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Resistance gene analogues (RGAs) were isolated from two banana cultivars viz., Karthobiumtham and 
Rose using degernate primers designed from the conserved motifs of different plant resistance genes. 
A total of 40 sequences were hit with various R genes, of which 20 sequences were having 
uninterrupted open reading frame (ORFs). Based on the conserved domains like P loop, internal kinase 
2, kinase 3a and hydrophobic domain motifs of the deduced amino acid sequences were grouped as 
NBS-LRR class of resistant genes. The phylogentic analysis of RGAs showed that all the Musa RGAs 
are grouped under non-TIR branch and grouped into six distinct Musa RGA cluster. To investigate the 
expression profile of the RGAs, specific primers were designed for one representative RGA from each 
RGA cluster and it was found that C1 and C5 were induced upon root lesion nematode infection in the 
resistant (cv. Karthobiumtham) and not in susceptible (cv.Nendran) cultivar. C6 was expressed only in 
resistant cultivar not in susceptible one.  But there was no change in the expression of C2 and C3 in 
both resistant and susceptible cultivars. These results indicate that in depth study on C1, and C5 RGAs 
will be helpful for further improvement of P. coffeae resistance in banana. 
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INTRODUCTION 
 
Pest and disease resistance genes (R-genes) comprise a 
large and diverse group of related sequences in plant 
genomes. Based on common molecular features, R-
genes can be broadly divided into at least five broad 
structural classes (Hammond-Kosack et al., 1997).  
Among these, the second gene family (Class II), repre-
sented by majority of the functionally described R-genes 
(72%), encodes cytoplasmic receptor like proteins that 
contain a leucine rich repeat (LRR) domain and a nucleo-
tide binding site (NBS). Genes from the NBS-LRR class 
condition resistance to bacterial, fungal and viral patho-
gens, aphid and nematode pests, have been cloned from 
a number of plants including Arabidopsis thaliana (Bent 

et al., 1994; Mindirons et al., 1994; Grant et al., 1995), 
flax (Lawrence et al., 1995), tobacco (Whitham et al., 
1994), tomato (Milligan et al., 1998) and rice (Yoshimura 
et al., 1998). Young (2000) stated that NBS-LRR and 
other R genes are organized in large, extended clusters 
in the genome.  

The presence of conserved domains in resistance 
genes gave an opportunity to clone numerous additional 
resistance genes from diverse species by polymerase 
chain reaction (PCR) with degenerate oligo-nucleotide 
primers to the conserved motifs (Joyeux et al., 1999; 
Deng et al., 2000; Donald et al., 2002; Lacock et al., 
2003; Totad et al., 2005). Aarts et al. (1998) reported that 
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1 to 2% of the total coding capacity of the Arabidopsis 
genome is contributed by the NBS-LRR sequences, and 
genetic mapping studies of resistance gene analogues 
(RGAs) provided evidence that they co-segregated with 
resistance markers. The RGA fragments were also used 
as molecular markers for tagging the disease resistance 
loci in A. thaliana (Aarts et al., 1998), wheat (Chen et al., 
1998), cocoa (Lanaud et al., 2004), etc.  

Therefore, isolation of RGAs could be an effective 
strategy to identify genomic regions linked to disease 
resistance (Yu et al., 1996).  These RGAs can be trans-
formed into molecular markers for use in marker assisted 
selection or even lead to the cloning of the full length 
functional R genes (Kuhn et al., 2003; Quint et al., 2003). 

Banana (Musa spp.) is one of the most important 
horticultural crops produced in tropical and subtropical 
countries of the world. The ruling cultivars of banana are 
highly susceptible to over 50 fungal pathogens, as well as 
a number of bacterial pathogens, nematodes (P. coffeae, 
Radopholus similis, Meloidogyne incognita, Pratylenchus 
coffeae and Helicotylenchus multicinctus), viruses and 
insect pests.  

