability, that is, the probability that an individual with 

genotype g  has phenotype x , and ( )| ,
k f m

P g g g  is 

the transmission probability, that is, the probability that an 

individual has genotype 
k

g
 
given the parental genotypes 

f
g  and 

m
g . Let 

j
x  and 

j
g be the phenotype and the 

genotype of individual j
,
 respectively. Let , ,

j j jf m s
g g g  

and 
jls

g be the phenotype of father, mother, spouse and 

the offspring of individual j . 

 
 
CALCULATION OF LIKELIHOOD 
 
In any genetic model, the trait of interest is modeled 
against some genotypic values or parameters and by 
using statistical methods, these model parameters are 
estimated. When performing pedigree analysis, the basic 
statistical tool used is the likelihood function. We can use 
the conditional independence imposed by Mendel’s laws 

to express the likelihood function L  as a product of 

transmission probabilities ( )| ,
k f m

P g g g , penetrance 

probabilities ( )|
i i

P x g  and population gene 

frequencies ( )P g , and sum over all genotype 

possibilities for all pedigree members to calculate L  as 
outlined below. Using the terminology and notations 
presented in the previous section, the likelihood for the 
pedigree is: 
 

( ) ( ) ( ) ( ), | ,
feasible genes

L P x P x g P gθ θ θ= = ∑  

 
Where,  
 

( ) ( )
1

| |
n

i i

j

P x g P x g
=

= ∏   

and   
 

( ) ( ) ( ), | ,
j jj f m j

j F j F

P g P g g g P gθθ
∉ ∈

= ∏ ∏   

 
or equivalently,  
 

( ) ( ) ( ) ( ) ( )1 1 1| | . ... | | .
n n n

L P x g P g P x g P gθ θθ =∑ ∑  

 
 
CALCULATION OF THE SCORE AND LIKELIHOOD 
RATIO STATISTICS 
 
One of the statistics often used for testing the null hypo-
thesis of no linkage is the score test. To  do  such  a  test,  
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we need to estimate the first and second derivatives of 
the likelihood. Knowing that: 
 

( ) ( )
( )
( )

( )0

0

,
, ,

,

P x
L P x P x

P x

θ
θ θ θ

θ
= =∑ ∑  

 
and its approximation 
 

 
 
 
 

 

Where, 
ig  is the i-th Gibbs sample, we can estimate the 

first derivative of the logarithm of the likelihood function 
  

( )( )
( )
( )

'

log
Ld

S L
d L

θ
θ

θ θ
= =  

 
by 
 

( )
( )
( )
( )

'

1 0

1 0

,

,

,

,

i
N

i
i

i
N

i
i

P g

P g
S

P g

P g

θ

θ

θ

θ

=

=

≈

∑

∑
                                                        (1) 

 

Since ( ) ( )
1

, , ,
n

j j

j

P g P gθ θ
=

= ∏  its derivative will be 

( ) ( )
( )
( )

'

1

,
, ,

,

n
j j

j j j

P gd
P g P g

d P g

θ
θ θ

θ θ=

= ∑                           (2) 

 
Substituting (2) in (1), we will have 
 

( )
( )

( )
( )

( )
( )

'

1 0 0

1 0

, ,

, ,

,

,

i iN
j j

i i
i j j

iN

i
i

P g P g

P g P g
S

P g

P g

θ θ

θ θ

θ

θ

=

=

 
 
  =

∑ ∑

∑
                             (3) 

 
The estimate of the variance of the score statistic is 
calculated by taking the second derivative of the 

logarithm of the likelihood with respect toθ , such that 

 

( )( )
( )
( )

'2

2
log

Ld d
L

d d L

θ
θ

θ θ θ

 
=  

 
 

( )
( )
( )1 0

,1

,

i
N

i
i

P g
L

N P g

θ
θ

θ=

≈ ∑
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which is equal to  
 

( )
( )

( )
( )

2
'' '

L L

L L

θ θ

θ θ

 
−  
 

                                                        (4) 

 
Where  
 

( )
( )

( )

''

''

1 0

,1

,

i
N

i
i

P g
L

N P g

θ
θ

θ=

≈ ∑  

 
Since   
 

( ) ( )'' '
, , ,

d
P g P g

d
θ θ

θ
=  

 

( ) ( )
( )
( )

( )
( )

( )
( )

2 2
' '' '

''

1 1

, , ,
, , .

, ,,

in n
j j j j j

i
j j j j j jj

P g P g P g
P g P g

P g P gP g

θ θ θ
θ θ

θ θθ= =

     
  = + −   
           

∑ ∑                                    

(5) 
 
So the variance of the score statistic is estimated by: 
 

( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2
' '' '

1 1 10
2

1 0

, , , ,

, , , ,
ˆvar .