Greatest threats to global banana production are 
currently caused by the fungal pathogens 
Mycosphaerella complexes, (M. fijiensis, M. mucicola, 
etc.) causal organism of leaf disease and Fusarium 
oxysporum f. sp. cubense race 1 to 4, which causes 
Fusarium wilt (Ploetz, 1993) and next to this root lesion, 
nematode (P.coffeae).  Bridge et al. (1997) observed 
62% of yield reduction due to P. coffeae in plantain.  
Although some of the land races and wild species are 
found to be resistant to many pest and diseases, 
introgression of resistance into edible cultivars through 
conventional breeding is a difficult task owing to problem 
associated with the polyploidy and low fertility (Roux et 
al., 2004).  

These drawbacks of conventional breeding can be 
conquered through the use of plant resistance genes (R-
genes) by molecular breeding approaches. A better 
understanding of the molecular and genetic basis of 
genes conferring resistance would enhance the 
effectiveness of Musa improvement programme. 
Nevertheless, the identification and characterization of 
RGAs provides new tools that will allow studies on the 
evolution of the diverse regions of R-genes like 
sequences and their implications for plant -pathogen 
interactions. Peraza-Echeverria et al. (2008) isolated and 
cloned a full length R gene (RGC2) which is resistance to 
FOC race 4.  

This showed potential source of R genes in Musa, 
which encouraged isolating the nematode resistant R 
genes. Hence this present study was carried out 1) to 
isolate the RGAs; 2) to evaluate their diversity and 
phylogenetic relationships to the known R-gene from 
other plant species and 3) to examine the transcript 
expression profiles of different Musa RGAs in P. coffeae 
resistant and susceptible cultivar. 
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MATERIALS AND METHODS 
 

DNA isolation 
 

Cigar leaves of two resistant cultivars (Karthobiumtham AAB and 
Rose AA) were collected from National Research Centre for 
Banana, Trichy, India. Total genomic DNA was isolated by using 
the modified CTAB protocol as described by Sambrook and Russel 
(2001).  
 
 

Primers and PCR conditions 
 
Twelve (12) degenerate primers were designed from the conserved 
motif of the R-genes of different species and listed in Table 1. 
PCRs were carried out in a total volume of 25 µl containing 20 ng 
template DNA, 0.25 µM of each primer, 1.5 mM MgCl2 and 0.5 U of 
Tag polymerase (Sigma). Cycling conditions consisted of a 3 min 
initial denaturation at 94°C followed by 40 amplification cycles 
consisting of 94°C for 1 min, 45 to 60°C (Table 1) for 45 s and 72°C 
for 1 min and a final extension of 72°C for 7 min. PCR products 
were separated by electrophoresis on 1% agarose gel and stained 
with ethidium bromide for visualization. 
 
 

Cloning and analysis of PCR products 
 
Bands of the expected size of amplification were excised from gel 
and purified using the PCR elution kit (Qiagen).  The obtained DNA 
was cloned using the pGEM-T Easy vector system following the 
manufacturer’s instructions (Promega, Madison, Wis) and 
transformed into Escherichia coli DH5α. Recombinant plasmid DNA 
was extracted using alkaline lysis, and digested with EcoRI to verify 
the presence of the expected insert. For discrimination between the 
different RGA sequences, clones were characterized by restriction 
analyses with HinfI and RsaI and classified according to their 
restriction pattern. After visual inspection, at least one clone of each 
class was selected for sequencing. 
 
 

Sequence analysis 
 

The sequences obtained were first exposed to the VecScreen 
algorithm (http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html) 
in order to remove the contaminating vector sequences. BLASTN, 
algorithms (Altschul et al., 1997) were used to compare the insert 
sequences to sequences available at the Entrez nucleotide and 
protein databases (http://www.ncbi.nih.gov/BLAST). The 
CLUSTALW algorithm (Thompson et al., 1997) was used for the 
multiple sequence alignments and the BL2SEQ algorithm (Altschul 
et al., 1997) was used for comparing two aminoacid sequences to 
each other. Phylogenetic analyses were conducted using the 
MEGA software (version 3) (Kumar et al., 2004). Robustness of 
clustering was checked by bootstrapping 1000 replicates. Searches 
for ORF were done using ORF finder at the NCBI server. 
 
  

Inoculation of nematode and sample collection for RNA 
isolation 
 

Suckers of nematode resistant (Karthobiumtham) and susceptible 
(Nendran) cultivars were planted in individual earthen pots 
containing sterilized mixture of soil, sand and farm yard manure 
(2:1:1) and kept under green house condition. Nematode infected 
root samples of Nendran were collected from P. coffeae sick plot 
and root lesion nematode was extracted and used as nematode 
inoculums.  One month after planting individual plastic cup, hole on 
the side was placed by removing the soil near the plants in pots and  

http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
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Table 1. Degenerate primers used to amplify RGAs from resistant cultivars of Musa. 
 

S/N Primer Oligonucleiotide sequence (5’-3’) 
Anealing temperature 

(°C) 
Amplified Expected size (bp) 

Conserved 
domain 

Conserved domain 

1 
P6-F  

P6-R 

GGACCTGGTGGGGTTGGGAAGACAA 

 CAACGCTAGTGGCAATCC 
60 + 500 

P- loop 

GLPL 
Ohmori et al. (1998) 

        

2 
S2 

P6-R 

GGIGGIGTIGGIAAIACIACI 

CAACGCTAGTGGCAATCC 
45 + 500 

P- loop 

GLPL 
Kanazin et al. (1996) 

        

3 
F11 

R11 

GGDGTDGGNAARACWAC 

AGIGCHAGNGGNAGNCC 
46 - 500 

P- loop 

GLPL 
Chen et al. (2007) 

        

4 
P12-F  

P12-R 

TAGGGCCTCTTGCATCGT 

TATAAAAAGTGCCGGACT 
50 + 500 

LRR 

LRR 
Kanazin et al. (1996) 

        

5 
LRR-F 

LRR-R 

CCGTTGGACAGGAAGGAG 

CCCATAGACCGGACTGTT 
48 + 450 

LRR 

LRR 
Nair and Thomas (2007) 

        

6 
NBS- F 

NBS-R 

GGAATGGGNGGNGTNGGNAARAC 

YCTAGTTGTRAYDATDAYYYTRC 
50 + 350 

P-loop 

RNBS B 
Yu et al. (1996) 

        

7 
S2 

AS3 

GGIGGIGTIGGIAAIACIACI 

IAAIGCIAGIGGIAGICC 
45 + 500 

P- loop 

GLPL 
Mago et al. (1999) 

 
 
 
those cups were filled with potting mixture. Single root was 
selected in each plant and inserted through the hole into 
the plastic cup. Each cup was inoculated with 3000 active 
root lesion nematodes. The root samples were collected at 
0, 2, 3, 4, 5, 6 and 7 days after inoculation from nematode 
inoculated cup in three biological replications. Roots were 
washed with DEPC water and frozen by using liquid 
nitrogen and kept in -80°C for later analysis. 
 
 
Root RNA isolation and cDNA Synthesis 
 
Total RNA was extracted from the P. coffeae infected as 
well as uninfected roots of cv. Karthobiumtham and cv. 
Nendran using the modified protocol of Clendennen and 
May (1997).   The total RNA was treated with DNAase for 

removing the genomic DNA contamination from RNA. The 
purity of RNA was verified by optical density (OD) 
absorption ratio OD260 nm/OD280 nm between 1.80 and 
2.06 (mean = 2.0). RNA quality was analyzed using the 
RNA6000 Nano LabChip® Kit (Agilent Technologies 
GmbH, B¨oblingen, Germany) and the Agilent 2100 
bioanalyser (Agilent Technologies) for electrophoretic 
separation. RNA quantities acquired by the Agilent 2100 
bioanalyser were relatively regarded the same as 
measured spectrophotometrically. Constant amount of total 
RNA (1 µg) were used for isolating the poly A + mRNA. 
Purification of poly A + mRNA were performed using a 
Qiagen Oligotex mRNA kit for isolating mRNA from total 
RNA (Cat. # 70042) following the manufacturer's protocol 
given. First strand cDNA was synthesized from mRNA by 
reverse transcription with oligo-(dT) primers according to 

the manufacturer’s protocol (Promega corp.)  
 