,

,

i i i iN n n
j j j j j j

i i i i
i j jj j j j j j

iN

i
i

P g P g P g P g

P g P g P g P g

S S
P g

P g

θ θ θ θ

θ θ θ θ

θ

θ

= = =

=

       + −              = −

∑ ∑ ∑

∑

)       

(6) 
 
Therefore, Equations (3) and (6) can be used for 
estimation of the score statistic and its variance and 
testing of hypothesis is straightforward. The derivatives of 
the likelihood function are easily computed, because the 

probabilities ( ),
j j

P g θ  involve the terms θ  

and/or ( )1 θ− . We can assign an array corresponding to 

( ),
j j

P g θ  and every time a probability is calculated, we 

can specify the term corresponding to it and thus the 
derivatives of the likelihood function are analytically 
calculated. 

Similar to the calculation of the score statistic, we can 
use Monte Carlo simulation to calculate the likelihood 
ratio: 
  

( )
( )
( )0

0

, .
L

L

θ
θ θ

θ
=l  

 
 
 
 
Using the notation of Guo and Thompson (1991), the 
likelihood ratio can be written as 
 

( )
( ) ( )

( ) ( )
( )

0

0 0

0

|
, |

| |g

f y g P g
P g y

f y g P g y

θ θ
θ

θ θ

θ θ =∑l             (7) 

 
Where, g  is the genotype, y

 
is the phenotype of the 

pedigree and θ  is the parameter. Since by definition 
  

( ) ( )
00L f yθθ =  

 
Equation (7) can be rewritten as: 
  

( )
( ) ( )
( ) ( )

( )
0

0 0

0

|
, |

|g

f y g P g
P g y

f y g P g

θ θ
θ

θ θ

θ θ =∑l

                 

(8) 

 
which can be estimated by the average 
 

( )
( ) ( )
( ) ( )

0 0

0

|1
,

|

i i

i i
g

P g f y g

N P g f y g

θ θ

θ θ

θ θ ∑l �                            (9) 

 

Therefore, based on N  Gibbs realization of genotypes 

for the pedigree, we can use Equation (9) to calculate the 
estimate of the likelihood ratio. 

The procedure for calculating the distribution needs two 
levels of Gibbs sampling. In other words, different 
quantiles of the distribution correspond to different sets of 
phenotypes and to generate different sets of phenotypes, 
one needs one step of Gibbs sampling which we refer to 
as Outer-Gibbs sampling. After generating a collection of 
different sets of phenotypes, the Gibbs sampler is run to 
compute the score statistic and its variance for each set 
of phenotypes. We call this step Inner-Gibbs sampling. 

Therefore, we can first generate 
O

n outer-Gibbs samples 

and then for each one of 
O

n  different sets of phenotypes, 

we generate 
I

n  inner-Gibbs samples to calculate the 

score statistic and its variance. The stepwise procedure 
is as follows: 
 

Step 1. Generate 
O

n  outer-Gibbs samples from the 

distribution of pedigree genotypes unconditional on their 
phenotypes, that is, generate the vector 

( )1 2, ,...,
n

g g g g=  from the following distribution: 

 

( ) { } { }( )
( ) ( )

,

| | , , ,

| , | ,

j jl j j

jl j j j

j

j j s s f m

s j s j f m

j l

P g g P g g g g g

P g g g P g g g

θ θ

θ θ

− =

∝∏
     

(10) 



 
 
 
 
Step 2. Assign the phenotypes consistent with each set 

of   genotypes   generated  in  step  1,  so,  we  have  
O

n
 

different sets of phenotypes for the pedigree. 
 
Step 3. For each set of phenotypes produced in step 2, 

they generate 
I

n  inner-Gibbs samples from the 

conditional distribution of genotypes on phenotypes: 
 

( ) ( ) ( ) ( )
,

| , | , | , |
jl j j j

j

j j s j s j f m j j

j l

P g g x P g g g P g g g P x gθ θ θ θ
− ∝∏

                                                                                     (11) 
 
Step 4. Using equations (3) and (6) to calculate estimates 

of score statistic and their variances, we have 
O

n  

different values of score statistic on which we can build 

up the distribution of S .  

  
Same procedure can be followed to calculate the distri-
bution of likelihood ratio. We can also use these 
approximate distributions or their moments for power 

calculation and testing hypotheses of the parameterθ . 

 
 
CONCLUSION 
 
In genetic linkage, usually the focus is to test some hypo-
theses on genetic model parameters. Since estimation of 
the parameters involves the calculation of likelihood, the 
complexity of pedigree likelihood forces the researchers 
to do a huge amount of calculation. Therefore one needs 
to use Monte Carlo methods for estimation. Furthermore, 
testing the boundary value of parameters does not allow 
the researcher to assume the asymptotic normality 
regulations in Cox and Hinkley (1974). The proposed 
approach allows accessing the exact distribution of 
likelihood statistics and the use of its quantiles for confi-
dence interval building and hypothesis testing purposes. 
Although, there are some difficulties with using Gibbs 
sampling, especially its slow convergence and setting the 
initial values, it still remains an efficient method of dealing 
with computational problems in linkage analysis. 
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