Expression analysis by semi-quantitative RT-PCR 
 
To analyse the transcript level of the RGAs in nematode 
inoculated root tissues, cDNAs isolated from roots of P. 
coffeae resistant cv. Karthobiumtham and susceptible cv 
(Table 2). Nendran harvested at different days after 
nematode inoculation were used. Three biological 
replicates were used for expression analysis and two 
technical replicates were analysed for each biological 
replicate. The specific primers which are designed from 
each RGA family were used in the amplification of root 
cDNA both cultivars (Table 3). The PCR program initially 
started with a 94°C denaturation for 5 min, followed by 20 
to 30 cycles of 94°C/1 min, 52-58°C /1 min, 72°C/1 min.  
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Table 2. Number of RGAs obtained in cv. Karthobiumtham and cv. Rose with different degenerate primer combinations.  
 

Primer combination 

Karthobiumtham cv. Rose 

Number of clones 
sequenced 

Number of 
RGAs 

Number of RGAs 
without stop codon 

Number of clones 
sequenced 

Number of 
RGAs 

Number of RGAs 
without stop codon 

P6F/ P6R (I) 12 11 3 2 2 2 

P12 F/ P12R (II) 6 0 0 2 1 0 

S2/P6R (III) 10 7 4 21 16 8 

NBS- F/NBS-R (IV) 6 0 0 3 0 0 

LRR-F/ LRR-R (V) 5 0 0 3 0 0 

S2/AS3 (VI) 4 2 1 5 1 0 

Total 43 20 8 36 20 10 
 
 

Table 3. Sequence homology comparisons with highest similarity between consensus sequences, sequences of specific primers and size of the expected products of Musa RGA family. 
 

Musa RGA 
family 

GenBank accession 
Identity 

(%) 
E 

value 
Specific 
primer 

Sequences of specific primer PCR Product 
sizes (bp) Forward primer (5’-3’) Reverse primer (5’-3’) 

A  (5) 
Vitis riparia isolate rgVrip126 
resistance protein candidate gene 
AY427192.1 

76 1e
-09

 C1 TGATGTGTGGAATGAGAACGA CAAGAGCCAGCAATGTTCAA 175 

        

B (3) 
Musa acuminata AAA NBS-LRR 
disease resistance protein, cultivar 
Pisang Bakar, AM931368.1 

98 0.00 C2 CGTGGAGAGGCTTACCAAAG GCCAACCATTTCTGCAATCT 250 

        

C (3) 
Musa ornata NBS-LRR disease 
resistance protein AM931420.1 

91 0.00 C3 CCTGGAGAGCCTTACGAAAG GTACTGCGGACCTCAATGGT 194 

        

D  (3) 
Musa balbisiana NBS-LRR disease 
resistance protein, AM931401.1 

98 0.00 C4 CCTGGACAGGCTTACCATAC AACCATGTCGGCAATCTTTC 247 

        

E (1) 
Oryza sativa subsp. japonica NBS-
LRR-like protein (YR38) pseudogene, 
AF227002.1 

75 3e
-10

 C5 CAAGAGCCAGCAATGTTCAA GCAGTGATTTGCAAGCCTTA 248 

        

G (4) 
Musa acuminata subsp. microcarpa 
NBS-LRR disease resistance protein, 
AM931390.1 

91 0.00 C6 CGTCGGGAGGCTAACCAAAG CCTGGTTCTCCGTACCTCAA 198 

 

The number of RGA in RGA family is listed following the family name GenBank accession, identity and E value given in the table is specific to the RGA where primer has been designed. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=38045838&dopt=GenBank&RID=HGTVFCHR015&log$=nucltop&blast_rank=2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=166084662&dopt=GenBank&RID=DBPKBGUA01N&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=166084764&dopt=GenBank&RID=DBR5SF9Z01S&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=166084728&dopt=GenBank&RID=DBRDV14J016&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=7248826&dopt=GenBank&RID=DBPTTDVT014&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=166084706&dopt=GenBank&RID=738TRAFV01N&log$=nucltop&blast_rank=1
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Linear amplification range for each gene was tested on the 
adjusted cDNA. The number of cycles was optimized for each 
target so that the PCR product did not reach plateau levels. Musa 
25S rRNA (AY651067) (5’ACATTGTCAGGTGGGGAGTT-3’; 5’-
CCTTTTGTTCCACACGAGATT-3’), was used as an internal control 
gene since its expression remains relatively constant (Van den 
Berg et al., 2007). To normalize the transcript levels in different 
samples, the intensity of the band corresponding to each mNRA 
was divided by the intensity of the band corresponding to the 25S 
rRNA. 
  
 
Statistical analysis 
 
The normalized values were reported as means ± SE and statistical 
analysis was performed by student’s t test. Thresholds for 
significance were set at P<0.05 level.  

 
 
RESULTS AND DISCUSSION 
 
PCR amplification and cloning of targeted RGA 
fragment 
 
Seven combinations of 12 degenerate primers which 
were designed based on conserved motif of resistance 
genes from other plant species were used to amplify 
RGAs in the genomic DNA of resistant cultivars namely 
Karthobiumtham and Rose. Out of the seven combina-
tions, only six combinations namely P6F/P6R, S2/AS3, 
P12F/P12R, LRR-F/LRR-R, NBS-F/NBS-R and S2/P6R, 
amplified the expected size in both the cultivars (Table 1).  
All the amplified products of expected size alone were gel 
purified and digested with different frequent cutter 
enzymes (RsaI, HaeIII and HinfI) which resulted in many 
fragments, with the sum of molecular weights of all the 
restriction fragments being much greater than the 
molecular weight of the original product indicating the 
presence of a heterogeneous product.  This showed that 
each band consisted of many RGA sequences. The PCR 
products of all the six primer combinations were cloned 
separately from each resistant cultivar. Altogether, a total 
of 79 clones which were showing different restriction 
patterns of the insert and occasionally, several clones of 
identical patterns were chosen and further characterized 
by sequencing and sequence analysis.  

Searches of the GenBank database, using the BLASTX 
algorithm, revealed that out of 79 sequences, only 40 
were hit with RGAs or known R-genes from other 
species. Out of the six primer combinations, I, II, III and 
VI combinations amplified the RGA sequences. More 
number of RGA sequences was obtained from the primer 
combinations I and III in Karthobiumtham (18 RGAs) and 
Rose (18RGAs) respectively. Hence these two primer 
combinations may be considered as the most successful 
in obtaining resistance gene analogues of Musa cultivars. 

Out of eight sequences obtained from primer combina-
tion II, only one clone which was derived from rose was 
hit with  Rosa  hybrid cultivar  isolate L3P2-8H  NBS-LRR 

 
 
 
 

resistance protein gene, partial cds whereas other clone 
did not match with any of R-genes. Similarly, the sequen-
ces obtained from IV and V combinations did not have 
significant hits with either RGAs or known R-genes from 
other plant species. All the clones obtained from V 
combination hit with ubiquitin carboxyl-terminal hydrolase 
family protein (LOC100259769) of Vitis vinifera.    

Forty (40) sequences which hit with R genes were 
further analyzed using ORF finder and it was found that 
only 18 sequences contained possible frames encoding 
uninterrupted by stop codons. The remaining clones 
contained multiple stop codons and are likely to be 
pseudogenes which might have evolved during the 
course of evolution (Meyers, 1999). Aarts et al. (1998) 
also found RGAs with frame shifts and stop codons in A. 
thaliana. Michelmore and Meyers (1998) reported that 
pseudogenes may be served as reservoirs of potential 
variation, because they may allow for recombination and 
gene conversion between alleles or paralogs of functional 
R genes and therefore represent the possibility of more 
rapid evolution of new specificities (Ota and Nei, 1994).  
 
 

Sequence analysis of conserved motifs 
 

Sequences were translated to look for motifs characteris-
tic of plant NBS regions.  Multiple alignment of the de-
duced amino acid sequences of the RGA sequences and 
the NBS domains of R genes using CLUSTALX revealed 
the presence of P-loop and GLPL that were used to 
design primers and four more conserved motifs; RNBS-A 
(resistance nucleotide binding site) non-TIR (Toll/-Inter-
leukin receptor homo-logy), Kinase-2, RNBS-B, and 
RNBS-C (Figure 1) which are characteristics of the NBS 
domain encoded by NBS-LRR resistance gene family. 
Among these conserved motifs, the P-loop, RNBS-B and 
GLPL motifs are con-served in both TIR and non-TIR 
NBS-LRR proteins, while RNBS-A non-TIR has been 
found only in the non-TIR NBS-LRR proteins. The 
presence of an internal kinase-2 motif and kinase -3a 
domains, which are independent of the primer sequen-
ces, in the PCR clones appears to confirm that these 
clones correspond to NBS containing genes. 

The last residue of the kinase -2 domain can be used to 
predict whether a RGA would belong to the TIR-NBS or 
the non-TIR-NBS family.  As expected, a tryptophan 
residue (W) was found in all the sequences carrying the 
RNBS-A-non-TIR motif. This is in good agreement with 
the characteristics identified earlier for non-TIR sub class. 
Cannon et al. (2002) suggest that these sequences cor-
respond to NBS region of non- TIR NBS-LRR sub class 
of NBS-LRR super-family of genes, as expected for a 

monocot species. In TIR-NBS-LRR group, a characteris- 
tic consensus motif FXXXXF and a highly conserved 
glycine are present between kinase1a and kinase2 
domains, whereas the non-TIR-NBS-LRR group contains 
the consensus sequence FXXXXW (Pan et al., 2000).
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Figure 1. Phylogenetic tree based on the alignment of the consensus aminoacid sequences of 
Musa RGAs and six known resistance genes of other species: Linum usitatissimum 
(AAD25968.1), Brassica napus (AAG40138.1), Oryza sativa (BAA25068.1), A.thaliana 
(Q9LRR4.1), Solanum lycopersicum (AAD8712.1) and A. thaliana (AAC72977.1).  

 
 
 

The presence of consensus motif FXXXXW in RGAs of 
the present study further ensures their position in non-
TIR-NBS-LRR subfamily.  Based on these criteria it was 
found that all the RGAs obtained in this study are 
belonged to the non-TIR NBS-LRR class. Similar results 

were also obtained by Pei et al. (2007) in Musa. It is 
emphasized that no TIR-type RGA sequences were 
isolated from any of Musa species and this is very well in 
consistence with earlier reports on the absence of this 
subclass of R-genes in monocotyledons (Cannon et al., 
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2002). 
 
 

Phylogenetic analysis of Musa RGAs 
 
In order to visualize the relative distance of Musa 
sequences to R genes and RGAs from other species, 
neighbour-joining tree based on the multiple alignment of 
amino acid was generated. The resulting tree consisted 
of two major branches, one consisting of TIR NBS-LRR 
and the other consisting of non-TIR NBS-LRR disease 
resistance proteins (Figure 2). The phylogenetic tree 
categorized the Musa RGAs into 6 distinct families (A, B, 
C, D, E, and G) based on the identity of their aminoacid.  
RGAs obtained from Rose were grouped into 5 families 
namely (A, B, C, D and E) whereas RGAs of cv. 
Karthombiutham were grouped into two families (A and 
G). This showed that RGAs of Rose are having a higher 
level of divergence than the Karthobiumtham. This 
revealed that RGA gene family is widely divergent in 
Rose cultivar. As R-genes are multigene family, their 
diversity and evolution depends on their genomic 
organization and selection in response to pathogen 
pressure (Hammond-Kosack and Jones, 1997). 

RGA of Brassica napus (Acc.No. AAG40138.1) which 
is located in between two Musa families showed that this 
RGA might belongs to non-TIR class of NBS family. This 
was also confirmed based on the multiple alignment 
tryptophan residues (W) in the RNBS-A motif of Brassica 
RGA. Similarly, RGAs of A. thaliana fell under the main 
branches of non TIR and TIR classes suggesting that 
dicotyledons are having both non-TIR and TIR classes of 
NBS-LRR super family of genes as expected RGA of 
Oryza sativa fell in clade F along with the Musa cultivar 
Karthobiumtham RGAs   and also under non-TIR type 
class. 
 
 
Expression analysis of Musa RGAs 
 
In order to study the expression profile of Musa RGAs, 
specific primers were designed for one representative 
RGA from each RGA family. These representative RGAs 
showed high homology to the RGAs isolated from 
different Musa spp and other monocot (Oryza sativa) 
subsp. japonica and dicot (Vitis riparia) species (Table 3). 
Hence, all the specific primers were used for performing 
the RT PCR in root cDNA of both cultivars. Even though 
same amount of cDNA template was used for analysis, 
the expression level of RGAs was varying among the 
primers as well as cultivars. Out of six specific primers,  
amplified products were detected only in C1, C2, C3 and 
C5 while expression of C4 was not observed in 
uninfected resistant and susceptible cultivars. This 
suggested that only four RGAs (C1, C2, C3 and C5) are 
constitutively expressed in both the cultivars.  Peraza-
Echeverria et al. (2008) revealed that at least three out of  

 
 
 
 
five RGAs from banana were expressed constitutively in 
root and leaf tissues of resistant and susceptible 
cultivars. The same kind of trend was also observed in 
other crops, namely common bean (Rivkin et al.,1999), B. 
oleracea (Vicente and King, 2001), Ginger (Aswati and 
Thomas, 2007) and B. napus (Fourmann et al., 2001). 
Hammond-Kosack and Jones (1997) suggested that the 
R-gene products may have a function in plant 
development and therefore be expressed in healthy, un-
inoculated plants, ready to detect any attack. 

Moreover, the constitutive expression of C6 was 
observed only in the resistant not in susceptible. Wang et 
al. (2006) reported that differences in transcript levels 
could be correlated with the reaction to susceptibi-
lity/resistance of the host plant to pathogen.  Gao et al. 
(2006) found that some RGAs were expressed only after 
challenge with Verticillium dahlia in cotton. Hence all the 
primers were used for studying the time course 
expression on nematode inoculated root tissues.  The 
time course expression of these Musa RGAs in the P. 
coffeae infested root tissues of resistant and susceptible 
cultivars was determined by semi-quantitative RT-PCR 
analysis. The transcript level of C1 and C5 was increased 
at 4 as well as 6 DAI of nematodes and steadily 
increased up to 7 DAI in resistant cultivar alone (Figure 
3). The peak transcriptional expression was observed on 
5 DAI for C1 and 7DAI for C5.  While, in susceptible 
cultivar no significant induction was observed after 
inoculation for all the RGAs. Similarly, the static level of 
transcripts was observed in resistant cultivar for C2, C3 
and C6 RGAs in resistant culitvar.  The expression of C6 
in susceptible cultivar was not found even after 7DAI of 
P. coffeae envisaged that this could be considered as 
pseudogene which may occur due to frame shifts and/or 
stop codons (Aarts et al., 1998).  These results 
envisaged that some of the RGAs are constitutively 
expressed and some of them are over expressed owing 
to P. coffeae infection and some of them may be 
pseudogenes.  
 
 

Conclusion 
 
In this study, the level and the time-course accumulation 
of C1 and C5 RGA transcripts confirmed that these two 
RGAs had a significant role in resistant cultivar against P. 
coffeae. Currently, we are attempting to clone full-length 
cDNAs of C1 and C5 to characterize their structure, the 
mechanism of their response to P. coffeae, which will 
provide further evidence on their role in nematode 
resistance.  
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Figure 2. Multiple alignments of the consensus aminoacid sequences of the 20 RGAs and NBS domain of R-genes constructed with Clustal 
X. These R-gene including A.thaliana  RPP13 (Q9LRR4.1) and  Oryza sativa Xa1(BAA25068.1). The locations of conserved motifs were 
included at the top of the results. 



9 

 

4264        Afr. J. Biotechnol. 
 
 
 

A       B 

C1 

 
 

C1 

 

C2 

 

C2 

 
 

C3 

 

C3 

 
C4 

 

C4 

 
C5 

 
 

 
 

 
 
 

 

 

 

 
 
Figure 3. Expression profiles of Musa RGAs C1, C2, C3, C5 and C6 at 0, 2, 3, 4, 5, 6, 7 days 
after P. coffeae infection in A ) resistant cultivar (Karthobiumtham) B) susceptible cultivar 
(Nendran). 
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Figure 3. Contd. 
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